JPH01143357A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH01143357A
JPH01143357A JP30020287A JP30020287A JPH01143357A JP H01143357 A JPH01143357 A JP H01143357A JP 30020287 A JP30020287 A JP 30020287A JP 30020287 A JP30020287 A JP 30020287A JP H01143357 A JPH01143357 A JP H01143357A
Authority
JP
Japan
Prior art keywords
layer
concentration impurity
gate
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30020287A
Other languages
Japanese (ja)
Inventor
Masaru Hisamoto
大 久本
Ryuichi Izawa
井沢 龍一
Eiji Takeda
英次 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30020287A priority Critical patent/JPH01143357A/en
Publication of JPH01143357A publication Critical patent/JPH01143357A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress a short channel effect by providing the high concentration impurity layer of source, drain electrodes of a LDD structure in a substrate. CONSTITUTION:After a field insulating film is formed on a low concentration P-type silicon substrate and an active region is isolated, an insulating film is formed by thermal oxidizing. A polycrystalline silicon layer 10 and a polycrystalline silicon layer 11 to become a gate electrode are deposited. The gate 11 is formed by implanting phosphorus ions to low concentration impurity layers 30, 30' with the upper insulating layer as a mask. Then, arsenic is ion implanted thereby to form a high concentration impurity layer 20. Thereafter, with a spacer 41 as a mask the layer 10 is etched, and the gate 10 is formed. In this step, the overlapping amount with the layer 30 can be controlled by controlling the length of the spacer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置に係り、特に良好な電気特性を有す
る絶縁ゲート型電界効果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to an insulated gate field effect transistor having good electrical characteristics.

[従来の技術] LDD構造でゲートをソース・ドレイン電極層とオーバ
ーラツプさせる構造としては公開公報60−43863
等が知られている。これらはソース・ドレインといった
電極層とゲート電極間の電界等に着目したものであった
[Prior art] A structure in which a gate overlaps a source/drain electrode layer in an LDD structure is disclosed in Publication No. 60-43863.
etc. are known. These focused on the electric field between electrode layers such as source and drain and the gate electrode.

[発明が解決しようとする問題点] 上記従来技術は、基板内部に電界について考慮されてい
なかった。
[Problems to be Solved by the Invention] The above-mentioned conventional technology does not take into consideration the electric field inside the substrate.

本発明の目的は、オーバーラツプしたゲートが基板内部
の電界に及ぼす効果を利用し、良好な電気特性を得るこ
とを目的とする。
An object of the present invention is to obtain good electrical characteristics by utilizing the effect that overlapping gates have on the electric field inside the substrate.

[問題点を解決するための手段] 上記目的は、LDD構造のソース・ドレイン電極の高濃
度不純物層を基板内部に設けることにょり達成される。
[Means for Solving the Problems] The above object is achieved by providing a highly concentrated impurity layer for the source/drain electrodes of the LDD structure inside the substrate.

[作用] ゲート電界効果によってソース・ドレイン電極での電界
の緩和されるため耐圧が向上し、短チヤネル効果を抑え
ることができる。
[Operation] The electric field at the source/drain electrodes is relaxed by the gate field effect, so the breakdown voltage is improved and the short channel effect can be suppressed.

[実施例] 以下、本発明の実施例を図面を用いて説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の特徴をもっとも良く表わしている素子
断面図である。
FIG. 1 is a cross-sectional view of an element that best represents the features of the present invention.

第1図において、ソース・ドレイン電極は低濃度不純物
層30.30’および高濃度不純物層20.20’ に
よってつくられている。低濃度不純物層30.30’は
第1ゲート電極11の下側側面にはりだした第2ゲート
電極10によってオーバーラツプされている。
In FIG. 1, the source/drain electrodes are formed by a lightly doped impurity layer 30, 30' and a highly doped impurity layer 20,20'. The low concentration impurity layer 30, 30' is overlapped by the second gate electrode 10 protruding from the lower side surface of the first gate electrode 11.

上記第1実施例は低濃度P型シリコン基板(もしくは基
板より高濃度のPウェル)上に厚さ0.2〜1μm程度
のフィールドfIAs膜を形成して活性領域を分離した
後、熱酸化により活性領域にゲート絶縁膜となる厚さ5
〜50nm程度の絶縁膜を形成する。ゲート電極となる
多結晶シリコン層10をCVD法により積み、導伝性を
もちかつ後にエツチングの際マドツバ−となる層例えば
薄い自然酸化膜をっけ、更に多結晶シリコン層11をつ
ける。M開維線層を上にのせてパターニングし、これを
マスクに先のエツチングストッパーの効く、例えば自然
酸化膜に対してマイクロ波を用いてエツチングしゲート
電極11の加工をおこなう。このエツチングにおいて酸
化膜と多結晶シリコンではエツチング速度が2ケタ程度
差があるため、下の層10はエツチングされることがな
い。(第2図(a)) ゲート11はおよび上の絶縁層をマスクに低濃度不純物
層30.30’ を1012cm−2程度の濃度のリン
を40KeV程度のエネルギーのイオン打込み法により
形成する。(第2図(b))CVD法によりSiO2の
絶縁層をつけ、等友釣なエツチングによりエツチングし
、このエツチング量を制御することにより、ゲート11
側面のスペーサ41となる層を所定の大きさに制御よく
残すこと=3− ができる。
In the first embodiment, a field fIAs film with a thickness of about 0.2 to 1 μm is formed on a low-concentration P-type silicon substrate (or a P-well with a higher concentration than the substrate) to isolate the active region, and then thermal oxidation is performed to separate the active region. Thickness 5 that becomes the gate insulating film in the active region
An insulating film of about 50 nm is formed. A polycrystalline silicon layer 10 which will become a gate electrode is deposited by the CVD method, a layer having conductivity and which will later become a mudguard during etching, such as a thin natural oxide film, is deposited, and a polycrystalline silicon layer 11 is further deposited. The M open fiber layer is placed on top and patterned, and the gate electrode 11 is processed by using this as a mask to etch the natural oxide film that acts as an etching stopper, for example, using microwaves. In this etching, there is a two-digit difference in etching speed between the oxide film and polycrystalline silicon, so the underlying layer 10 is not etched. (FIG. 2(a)) For the gate 11, a low concentration impurity layer 30.30' is formed by ion implantation of phosphorus at a concentration of about 10@12 cm@-2 and an energy of about 40 KeV using the upper insulating layer as a mask. (Fig. 2(b)) An insulating layer of SiO2 is applied by the CVD method, and etched by equilateral etching, and by controlling the amount of etching, the gate 11 is etched.
It is possible to leave the layer that will become the spacer 41 on the side surface to a predetermined size with good control = 3-.

これをマスクに1015cm−”程度の濃度のヒ素を1
80 KeV程度のエネルギーでイオン打込みをおこな
うことで、基板内約0.1μm程度の深い位置トこ分布
ピークをもった高濃度不純物層20を形成する。(第2
図(C))次いでスペーサ41をマスクにN10をエツ
チングしゲート10を加工する。この工程においてスペ
ーサ長を制御することにより低濃度不純物N30とのオ
ーバーラツプ量を制御することができる。
Using this as a mask, apply arsenic at a concentration of about 1015cm-1.
By performing ion implantation with an energy of approximately 80 KeV, a highly concentrated impurity layer 20 having a peak distribution at a depth of approximately 0.1 μm within the substrate is formed. (Second
(Figure (C)) Next, N10 is etched using the spacer 41 as a mask to process the gate 10. By controlling the spacer length in this step, the amount of overlap with the low concentration impurity N30 can be controlled.

この実施例においてドレイン電極20.20’を高バイ
アスし、ゲート10.11およびソース電極20.30
を低バイアスした場合にも、トレイン側低濃度不純物層
30′は比較的低バイアスに保たれる。そのため、高濃
度不純物N2o′のチャネル側の電界も緩和される。よ
って、ゲート10からドレイン電極の高濃度不純物層2
0′との耐圧を増大させ、かつ基板内部におけるパンチ
スルーを抑えることができる。
In this example, the drain electrode 20.20' is highly biased, the gate 10.11 and the source electrode 20.30
Even when the bias voltage is set to a low bias, the low concentration impurity layer 30' on the train side is kept at a relatively low bias. Therefore, the electric field on the channel side of the high concentration impurity N2o' is also relaxed. Therefore, from the gate 10 to the high concentration impurity layer 2 of the drain electrode.
0' can be increased, and punch-through inside the substrate can be suppressed.

この実施例においてゲート10の側部を部分酸化して絶
縁分離することができる。よって、この上に導伝層を設
けることにより、自己整合的にソース・ドレイン層とコ
ンタクトをとることができる。
In this embodiment, the sides of gate 10 can be partially oxidized and isolated. Therefore, by providing a conductive layer thereon, contact can be made with the source/drain layer in a self-aligned manner.

ここではnチャネルのデバイスを用いて説明したが、P
チャネルデバイスにおいても同様である。
Although the explanation was given here using an n-channel device, P
The same applies to channel devices.

第3図に示すように、高濃度不純物層20のチャネル側
にパンチスルーストッパーとなる逆型不純物層50(例
えばnチャネルデバイスにおいてはP型不純物の高濃度
層)を設けることにより、よりパンチスルーに対する耐
性を増すことができる。
As shown in FIG. 3, by providing a reverse type impurity layer 50 (for example, a high concentration layer of P-type impurity in an n-channel device) serving as a punch-through stopper on the channel side of the high-concentration impurity layer 20, the punch-through can be improved. can increase resistance to

上記実施例においてスペーサ41は一層で設けていたが
、第4図に示すようにスペーサ41上に第2スペーサ4
2をつけることができる。
In the above embodiment, the spacer 41 was provided in one layer, but as shown in FIG.
You can add 2.

この場合、スペーサ42をマスクにイオン打込みをして
電極層35に高濃度不純物層を設けることでコンタクト
をとったとき電極における抵抗を下げることができる。
In this case, by performing ion implantation using the spacer 42 as a mask and providing a high concentration impurity layer in the electrode layer 35, the resistance at the electrode can be lowered when contact is made.

この実施例においても第5図に示すように例えばnチャ
ネルデバイスであればP型不純物層50を設けることに
よりパンチスルーをより抑えることができる。
In this embodiment as well, as shown in FIG. 5, punch-through can be further suppressed by providing a P-type impurity layer 50 in the case of an n-channel device, for example.

第6図に示すように、ゲート10の側部に第2ゲート1
1を設けることにより、オーバーラツプ構造を実現する
ことができる。この場合においてもパンチスルーストッ
パ層50を設けることで短チヤネル効果をより抑えるこ
とができる。
As shown in FIG. 6, a second gate 1 is attached to the side of the gate 10.
1, an overlapping structure can be realized. Even in this case, the short channel effect can be further suppressed by providing the punch-through stopper layer 50.

[発明の効果] 本発明によれば、ゲーI・電極の電界効果によってソー
ス・ドレイン電極層での電界を緩和することができるた
め、耐圧等が向上し、良好な電気特性が得られる。
[Effects of the Invention] According to the present invention, the electric field in the source/drain electrode layer can be relaxed by the electric field effect of the GaI electrode, so that breakdown voltage and the like are improved and good electrical characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の素子断面図、第2図は
、第1実施例の製法を示す図。第3図ないし第6図は他
実施例を示す断面図である。 10.11・・ゲート電極、 20.20’ 、35・・高濃度不純物層、30.30
’・・・低濃度不純物層、 41、.42・・・スペーサ、 50・・・パンチスルーストッパー層。 算之巳 芹31国 1o    。 3o               ”’’;、ト1.
ン””’       20’−z′\゛ $○ ふ     ゝ ノ○′
FIG. 1 is a sectional view of a device according to a first embodiment of the present invention, and FIG. 2 is a diagram showing a manufacturing method of the first embodiment. 3 to 6 are sectional views showing other embodiments. 10.11...Gate electrode, 20.20', 35...High concentration impurity layer, 30.30
'...Low concentration impurity layer, 41,. 42... Spacer, 50... Punch-through stopper layer. Sannomi Seri 31 countries 1o. 3o '''';, t1.
N””’ 20’−z′\゛$○ Fu ゝノ○′

Claims (1)

【特許請求の範囲】 1、半導体基板上に設けられた高濃度不純物拡散層電極
と低濃度不純物拡散層電極とこれら電極層とオーバーラ
ップした構造を有するゲート電極から成る絶縁ゲート型
電界効果トランジスタにおいて、少なくともドレイン側
で高濃度不純物拡散層電極を基板内部に設けたことを特
徴とする半導体装置。 2、半導体基板上に設けられた高濃度不純物拡散層電極
と低濃度不純物拡散層電極とこれら電極層とオーバーラ
ップした構造を有するゲート電極から成る絶縁ゲート型
電界効果トランジスタにおいて、少なくともドレイン側
で高濃度不純物拡散層電極を基板内部に設けたことを特
徴とする半導体装置において、ゲート電極と不純物拡散
層電極とのオーバラップ構造を自己整合的に設けること
を特徴とする半導体装置の製法。
[Claims] 1. In an insulated gate field effect transistor comprising a high concentration impurity diffusion layer electrode, a low concentration impurity diffusion layer electrode, and a gate electrode having a structure overlapping with these electrode layers provided on a semiconductor substrate. A semiconductor device characterized in that a high concentration impurity diffusion layer electrode is provided inside a substrate at least on the drain side. 2. In an insulated gate field effect transistor consisting of a high-concentration impurity diffusion layer electrode, a low-concentration impurity diffusion layer electrode, and a gate electrode having an overlapping structure with these electrode layers, the high concentration is at least on the drain side. 1. A method for manufacturing a semiconductor device characterized in that a concentrated impurity diffusion layer electrode is provided inside a substrate, and the semiconductor device is characterized in that an overlapping structure of a gate electrode and an impurity diffusion layer electrode is provided in a self-aligned manner.
JP30020287A 1987-11-30 1987-11-30 Semiconductor device and manufacture thereof Pending JPH01143357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30020287A JPH01143357A (en) 1987-11-30 1987-11-30 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30020287A JPH01143357A (en) 1987-11-30 1987-11-30 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01143357A true JPH01143357A (en) 1989-06-05

Family

ID=17881957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30020287A Pending JPH01143357A (en) 1987-11-30 1987-11-30 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01143357A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268434A (en) * 1990-03-19 1991-11-29 Fujitsu Ltd Field-effect transistor and manufacture thereof
KR100344818B1 (en) * 1997-09-24 2002-11-18 주식회사 하이닉스반도체 Semiconductor device and method for manufacturing the same
US7888198B1 (en) 1998-05-20 2011-02-15 Samsung Electronics Co., Ltd. Method of fabricating a MOS transistor with double sidewall spacers in a peripheral region and single sidewall spacers in a cell region

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268434A (en) * 1990-03-19 1991-11-29 Fujitsu Ltd Field-effect transistor and manufacture thereof
KR100344818B1 (en) * 1997-09-24 2002-11-18 주식회사 하이닉스반도체 Semiconductor device and method for manufacturing the same
US7888198B1 (en) 1998-05-20 2011-02-15 Samsung Electronics Co., Ltd. Method of fabricating a MOS transistor with double sidewall spacers in a peripheral region and single sidewall spacers in a cell region

Similar Documents

Publication Publication Date Title
KR920009745B1 (en) Manufacturing method of semiconductor
JP2508818B2 (en) Method for manufacturing semiconductor device
JPH0426542B2 (en)
JPH02250331A (en) Semiconductor device and its manufacture
JPH04188633A (en) Semiconductor device and manufacture thereof
US4637128A (en) Method of producing semiconductor device
US5879995A (en) High-voltage transistor and manufacturing method therefor
JP2951893B2 (en) Method of manufacturing transistor for semiconductor device
JPS59111359A (en) Method of producing semiconductor structure
JPH06224216A (en) Transistor and its preparation
JPH01143357A (en) Semiconductor device and manufacture thereof
JP2703883B2 (en) MIS transistor and method of manufacturing the same
JPS6126264A (en) Manufacture of semiconductor device
JP2727590B2 (en) MIS type semiconductor device
US6534827B2 (en) MOS transistor
JPH09191106A (en) Semiconductor device and its manufacture
JP2007123519A (en) Semiconductor device and method for manufacturing the same
JPS61234077A (en) Mis type field effect transistor
JPH067556B2 (en) MIS type semiconductor device
JP3038857B2 (en) Method for manufacturing semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
JPS62132362A (en) Manufacture of semiconductor device
JPH02219237A (en) Mis type semiconductor device
JPH05121744A (en) Soi semiconductor device and manufacture thereof
JPH06275821A (en) Mos transistor and its manufacture