JP3038857B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3038857B2
JP3038857B2 JP2249167A JP24916790A JP3038857B2 JP 3038857 B2 JP3038857 B2 JP 3038857B2 JP 2249167 A JP2249167 A JP 2249167A JP 24916790 A JP24916790 A JP 24916790A JP 3038857 B2 JP3038857 B2 JP 3038857B2
Authority
JP
Japan
Prior art keywords
insulating film
region
film
impurity
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2249167A
Other languages
Japanese (ja)
Other versions
JPH04127538A (en
Inventor
久夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2249167A priority Critical patent/JP3038857B2/en
Publication of JPH04127538A publication Critical patent/JPH04127538A/en
Application granted granted Critical
Publication of JP3038857B2 publication Critical patent/JP3038857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にパターンを微細化し
ても信頼度の高いMOSFETを有する半導体装置に関するも
のである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device having a MOSFET with high reliability even when a pattern is miniaturized.

〔従来の技術〕[Conventional technology]

従来技術によるLDD(ightly oped rain)構造
のMOSFETについて、第3図を参照して説明する。
The MOSFET of the prior art LDD by (l ightly d oped d rain) structure will be described with reference to Figure 3.

P型シリコン基板1上の素子分離領域に、選択酸化法
による厚い二酸化シリコン膜2およびチャネルストッパ
となるP型拡散層3が形成されている。
In an element isolation region on a P-type silicon substrate 1, a thick silicon dioxide film 2 formed by a selective oxidation method and a P-type diffusion layer 3 serving as a channel stopper are formed.

素子形成領域にはゲート絶縁膜4が形成され、その上
にポリシリコンあるいはポリシリコン層とタングステン
などの高融点金属を含むシリサイド層との積層からなる
ゲート電極5が形成されている。
A gate insulating film 4 is formed in the element formation region, and a gate electrode 5 made of polysilicon or a laminate of a polysilicon layer and a silicide layer containing a high melting point metal such as tungsten is formed thereon.

ゲート電極5と厚い二酸化シリコン膜2とをマスクと
して自己整合的に低不純物濃度のN型拡散層6が形成さ
れている。
Using gate electrode 5 and thick silicon dioxide film 2 as a mask, low impurity concentration N-type diffusion layer 6 is formed in a self-aligned manner.

低不純物濃度のN型拡散層6は例えば燐を加速エネル
ギー50〜80keV、注入量(ドース)2.0×1013〜1.0×10
14/cm2イオン注入することにより形成される。
The N-type diffusion layer 6 having a low impurity concentration is, for example, phosphorous having an acceleration energy of 50 to 80 keV and a dose (dose) of 2.0 × 10 13 to 1.0 × 10 5.
It is formed by ion implantation of 14 / cm 2 .

さらにゲート電極5には例えばCVD法による二酸化シ
リコン膜からなる側壁7が形成されている。
Further, a side wall 7 made of a silicon dioxide film is formed on the gate electrode 5 by, for example, a CVD method.

ゲート電極5、側壁7、厚い二酸化シリコン膜2をマ
スクとして自己整合的に高不純物濃度のN型拡散層8が
形成されている。
An N-type diffusion layer 8 having a high impurity concentration is formed in a self-aligned manner using the gate electrode 5, the side wall 7, and the thick silicon dioxide film 2 as a mask.

高不純物濃度のN型拡散層8は例えば砒素を加速エネ
ルギー50〜80keV、注入量(ドース)3.0×1015〜1.0×1
016/cm2イオン注入することにより形成される。
The N-type diffusion layer 8 having a high impurity concentration is, for example, arsenic with an acceleration energy of 50 to 80 keV and an implantation dose (dose) of 3.0 × 10 15 to 1.0 × 1.
It is formed by ion implantation of 0 16 / cm 2 .

後続工程で形成される金属配線層との接触抵抗を低減
するため、高不純物濃度のN型拡散層8には5.0×1019/
cm3以上の不純物濃度が必要である。
In order to reduce contact resistance with a metal wiring layer formed in a subsequent process, 5.0 × 10 19 /
An impurity concentration of cm 3 or more is required.

また低不純物濃度のN型拡散層6はドレイン側端部に
おけるゲート電極5とN型拡散層6,8との間の電界の集
中の防止を目的として、5×1017〜1.0×1019/cm-3の不
純物濃度とする必要がある。
The N-type diffusion layer 6 having a low impurity concentration has a concentration of 5 × 10 17 to 1.0 × 10 19 /1.0 for preventing concentration of an electric field between the gate electrode 5 and the N-type diffusion layers 6 and 8 at the end on the drain side. It is necessary to have an impurity concentration of cm -3 .

したがって高集積化を目的として、ゲート長を1.2μ
m以下、ゲート絶縁膜の厚さを250Å以下とするMOSFET
においては、ソース−ドレイン拡散層を不純物濃度の異
なる二重のN型拡散層6,8を適用することとなった。
Therefore, for the purpose of high integration, the gate length is set to 1.2μ.
m and MOSFET with gate insulating film thickness of 250 mm or less
In this case, double N-type diffusion layers 6 and 8 having different impurity concentrations are applied to the source-drain diffusion layers.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このようなMOSFETにはつぎのような問題があった。 Such a MOSFET has the following problems.

第1に、高速化、高集積化を目的としてゲート絶縁膜
をさらに薄く、ゲート長を短かくして、電界強度を従来
状態に保とうとすれば、低不純物濃度のN型拡散層の不
純物濃度を低下させる必要がある。その結果トランジス
タ本体の単位チャネル幅当りのドレイン電流は増加する
一方、ソース−ドレイン拡散層に付随する寄生抵抗が大
きくなる。したがってトランジスタ本体と寄生抵抗成分
とを加えた全体としてのトランジスタでは、単位チャネ
ル幅当りのドレイン電流は縮小度合に比べて小さな電流
増加しか得られない。
First, if the gate insulating film is made thinner, the gate length is shortened, and the electric field strength is maintained in the conventional state for the purpose of high speed and high integration, the impurity concentration of the low impurity concentration N-type diffusion layer is reduced. Need to be done. As a result, the drain current per unit channel width of the transistor body increases, while the parasitic resistance associated with the source-drain diffusion layers increases. Therefore, in the transistor as a whole including the transistor body and the parasitic resistance component, the drain current per unit channel width can obtain only a small increase in current as compared with the degree of reduction.

第2に、半導体装置の特性ばらつきの原因となるゲー
ト長のパターン精度は、露光装置およびゲート電極のエ
ッチング装置の装置能力のみによって決まる。したがっ
て量産工程においては、ゲート長の製造規格は0.8±0.1
5μmが限界である。実際にゲート長が0.95μmのとき
と0.65μmのときとの論理回路の遅延時間の比は約1.5
倍となり、電源電圧変動、温度変動などの半導体論理回
路の動作環境下における遅延時間のばらつきを3倍以下
に抑える目安となる。さらにゲート長のばらつき要因と
して例えばゲート電極材料となるポリシリコンの結晶粒
界における結晶粒の部分的脱落も考えらる。この対策は
結晶粒を微細化する以外にない。
Second, the pattern accuracy of the gate length that causes the characteristic variation of the semiconductor device is determined only by the device capabilities of the exposure device and the gate electrode etching device. Therefore, in the mass production process, the manufacturing standard of the gate length is 0.8 ± 0.1
5 μm is the limit. Actually, the ratio of the delay time of the logic circuit when the gate length is 0.95 μm and 0.65 μm is about 1.5.
This is a measure to suppress the variation of the delay time under the operating environment of the semiconductor logic circuit such as the power supply voltage fluctuation and the temperature fluctuation to three times or less. Further, as a factor of variation of the gate length, for example, partial dropout of crystal grains at a crystal grain boundary of polysilicon serving as a gate electrode material can be considered. There is no countermeasure other than miniaturization of the crystal grains.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の半導体装置の製造方法は、一導電型半導体基
板上の素子分離領域に第1の絶縁膜を選択形成し、続い
て前記半導体基板上の素子形成予定領域に前記第1の絶
縁膜より薄い第3の絶縁膜を形成し、続いて前記第3の
絶縁膜上に第2導電型の不純物を含む不純物含有膜を堆
積させ、続いて前記素子形成予定領域のチャネル形成領
域の上に位置する前記不純物含有膜を選択的に除去し、
続いて前記一導電型半導体基板に熱処理を施して前記不
純物含有膜の不純物を前記第3の絶縁膜を通して前記素
子形成予定領域に拡散させて第2導電型のソース−ドレ
イン拡散層を形成し、続いて前記不純物含有膜及び前記
第3の絶縁膜を除去して前記素子形成予定領域の表面を
露出させ、続いて前記素子形成予定領域の表面を酸化し
て前記ソース−ドレイン拡散層の上に第4の絶縁膜及び
前記チャネル形成領域の上に前記第4の絶縁膜よりも薄
いゲート絶縁膜を形成し、最後に前記ゲート絶縁膜の上
に前記ゲート絶縁膜を覆って前記第4の絶縁膜上にも延
在するゲート電極を形成することを特徴としている。
In the method of manufacturing a semiconductor device according to the present invention, a first insulating film is selectively formed in an element isolation region on a semiconductor substrate of one conductivity type, and then the first insulating film is formed in a region where an element is to be formed on the semiconductor substrate. Forming a thin third insulating film, subsequently depositing an impurity-containing film containing impurities of the second conductivity type on the third insulating film, and then depositing an impurity-containing film on the channel formation region of the element formation planned region; Selectively removing the impurity-containing film,
Subsequently, a heat treatment is performed on the one-conductivity-type semiconductor substrate to diffuse impurities of the impurity-containing film through the third insulating film into the region where the element is to be formed, thereby forming a second conductivity-type source-drain diffusion layer. Subsequently, the impurity-containing film and the third insulating film are removed to expose the surface of the element formation planned region, and then the surface of the element formation planned region is oxidized to cover the source-drain diffusion layer. Forming a gate insulating film thinner than the fourth insulating film on the fourth insulating film and the channel formation region, and finally covering the gate insulating film on the gate insulating film to form the fourth insulating film; It is characterized in that a gate electrode extending over a film is formed.

本発明の実施例を説明する前に、本発明の関連技術に
ついて、第1図(a)〜(d)を参照して説明する。
Before describing the embodiments of the present invention, the related art of the present invention will be described with reference to FIGS. 1 (a) to 1 (d).

はじめに第1図(a)に示すように、P型シリコン基
板1の素子分離領域に選択酸化法を用いて厚さ600〜100
0nmの二酸化シリコン膜(第1の絶縁膜)2を形成す
る。
First, as shown in FIG. 1A, the element isolation region of the P-type silicon substrate 1 is formed to a thickness of 600 to 100 using a selective oxidation method.
A 0 nm silicon dioxide film (first insulating film) 2 is formed.

つぎに硼素を加速エネルギー70〜100keV、注入量(ド
ース)1.0×1013/cm2イオン注入してから、960〜1040
℃、H2−O2雰囲気で2〜4時間熱酸化することにより、
二酸化シリコン膜2の直下に自己整合的にP型拡散層3
を形成する。
Next, boron is implanted with an acceleration energy of 70 to 100 keV and an implantation dose (dose) of 1.0 × 10 13 / cm 2.
° C., by oxidizing 2-4 hours heat in H 2 -O 2 atmosphere,
P-type diffusion layer 3 self-aligned directly under silicon dioxide film 2
To form

つぎにP型シリコン基板1の素子領域に熱酸化により
厚さ35〜70nmの二酸化シリコン膜(第2の絶縁膜)9を
形成する。
Next, a silicon dioxide film (second insulating film) 9 having a thickness of 35 to 70 nm is formed in the element region of the P-type silicon substrate 1 by thermal oxidation.

つぎに第1図(b)に示すように、フォトリソグラフ
ィによりチャネル形成予定領域の二酸化シリコン膜9に
開口10を形成してから、熱酸化することにより開口10に
厚さ10〜20nmのゲート絶縁膜4を形成する。
Next, as shown in FIG. 1B, an opening 10 is formed in the silicon dioxide film 9 in a region where a channel is to be formed by photolithography, and then a gate insulating film having a thickness of 10 to 20 nm is formed in the opening 10 by thermal oxidation. The film 4 is formed.

つぎに第1図(c)に示すように、燐ドープポリシリ
コン層を堆積してから、フォトリソグラフィにより選択
エッチングしてゲート電極5を形成する。
Next, as shown in FIG. 1C, a phosphorus-doped polysilicon layer is deposited, and then selectively etched by photolithography to form a gate electrode 5.

このとき減圧CVD法により厚さ300〜450nmのポリシリ
コン層を堆積し、820〜950℃で燐を熱拡散することによ
り、層抵抗が10〜40Ω/□となるように形成されてい
る。
At this time, a polysilicon layer having a thickness of 300 to 450 nm is deposited by a low pressure CVD method, and phosphorus is thermally diffused at 820 to 950 ° C. to form a layer resistance of 10 to 40 Ω / □.

ゲート電極5の幅l1は開口10の幅l2よりも大きくなる
ように設定される。
The width l 1 of the gate electrode 5 is set to be larger than the width l 2 of the opening 10.

したがってゲート電極5はゲート絶縁膜4上から二酸
化シリコン膜9上にかけて形成される。ここでは後続工
程で形成されるソース−ドレイン拡散層6の接合深さに
対応してl1〜l2=600nmに設定されている。
Therefore, gate electrode 5 is formed over gate insulating film 4 and silicon dioxide film 9. Here, l 1 to l 2 = 600 nm is set corresponding to the junction depth of the source-drain diffusion layer 6 formed in the subsequent step.

つぎに第1図(d)に示すように、二酸化シリコン膜
2およびゲート電極5をマスクとして自己整合的にN型
拡散層6,8を形成する。
Next, as shown in FIG. 1D, N-type diffusion layers 6 and 8 are formed in a self-aligned manner using the silicon dioxide film 2 and the gate electrode 5 as a mask.

N型拡散層6,8は燐を加速エネルギー50〜80keV、注入
量(ドース)2.0×1013〜1.0×1014/cm2および砒素を加
速エネルギー50〜100keV、注入量(ドース)3.0×1015
〜1.0×1016/cm2イオン注入してから950℃、窒素雰囲気
で熱処理することにより形成される。燐と砒素との拡散
係数の差により、燐による低不純物濃度で接合深さの深
い拡散層6と、砒素による高不純物濃度で接合深さの浅
い拡散層8との二重の拡散層が形成されている。ここで
は燐によるN型拡散層6はその接合端が開口10の直下近
傍に到達するよう、接合深さを500nmとしている。また
不純物がP型シリコン基板1に十分イオン注入できるよ
う、二酸化シリコン膜9の厚さを15〜30nmに減じてい
る。
The N-type diffusion layers 6 and 8 are formed by accelerating phosphorus at an acceleration energy of 50 to 80 keV and implanting dose (dose) of 2.0 × 10 13 to 1.0 × 10 14 / cm 2 and arsenic at an accelerating energy of 50 to 100 keV and implanting dose (dose) of 3.0 × 10 4. Fifteen
It is formed by implanting ions of about 1.0 × 10 16 / cm 2 and then performing heat treatment in a nitrogen atmosphere at 950 ° C. Due to the difference between the diffusion coefficients of phosphorus and arsenic, a double diffusion layer of a diffusion layer 6 with a low impurity concentration of phosphorus and a deep junction depth and a diffusion layer 8 of a high impurity concentration of arsenic and a shallow junction depth are formed. Have been. Here, the junction depth of the N-type diffusion layer 6 made of phosphorus is set to 500 nm so that the junction end reaches the vicinity immediately below the opening 10. The thickness of the silicon dioxide film 9 is reduced to 15 to 30 nm so that impurities can be sufficiently implanted into the P-type silicon substrate 1.

〔実施例〕〔Example〕

つぎに本発明の実施例について、第2図(a)〜
(d)を参照して説明する。
Next, an embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG.

はじめに第2図(a)に示すように、P型シリコン基
板1の素子分離領域に二酸化シリコン膜2およびP型拡
散層3を形成する。つぎに素子領域上に熱酸化により厚
さ5〜10nmの二酸化シリコン膜11を形成し、さらに全面
に燐ドープの二酸化シリコンまたはポリシリコンからな
る厚さ30〜50nmの不純物層12を堆積する。
First, as shown in FIG. 2A, a silicon dioxide film 2 and a P-type diffusion layer 3 are formed in an element isolation region of a P-type silicon substrate 1. Next, a silicon dioxide film 11 having a thickness of 5 to 10 nm is formed on the element region by thermal oxidation, and an impurity layer 12 having a thickness of 30 to 50 nm made of phosphorus-doped silicon dioxide or polysilicon is deposited on the entire surface.

つぎに第2図(b)に示すように、フォトリソグラフ
ィによりチャネル形成領域上の不純物層12を選択除去し
て開口10を形成する。つぎに950〜1050℃の温度で熱酸
化することにより、燐を不純物層12からP型シリコン基
板1へ拡散して、低不純物濃度のN型拡散層6を形成す
る。不純物層12がポリシリコン層の場合、この熱酸化に
より二酸化シリコン層9に変換する。
Next, as shown in FIG. 2 (b), the opening 10 is formed by selectively removing the impurity layer 12 on the channel formation region by photolithography. Next, phosphorus is diffused from the impurity layer 12 to the P-type silicon substrate 1 by thermal oxidation at a temperature of 950 to 1050 ° C. to form an N-type diffusion layer 6 having a low impurity concentration. When the impurity layer 12 is a polysilicon layer, it is converted into the silicon dioxide layer 9 by this thermal oxidation.

つぎに第2図(c)に示すように、全面をエッチング
してチャネル形成領域のP型シリコン基板1を露出して
から熱酸化することにより、ゲート絶縁膜4を形成す
る。つぎにゲート絶縁膜4から二酸化シリコン膜9にか
けてゲート電極5を形成する。
Next, as shown in FIG. 2 (c), the entire surface is etched to expose the P-type silicon substrate 1 in the channel formation region and then thermally oxidized to form the gate insulating film 4. Next, a gate electrode 5 is formed from the gate insulating film 4 to the silicon dioxide film 9.

つぎに第2図(d)に示すように、二酸化シリコン膜
2とゲート電極5とをマスクとして砒素をイオン注入す
ることにより自己整合的に高不純物濃度のN型拡散層8
を形成する。
Next, as shown in FIG. 2 (d), arsenic is ion-implanted using the silicon dioxide film 2 and the gate electrode 5 as a mask to form a self-aligned high impurity concentration N-type
To form

本発明の関連技術と違ってこの実施例においては、低
不純物濃度のN型拡散層6を開口10に対して自己整合的
に形成できるという特徴がある。
Unlike the related art of the present invention, this embodiment is characterized in that the N-type diffusion layer 6 having a low impurity concentration can be formed in a self-aligned manner with respect to the opening 10.

以上NチャネルMOSFETについて説明したが、Pチャネ
ルMOSFETに適用しても同様の効果を得ることができる。
Although the N-channel MOSFET has been described above, a similar effect can be obtained by applying the present invention to a P-channel MOSFET.

〔発明の効果〕〔The invention's effect〕

本発明のMOSFETにおいて、ゲート絶縁膜上からゲート
酸化膜より厚い二酸化シリコン膜上にかけてゲート電極
が形成されている。
In the MOSFET of the present invention, a gate electrode is formed from over the gate insulating film to over the silicon dioxide film thicker than the gate oxide film.

電界が集中し易いゲート電極のドレイン側端部で、ゲ
ート酸化膜が厚くなっているので電界の集中が緩和さ
れ、MOSFETの経時変化が少なくなることにより、信頼性
が向上するという効果がある。
At the drain-side end of the gate electrode where the electric field tends to concentrate, the thicker gate oxide film alleviates the concentration of the electric field and reduces the change with time of the MOSFET, thereby improving the reliability.

さらにゲート電極とソース−ドレイン拡散層との間に
構成される寄生容量が低減でき、回路動作の高速化が可
能になった。
Further, the parasitic capacitance formed between the gate electrode and the source-drain diffusion layer can be reduced, and the circuit operation can be speeded up.

また従来ゲート電極の幅で決定されていたゲート長が
本発明では開口の幅で決定できるようになり、ゲート電
極材料に起因する製造ばらつきを排除できるという効果
がある。
In the present invention, the gate length, which has conventionally been determined by the width of the gate electrode, can now be determined by the width of the opening, and there is an effect that manufacturing variations due to the gate electrode material can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(d)は本発明の関連技術を示す断面
図、第2図(a)〜(d)は本発明の実施例を示す断面
図、第3図は従来技術によるLDD構造のMOSFETの素子部
を示す断面図である。 1……P型シリコン基板、2……二酸化シリコン膜(第
1の絶縁膜)、3……P型拡散層、4……ゲート絶縁
膜、5……ゲート電極、6……N型拡散層、7……側
壁、8……N型拡散層、9……二酸化シリコン膜、10…
…開口、11……二酸化シリコン膜、12……不純物層。
1 (a) to 1 (d) are cross-sectional views showing the related art of the present invention, FIGS. 2 (a) to 2 (d) are cross-sectional views showing an embodiment of the present invention, and FIG. FIG. 3 is a cross-sectional view showing an element portion of a MOSFET having a structure. Reference Signs List 1 ... P-type silicon substrate, 2 ... Silicon dioxide film (first insulating film), 3 ... P-type diffusion layer, 4 ... Gate insulating film, 5 ... Gate electrode, 6 ... N-type diffusion layer , 7 ... sidewall, 8 ... N-type diffusion layer, 9 ... silicon dioxide film, 10 ...
... opening, 11 ... silicon dioxide film, 12 ... impurity layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一導電型半導体基板上の素子分離領域に第
1の絶縁膜を選択形成し、続いて前記半導体基板上の素
子形成予定領域に前記第1の絶縁膜より薄い第3の絶縁
膜を形成し、続いて前記第3の絶縁膜上に第2導電型の
不純物を含む不純物含有膜を堆積させ、続いて前記素子
形成予定領域のチャネル形成領域の上に位置する前記不
純物含有膜を選択的に除去し、続いて前記一導電型半導
体基板に熱処理を施して前記不純物含有膜の不純物を前
記第3の絶縁膜を通して前記素子形成予定領域に拡散さ
せて第2導電型のソース−ドレイン拡散層を形成し、続
いて前記不純物含有膜及び前記第3の絶縁膜を除去して
前記素子形成予定領域の表面を露出させ、続いて前記素
子形成予定領域の表面を酸化して前記ソース−ドレイン
拡散層の上に第4の絶縁膜及び前記チャネル形成領域の
上に前記第4の絶縁膜よりも薄いゲート絶縁膜を形成
し、最後に前記ゲート絶縁膜の上に前記ゲート絶縁膜を
覆って前記第4の絶縁膜上にも延在するゲート電極を形
成することを特徴とする半導体装置の製造方法。
A first insulating film is selectively formed in an element isolation region on a semiconductor substrate of one conductivity type, and a third insulating film thinner than the first insulating film is formed in a region where an element is to be formed on the semiconductor substrate. Forming a film, subsequently depositing an impurity-containing film containing an impurity of the second conductivity type on the third insulating film, and subsequently, the impurity-containing film located on a channel formation region of the element formation planned region Is selectively removed, and then the one-conductivity-type semiconductor substrate is subjected to a heat treatment to diffuse the impurities of the impurity-containing film through the third insulating film into the region where the element is to be formed. Forming a drain diffusion layer, subsequently removing the impurity-containing film and the third insulating film to expose the surface of the element formation planned region, and subsequently oxidizing the surface of the element formation region to form the source formation region; A fourth layer on the drain diffusion layer; Forming a gate insulating film thinner than the fourth insulating film on the insulating film and the channel forming region, and finally covering the gate insulating film on the gate insulating film and on the fourth insulating film; Forming a gate electrode that also extends.
JP2249167A 1990-09-19 1990-09-19 Method for manufacturing semiconductor device Expired - Lifetime JP3038857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2249167A JP3038857B2 (en) 1990-09-19 1990-09-19 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2249167A JP3038857B2 (en) 1990-09-19 1990-09-19 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04127538A JPH04127538A (en) 1992-04-28
JP3038857B2 true JP3038857B2 (en) 2000-05-08

Family

ID=17188907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2249167A Expired - Lifetime JP3038857B2 (en) 1990-09-19 1990-09-19 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3038857B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610430A (en) * 1994-06-27 1997-03-11 Matsushita Electric Industrial Co., Ltd. Semiconductor device having reduced gate overlapping capacitance
JP2006245317A (en) * 2005-03-03 2006-09-14 Fujitsu Ltd Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JPH04127538A (en) 1992-04-28

Similar Documents

Publication Publication Date Title
US4935379A (en) Semiconductor device and method of manufacturing the same
US4523213A (en) MOS Semiconductor device and method of manufacturing the same
US4925807A (en) Method of manufacturing a semiconductor device
JPH0426542B2 (en)
JPS638622B2 (en)
US6727186B1 (en) Method for lateral etching with holes for making semiconductor devices
KR920008120B1 (en) Mos type field effect transistor
EP0098941B1 (en) Method of making ohmic contacts regions and device manufactured by the method
JPH0644572B2 (en) Method for manufacturing semiconductor device
JPH09237841A (en) Semiconductor device and its manufacture
JP3038857B2 (en) Method for manufacturing semiconductor device
JPH098135A (en) Manufacture of semiconductor device
JPS6251216A (en) Manufacture of semiconductor device
US5192705A (en) Method for manufacturing semiconductor stacked CMOS devices
JPH0441502B2 (en)
JP2727590B2 (en) MIS type semiconductor device
JPH10163338A (en) Semiconductor device and its manufacturing method
JPS60128668A (en) Manufacture of semiconductor device
JP2605757B2 (en) Method for manufacturing semiconductor device
JPH0612826B2 (en) Method of manufacturing thin film transistor
JPS6126234B2 (en)
JPH1126766A (en) Mos field effect transistor and manufacture thereof
JPH01143357A (en) Semiconductor device and manufacture thereof
JPH10247730A (en) Mis semiconductor device and manufacture thereof
JP3848782B2 (en) Manufacturing method of semiconductor device