JPH04139834A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04139834A
JPH04139834A JP26433290A JP26433290A JPH04139834A JP H04139834 A JPH04139834 A JP H04139834A JP 26433290 A JP26433290 A JP 26433290A JP 26433290 A JP26433290 A JP 26433290A JP H04139834 A JPH04139834 A JP H04139834A
Authority
JP
Japan
Prior art keywords
gate electrode
gate
concentration source
drain region
element formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26433290A
Other languages
Japanese (ja)
Inventor
Shinji Yoshida
伸二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26433290A priority Critical patent/JPH04139834A/en
Publication of JPH04139834A publication Critical patent/JPH04139834A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the spread of low concentration source-drain regions in the lateral direction to be controlled by a method wherein an ion-implantation step is performed to form high concentration source-drain region using a gate sidewall layer as a mask and after removing the gate sidewall layer, another ion-implantation step is performed to form low concentration source-drain region. CONSTITUTION:A gate oxide film 3 is formed on the surface of the element formation region of a substrate 1 and then a gate electrode 4 is selectively provided on the film 3. Next, high concentration impurities of opposite conductivity type are ion-implanted in the element formation region using the gate electrode and gate sidewall layer 5 as masks so as to form high concentration source-drain region. Furthermore, after removing the gate sidewall layer 5, the inverse conductivity type low concentration impurities are ion-implanted in the element formation region using the gate electrode 4 as a mask so as to form the low concentration source-drain region 8 connecting to the high concentration region 7. Through these procedures, the spread in the lateral direction from the low concentration source-drain region to the part below the gate electrode 4 can be controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にLD D 
(lightly doped drain)m造のM
OSFETを有する半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device.
(Lightly doped drain)M
The present invention relates to a method of manufacturing a semiconductor device having an OSFET.

〔従来の技術〕[Conventional technology]

微細化MO3FETの高信頼性を得るためにド第2図(
a)〜(c)は従来の半導体装置の製造方法を説明する
ための工程順に示した半導体チップの断面図である。
In order to obtain high reliability of miniaturized MO3FET, Fig. 2 (
1A to 1C are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a conventional method of manufacturing a semiconductor device.

第2図(a)に示すように、p型シリコン基板1の一生
面に選択的に酸化ケイ素膜2を設けて素子形成領域を区
画し、素子形成領域の表面を熱酸化してゲート酸化膜3
を形成する。次に、ゲート酸化膜3の上に多結晶シリコ
ン膜を堆積して選択的にエツチングしゲート電極4を設
ける。次に、ゲート電極4及び酸化ケイ素膜2をマスク
とじてリンイオンをイオン注入し、n型の低濃度のソー
ス・ドレイン領域8を形成する。
As shown in FIG. 2(a), a silicon oxide film 2 is selectively provided on the entire surface of a p-type silicon substrate 1 to define an element formation region, and the surface of the element formation region is thermally oxidized to form a gate oxide film. 3
form. Next, a polycrystalline silicon film is deposited on the gate oxide film 3 and selectively etched to form a gate electrode 4. Next, phosphorus ions are implanted using the gate electrode 4 and the silicon oxide film 2 as masks to form n-type low concentration source/drain regions 8.

次に、第2図(b)に示すように、ゲート電極4を含む
表面に酸化ケイ素膜を堆積してエッチバックしグー1〜
電極4の側面にのみ酸化ケイ素膜を残してゲート側壁層
5を形成する。次に、熱酸化により素子形成領域及びゲ
ート電iFf!4の上に酸化ケイ素膜6を設ける。次に
、ゲート電極4とゲート側壁層5及び酸化ケイ素膜2を
マスクとしてヒ素イオンをイオン注入し、n型の高濃度
ソース・ドレイン領域7を形成する。
Next, as shown in FIG. 2(b), a silicon oxide film is deposited on the surface including the gate electrode 4 and etched back.
A gate sidewall layer 5 is formed leaving the silicon oxide film only on the side surfaces of the electrode 4. Next, thermal oxidation is applied to the element formation region and the gate electrode iFf! A silicon oxide film 6 is provided on 4. Next, arsenic ions are implanted using the gate electrode 4, gate sidewall layer 5, and silicon oxide film 2 as masks to form n-type high concentration source/drain regions 7.

次に、第2図(c)に示すように、全面にPSG膜9を
堆積してコンタクト孔を設け、コンタクト孔を含む表面
に金属膜を堆積させて選択的にエツチングし、高濃度ソ
ース・ドレイン領域7と接続しPSG膜9の上に延在す
る金属配線10を形成し、nヂャネルMO8FETを構
成する。
Next, as shown in FIG. 2(c), a PSG film 9 is deposited on the entire surface to form contact holes, and a metal film is deposited on the surface including the contact holes and selectively etched to form a high concentration source. A metal wiring 10 connected to the drain region 7 and extending over the PSG film 9 is formed to constitute an n-channel MO8FET.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来の半導体装置の製造方法は、ゲート電極に整合
させた低濃度ソース・ドレイン領域を形成した後、ゲー
ト電極の側面にゲート側壁層を形成し、ゲート側壁層に
整合させた高濃度ソース・ドレイン領域を形成する為、
MOSFETの実効チャネル長はゲート電極の寸法と低
濃度ソース・ドレイン領域を形成する為のイオン注入後
の熱処理工程による不純物の横方内法がりによって定ま
る。また、低濃度ソース・ドレイン領域の横方内法がり
は、ゲート電極と低濃度ソース・トレイン領域との重な
りを生じ、ゲート電極容量の増加を生む。従って、実行
チヤネル長を決定する要因に不純物の熱拡散による横方
内法がりがあることは、結果的にゲート電極の寸法を、
所望の実効チャネル長に対して大きくする必要があり、
集積度の低下をまねく問題があった。また、ゲート電極
容量の増加は、トランジスタの過渡応答特性が劣化する
ことになり、信号処理スピードが低下する問題があった
This conventional semiconductor device manufacturing method involves forming lightly doped source/drain regions aligned with the gate electrode, forming gate sidewall layers on the sides of the gate electrode, and forming highly doped source/drain regions aligned with the gate sidewall layers. To form the drain region,
The effective channel length of a MOSFET is determined by the dimensions of the gate electrode and the lateral inward slope of impurities due to a heat treatment process after ion implantation to form lightly doped source/drain regions. Further, the lateral inward slope of the lightly doped source/drain region causes the gate electrode and the lightly doped source/train region to overlap, resulting in an increase in gate electrode capacitance. Therefore, the fact that the lateral slope due to thermal diffusion of impurities is a factor that determines the effective channel length results in the gate electrode dimensions being
Must be large for the desired effective channel length,
There was a problem that led to a decrease in the degree of integration. Furthermore, an increase in gate electrode capacitance causes a problem in that the transient response characteristics of the transistor deteriorate, resulting in a reduction in signal processing speed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、−導電型半導体基板
上に選択的に絶縁膜を設けて素子形成領域を区画し素子
形成領域の表面にゲート酸化膜を形成する工程と、前記
ゲート酸化膜上に選択的にゲート電極を設け前記ゲート
電極の側面にゲート側壁層を設ける工程と、前記ゲーI
・電極及びゲート側壁層をマスクとして前記素子形成領
域に逆導電型高濃度不純物をイオン注入して高濃度ソー
ス・ドレイン領域を形成する工程と、前記ゲート側壁層
を除去した後ゲート電極をマスクとして前記素子形成領
域に逆導電型低濃度不純物をイオン注入し前記高濃度ソ
ース・ドレイン領域と接続する低濃度ソース・トレイン
領域を形成する工程とを含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes the steps of: - selectively providing an insulating film on a conductive type semiconductor substrate to define an element formation region, and forming a gate oxide film on the surface of the element formation region; selectively providing a gate electrode on the gate electrode and providing a gate sidewall layer on the side surface of the gate electrode;
・A step of ion-implanting high-concentration impurities of opposite conductivity type into the element formation region using the electrode and gate sidewall layer as a mask to form a high-concentration source/drain region, and a step of removing the gate sidewall layer and using the gate electrode as a mask. The method includes a step of ion-implanting a low concentration impurity of a reverse conductivity type into the element formation region to form a low concentration source/train region connected to the high concentration source/drain region.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(c)は、本発明の一実施例を説明する
ための工・程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(c) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention.

まず、第1図(a)に示すように、p型シリコン基板1
の一主面に選択的に設けた窒化ケイ素膜を耐酸化マスク
としてシリコン基板1を熱酸化し、酸化ケイ素膜2を約
0.5μmの厚さに形成して素子形成領域を区画する。
First, as shown in FIG. 1(a), a p-type silicon substrate 1
Silicon substrate 1 is thermally oxidized using a silicon nitride film selectively provided on one main surface as an oxidation-resistant mask, and silicon oxide film 2 is formed to a thickness of about 0.5 μm to define device formation regions.

次に、耐酸化マスクとして使用した窒化ケイ素膜を60
℃程度に加熱したリン酸で除去した後、素子形成領域の
表面の熱酸化し、約20nmの厚さのゲート酸化膜3を
形成する。次に、ゲート酸化膜3を含む表面にリンを拡
散した多結晶シリコン膜をCVD法により0148mの
厚さに堆積させ、選択的にエツチングしてゲート電極4
を形成する。次に、ゲート電極4を含む表面に酸化ケイ
素膜をCVD法により、約0.2μmの厚さに堆積する
。これにより堆積された酸化ケイ素膜は、ゲート電極4
の側面に対して垂直方向、即ちシリコン基板1の表面に
対して水平方向にも堆積する為、ゲート電極4の側面の
シリコン基板1の表面に対して垂直方向の膜厚は、ゲー
ト電極4の膜厚と同等か、それ以上の厚さとなる。よっ
て、本実施例の場合、ゲート電極の側面のCVD法によ
って堆積された酸化ケイ素膜の厚さは、約0.4〜0.
45μmとなる。次に、全面を異方性エツチングにより
、エッチバックしてグー1〜電極4の側面にのみ、酸化
ケイ素膜を残しゲート側壁層5を形成する。ゲート側壁
層5を形成する為の異方性エツチングにより素子形成領
域−トのグーI・酸化膜3も同時にエツチング除去され
る。次に、イオン注入を行なう場合のシリコン基板の緩
衝膜として、素子形成領域の表面に40nmの厚さの熱
酸化膜6を形成する。
Next, the silicon nitride film used as an oxidation-resistant mask was
After removal with phosphoric acid heated to about .degree. C., the surface of the element formation region is thermally oxidized to form a gate oxide film 3 with a thickness of about 20 nm. Next, a polycrystalline silicon film in which phosphorus is diffused is deposited on the surface including the gate oxide film 3 to a thickness of 0.148 m by the CVD method, and selectively etched to form the gate electrode 4.
form. Next, a silicon oxide film is deposited on the surface including the gate electrode 4 to a thickness of about 0.2 μm by CVD. The silicon oxide film deposited in this manner is applied to the gate electrode 4.
Since the film is deposited in a direction perpendicular to the side surface of the gate electrode 4, that is, in a direction horizontal to the surface of the silicon substrate 1, the thickness of the film in the direction perpendicular to the surface of the silicon substrate 1 on the side surface of the gate electrode 4 is the same as that of the gate electrode 4. The thickness is equal to or greater than the film thickness. Therefore, in the case of this example, the thickness of the silicon oxide film deposited by the CVD method on the side surface of the gate electrode is approximately 0.4 to 0.0.
It becomes 45 μm. Next, the entire surface is etched back by anisotropic etching to form the gate sidewall layer 5, leaving the silicon oxide film only on the side surfaces of the electrodes 1 to 4. During the anisotropic etching for forming the gate sidewall layer 5, the goo I/oxide film 3 in the element forming region is also etched away at the same time. Next, a thermal oxide film 6 with a thickness of 40 nm is formed on the surface of the element formation region as a buffer film for the silicon substrate when ion implantation is performed.

この時、ゲート電極4の表面も酸化され酸化ケイ素膜6
が同時に形成される。ついで、ヒ素イオンを、加速エネ
ルギー70keV、ドーズ量5×]、015cm〜2で
イオン注入しn型の高濃度ソース・ドレイン領域7を形
成する。
At this time, the surface of the gate electrode 4 is also oxidized and the silicon oxide film 6
are formed simultaneously. Next, arsenic ions are implanted at an acceleration energy of 70 keV, a dose of 5×], and 0.15 cm to 2 to form n-type high concentration source/drain regions 7.

次に、第11′2I(b)に示すように、希釈された弗
化水素水溶液にて、ゲート側壁層5を除去する。次に、
イオン注入時の緩衝膜として酸化ケイ素膜6aを熱酸化
により約40nmの厚さに形成する。この時の熱酸化に
より、先にイオン注入されたヒ素イオンが活性化される
。次に、ゲート電極4及び酸化ケイ素膜2をマスクとし
てリンイオンを加速エネルギー40keV、ドーズ量3
×1−013cm−2でイオン注入しn型の低濃度ソー
ス・ドレイン領域8を形成する。
Next, as shown in 11'2I(b), the gate sidewall layer 5 is removed using a diluted hydrogen fluoride aqueous solution. next,
A silicon oxide film 6a is formed to a thickness of about 40 nm by thermal oxidation as a buffer film during ion implantation. The thermal oxidation at this time activates the previously implanted arsenic ions. Next, using the gate electrode 4 and the silicon oxide film 2 as masks, phosphorus ions are accelerated at an energy of 40 keV and at a dose of 3.
N-type low concentration source/drain regions 8 are formed by ion implantation at a size of x1-013 cm-2.

次に、第1図(c)に示すように、全面にCVD法によ
り、リンを含むケイ素ガラスM(以下PSG膜と記す)
9を堆積した後、高濃度ソース・ドレイン領域7の上の
PSG膜9及び酸化ケイ素膜6aを選択的に順次エツチ
ングしてコンタクト孔を設け、スパッタリング法等によ
りコンタク1〜孔を含む表面に金属膜を堆積させて選択
的にエツチングし、高濃度ソース・トレイン領域7と接
続する金属配線10を形成しnチャネルMO3FE1゛
を構成する。
Next, as shown in FIG. 1(c), silicon glass M containing phosphorus (hereinafter referred to as PSG film) is coated on the entire surface by CVD method.
9 is deposited, the PSG film 9 and the silicon oxide film 6a on the high concentration source/drain region 7 are selectively and sequentially etched to form contact holes, and the surfaces including the contacts 1 to the holes are coated with metal by sputtering or the like. A film is deposited and selectively etched to form a metal interconnect 10 connecting to the heavily doped source train region 7 to form an n-channel MO3FE1.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように本発明は、まずゲート側壁層をマ
スクとして高濃度ソース ドレイン領域を形成する為の
イオン注入を行ない、つづいて、アニルリングし、次に
、ゲート側壁層を除去して低濃度ソース・トレイン領域
を形成する為のイオン注入を行ないアニーリングするの
で、低濃度ソース・ドレイン領域の熱処理は、イオン注
入後のアニール工程のみとなり、低濃度ソース・トレイ
ン領域からゲート電極直下への横方自店がりは、独立に
制御可能となり、MO3型FETの実効チャネル長は、
ゲート電極の寸法で定まり、かつ、ゲート電極とソース
・ドレイン領域の重なりも低減でき、MO8型FETの
性能を向上させることができる。
As explained above, in the present invention, ions are first implanted to form highly doped source and drain regions using the gate sidewall layer as a mask, followed by annealing, and then the gate sidewall layer is removed to form a lightly doped source and drain region. Since ion implantation to form the source/train region is performed and annealing is performed, the only heat treatment for the low concentration source/drain region is the annealing process after ion implantation. Self-storage can be controlled independently, and the effective channel length of MO3 type FET is
This is determined by the dimensions of the gate electrode, and it is also possible to reduce the overlap between the gate electrode and the source/drain regions, thereby improving the performance of the MO8 type FET.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は、本発明の一実施例を説明する
ための工程順に示した半導体チップの断面図、第2図<
a)〜(c)は従来の半導体装置の製造方法を説明する
ための工程順に示した半導体チップの断面図である。 1・・・p型シリコン基板、2・・・酸化ケイ素膜、3
・・・ゲート酸化膜、4・・・ゲート電極、5・・・ゲ
ート側壁層、6,6a・・・酸化ケイ素膜、7・・・高
濃度ソース・ドレイン領域、8・・・低濃度ソース・ド
レイン領域、9・・PSG膜、10・・・金属配線。 (tJl!A ffP4°1内原 晋 3z C1
FIGS. 1(a) to (c) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention, and FIG.
1A to 1C are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a conventional method of manufacturing a semiconductor device. 1...p-type silicon substrate, 2...silicon oxide film, 3
...Gate oxide film, 4...Gate electrode, 5...Gate side wall layer, 6, 6a...Silicon oxide film, 7...High concentration source/drain region, 8...Low concentration source -Drain region, 9...PSG film, 10...metal wiring. (tJl!A ffP4°1 Susumu Uchihara 3z C1

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基板上に選択的に絶縁膜を設けて素子
形成領域を区画し素子形成領域の表面にゲート酸化膜を
形成する工程と、前記ゲート酸化膜上に選択的にゲート
電極を設け前記ゲート電極の側面にゲート側壁層を設け
る工程と、前記ゲート電極及びゲート側壁層をマスクと
して前記素子形成領域に逆導電型高濃度不純物をイオン
注入して高濃度ソース・ドレイン領域を形成する工程と
、前記ゲート側壁層を除去した後ゲート電極をマスクと
して前記素子形成領域に逆導電型低濃度不純物をイオン
注入し前記高濃度ソース・ドレイン領域と接続する低濃
度ソース・ドレイン領域を形成する工程とを含むことを
特徴とする半導体装置の製造方法。
A step of selectively providing an insulating film on a semiconductor substrate of one conductivity type to divide an element formation region and forming a gate oxide film on the surface of the element formation region; selectively forming a gate electrode on the gate oxide film; a step of providing a gate sidewall layer on a side surface of the gate electrode; and a step of ion-implanting a high concentration impurity of a reverse conductivity type into the element formation region using the gate electrode and the gate sidewall layer as a mask to form a high concentration source/drain region. , after removing the gate sidewall layer, using the gate electrode as a mask, ion-implanting a low concentration impurity of a reverse conductivity type into the element formation region to form a low concentration source/drain region connected to the high concentration source/drain region; A method for manufacturing a semiconductor device, comprising:
JP26433290A 1990-10-01 1990-10-01 Manufacture of semiconductor device Pending JPH04139834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26433290A JPH04139834A (en) 1990-10-01 1990-10-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26433290A JPH04139834A (en) 1990-10-01 1990-10-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04139834A true JPH04139834A (en) 1992-05-13

Family

ID=17401712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26433290A Pending JPH04139834A (en) 1990-10-01 1990-10-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04139834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109385A (en) * 2010-11-17 2012-06-07 Fujitsu Semiconductor Ltd Method of manufacturing semiconductor device, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109385A (en) * 2010-11-17 2012-06-07 Fujitsu Semiconductor Ltd Method of manufacturing semiconductor device, and semiconductor device

Similar Documents

Publication Publication Date Title
KR100299553B1 (en) Semiconductor device and manufacturing method of the same
JPH0457337A (en) Semiconductor device and manufacture thereof
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPS63257231A (en) Manufacture of semiconductor device
JPH04139834A (en) Manufacture of semiconductor device
US6013554A (en) Method for fabricating an LDD MOS transistor
JPS63181378A (en) Manufacture of semiconductor device
JP3438395B2 (en) Method for manufacturing semiconductor device
JPH0485968A (en) Mos semiconductor device and manufacture thereof
JP2729169B2 (en) Method for manufacturing semiconductor device
JPS6410952B2 (en)
JPH01117066A (en) Manufacture of mos type semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPH02265250A (en) Manufacture of semiconductor device
JPS6316672A (en) Manufacture of semiconductor element
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JP2887902B2 (en) Method for manufacturing semiconductor device
JPH10242460A (en) Semiconductor integrated circuit device and its manufacture
JPS63150965A (en) Manufacture of semiconductor device
JPS63300564A (en) Manufacture of semiconductor device
JPS60119781A (en) Manufacture of semiconductor device
JPS63144575A (en) Manufacture of semiconductor device
JPH0226034A (en) Manufacture of semiconductor device
JPS6367778A (en) Manufacture of semiconductor device