JPH02265250A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02265250A
JPH02265250A JP8752089A JP8752089A JPH02265250A JP H02265250 A JPH02265250 A JP H02265250A JP 8752089 A JP8752089 A JP 8752089A JP 8752089 A JP8752089 A JP 8752089A JP H02265250 A JPH02265250 A JP H02265250A
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
film
etching
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8752089A
Other languages
Japanese (ja)
Inventor
Nagayuki Toyoda
豊田 修至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8752089A priority Critical patent/JPH02265250A/en
Publication of JPH02265250A publication Critical patent/JPH02265250A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a leakage current of a source-drain diffusion layer by a method wherein an insulating film on an element formation region other than a side face of a gate electrode is removed by a wet etching operation at a final stage to form a sidewall. CONSTITUTION:A gate insulating film 4a is formed on the surface of an element formation region; a polycrystalline silicon film is deposited on the surface including it; a gate electrode 5 is formed selectively; its surface is oxidized thermally; an oxide film 4b is formed. Then, impurity ions are implanted by making use of the gate electrode 5 and a field insulating film 3 as a mask; a low-concentration diffusion region 6 of an opposite conductivity type is formed in the element formation region; an insulating film 7 is deposited on the surface including the gate electrode 5; a polycrystalline silicon film 8 is formed on it. The polycrystalline silicon film 8 is left only on side faces of the gate electrode 5 by an anisotropic etching operation; the polycrystalline silicon film 8 in other parts is removed; the insulating film 7 other than side-walls is removed by a wet etching operation; a high-concentration diffusion layer 9, of the opposite conductivity type, which is connected to the low-concentration diffusion layer 6 is formed in the element formation region. Thereby, a leakage current is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に絶縁ゲート
型電界効果トランジスタを有する半導体装置の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device having an insulated gate field effect transistor.

〔従来の技術〕[Conventional technology]

絶縁ゲート型電界効果トランジスタ(以下MOSFET
と記す)の微細化・高集積化に伴い発生するホットエレ
クトロンによる特性変動やパンチスルー等を回避するた
めに、ゲート電極の側壁部に形成したマスク層を使用し
て拡散領域の不純物濃度を部分的に変えることによりト
レイン領域の電界を緩和させる方法がある。
Insulated gate field effect transistor (hereinafter referred to as MOSFET)
In order to avoid characteristic fluctuations and punch-through caused by hot electrons that occur with the miniaturization and high integration of semiconductor devices, a mask layer formed on the sidewalls of the gate electrode is used to partially reduce the impurity concentration in the diffusion region. There is a method of relaxing the electric field in the train region by changing the

従来の半導体装置の製造方法は、熱酸化膜で被覆された
ゲート電極とフィールド酸化膜をマスクとして自己整合
的に低濃度の不純物をイオン注入して低濃度拡散層を設
けた後、ゲート電極を含む表面にCVD法により絶縁膜
を堆積し、これを異方性エツチングしてゲート電極の側
面にのみ絶縁膜を残して側壁を形成し他の部分の絶縁膜
を除去する。次に、この側壁を有するゲート電極をマス
クとして高濃度の不純物をイオン注入して低濃度拡散層
と接続する高濃度拡散層を形成していた。
The conventional manufacturing method for semiconductor devices is to form a low concentration diffusion layer by ion-implanting low concentration impurities in a self-aligned manner using a gate electrode covered with a thermal oxide film and a field oxide film as masks, and then to form a low concentration diffusion layer. An insulating film is deposited on the surface including the gate electrode by the CVD method, and this is anisotropically etched to form side walls, leaving the insulating film only on the side surfaces of the gate electrode, and removing the insulating film on other parts. Next, using the gate electrode having this side wall as a mask, high concentration impurity ions are implanted to form a high concentration diffusion layer connected to the low concentration diffusion layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した従来の半導体装置の製造方法は、ゲート電極の
側面に予め設けた絶縁膜とその後堆積させる絶縁膜の異
方性エツチングに対するエツチングレートが同じである
なめ、ウェーハ面上でのこの異方性エツチングのエツチ
ングレートの不均一性により、形成されるマスク用側壁
の形状が均一とならず、また最悪の場合、側面に成長し
た膜もエツチングされてしまい、側壁が形成されないと
いう欠点があった。
In the conventional semiconductor device manufacturing method described above, the etching rate for anisotropic etching is the same for the insulating film provided in advance on the side surface of the gate electrode and the insulating film deposited subsequently. Due to the non-uniformity of the etching rate, the shape of the mask sidewalls formed is not uniform, and in the worst case, the film grown on the sidewalls is also etched, resulting in no sidewalls being formed.

また、上記異方性エツチングとしては、一般に反応性イ
オンエツチングが用いられているが、このエツチングに
よりエツチングの最終段階でソース・ドレイン領域の表
面がエツチング雰囲気にさらされてその表面がエツチン
グされたり、汚染・欠陥等が生じたりしてソース・トレ
イン領域のリーク電流が増大してしまうという欠点があ
った。
In addition, reactive ion etching is generally used as the above-mentioned anisotropic etching, but in the final stage of etching, the surface of the source/drain region is exposed to an etching atmosphere and the surface is etched. There is a drawback that leakage current in the source/train region increases due to contamination, defects, etc.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、 (A)  一導電型半導体基板の主表面に選択的に素子
分厚用のフィールド絶縁1膜を設けて素子形成領域を区
画し、前記素子形成領域の表面にゲート絶縁膜を形成す
る工程、 前記ゲート絶縁膜を含む表面に多結晶シリコン膜を堆積
し、選択的にエツチングしてゲート電極を形成し、前記
ゲート電極の表面を熱酸化して酸化膜を形成する工程、 前記ゲート電極及び前記フィールド絶縁膜をマスクとし
て低濃度の不純物をイオン注入して前記素子形成領域に
逆導電型の低濃度拡散層を形成する工程、 前記ゲート電極を含む表面に前記酸化膜とエツチングレ
ートの異なる絶縁膜を堆積し、前記絶縁膜の上に多結晶
シリコン膜を形成する工程、 (E)  異方性エツチングにより前記ゲート電極の側
面にのみ前記多結晶シリコン膜を残1〜で側壁を設け、
他の部分の前記多結晶シリコン膜を除去する工程、 前記側壁をマスクとしてウエットエッチン(C) (D) (B) (F) りにより前記絶縁膜をエツチングして前記側壁以外の前
記絶縁膜を除去する工程、 <G)  前記側壁を含むゲート電極及び前記フィール
ド絶縁膜をマスクとして不純物をイオン注入し、前記素
子形成領域に前記低濃度拡散層と接続する逆導電型の高
濃度拡散層を形成する工程、 を含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes: (A) selectively providing a field insulating film for element thickness on the main surface of a semiconductor substrate of one conductivity type to demarcate an element formation region; A step of forming a gate insulating film, depositing a polycrystalline silicon film on the surface including the gate insulating film, selectively etching it to form a gate electrode, and thermally oxidizing the surface of the gate electrode to form an oxide film. A step of ion-implanting a low concentration impurity using the gate electrode and the field insulating film as a mask to form a low concentration diffusion layer of an opposite conductivity type in the element formation region; A step of oxidizing the surface including the gate electrode. (E) depositing an insulating film having an etching rate different from that of the insulating film, and forming a polycrystalline silicon film on the insulating film; (E) leaving the polycrystalline silicon film only on the side surfaces of the gate electrode by anisotropic etching; Provide a side wall with ~,
a step of removing the polycrystalline silicon film from other portions, etching the insulating film by wet etching (C) (D) (B) (F) using the sidewalls as a mask to remove the insulating film from areas other than the sidewalls; removing step, <G) implanting impurity ions using the gate electrode including the sidewalls and the field insulating film as a mask to form a high concentration diffusion layer of an opposite conductivity type connected to the low concentration diffusion layer in the element formation region; It consists of the steps of:

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(f)は本発明の第1の実施例を説明す
るための工程順に示した半導体チップの断面図である。
FIGS. 1A to 1F are cross-sectional views of a semiconductor chip shown in order of steps for explaining a first embodiment of the present invention.

まず、第1図(a)に示すように、p型シリコン基板1
の表面にp型不純物拡散層のチャネルストッパ2及びフ
ィールド酸化膜3を選択的に形成して素子形成領域を区
画する。次に、素子形成領域の表面を熱酸化して薄い酸
化膜(ゲート酸化膜)4aを30nmを厚さに形成し、
全面にn型不純物を拡散した多結晶シリコン膜を堆積さ
せた後、フォトリングラフィ技術及びドライエツチング
法により選択的にゲート電極5を形成し、熱酸化法によ
りこのゲート電極5の表面及び素子形成領域の表面に薄
い酸化膜4bを20nmの厚さに形成する。次に、イオ
ンをドーズ量I X 10 ”cry”程度にイオン注
入してn−型拡散層6を形成する。
First, as shown in FIG. 1(a), a p-type silicon substrate 1
A channel stopper 2 of a p-type impurity diffusion layer and a field oxide film 3 are selectively formed on the surface of the wafer to define an element formation region. Next, the surface of the element formation region is thermally oxidized to form a thin oxide film (gate oxide film) 4a with a thickness of 30 nm.
After depositing a polycrystalline silicon film with n-type impurities diffused over the entire surface, a gate electrode 5 is selectively formed using photolithography technology and a dry etching method, and the surface of this gate electrode 5 and element formation are performed using a thermal oxidation method. A thin oxide film 4b with a thickness of 20 nm is formed on the surface of the region. Next, ions are implanted at a dose of about I x 10 "cry" to form an n- type diffusion layer 6.

次に、第1図(b)に示すように、CVD法により全面
に酸化シリコン膜7を0.1μmの厚さに堆積させ、そ
の上にCVD法により多結晶シリコン膜8を0.1μm
の厚さに堆積する。
Next, as shown in FIG. 1(b), a silicon oxide film 7 is deposited to a thickness of 0.1 μm over the entire surface by the CVD method, and a polycrystalline silicon film 8 is deposited to a thickness of 0.1 μm on top of the silicon oxide film 7 by the CVD method.
Deposited to a thickness of .

次に、第1図(c)に示すように、異方性エツチングに
よりゲート電極5の側面にのみ多結晶シリコン膜8を残
して他の部分の多結晶シリコン膜8を除去する。この時
、多結晶シリコン膜8のすぐ下の酸化シリコン膜7の表
面も僅かエツチングされるが問題はない。
Next, as shown in FIG. 1(c), by anisotropic etching, the polycrystalline silicon film 8 is left only on the side surfaces of the gate electrode 5, and the other portions of the polycrystalline silicon film 8 are removed. At this time, the surface of the silicon oxide film 7 immediately below the polycrystalline silicon film 8 is also slightly etched, but there is no problem.

次に、第1図(d)に示すように、バッフアートフッ酸
により酸化シリコン膜7をウェットエッチにより除去す
る。この時、ゲート電極5の側面に残している多結晶シ
リコン膜8はエツチングされないため、側壁としての幅
は酸化シリコン膜7を含め十分列される。また、ウェッ
トエッチの際、熱酸化法による酸化膜4bとCVD法に
よる酸化シリコン膜7のエツチングレート差を利用して
ゲニト電極5の上面及びn−型拡散層6の上に薄く酸化
膜4bを残すことが望ましい。次に、ヒ素をイオン注入
することによりn+型型数散層9形成する。
Next, as shown in FIG. 1(d), the silicon oxide film 7 is removed by wet etching using buffered hydrofluoric acid. At this time, since the polycrystalline silicon film 8 remaining on the side surface of the gate electrode 5 is not etched, the width of the side wall including the silicon oxide film 7 is sufficiently aligned. Further, during wet etching, a thin oxide film 4b is formed on the upper surface of the genit electrode 5 and the n-type diffusion layer 6 by utilizing the difference in etching rate between the oxide film 4b formed by thermal oxidation method and the silicon oxide film 7 formed by CVD method. It is desirable to leave it. Next, an n+ type scattering layer 9 is formed by ion-implanting arsenic.

次に、第1図(c)に示すようにゲート電極5の側面に
残った多結晶シリコンM8を900°C程度で酸化し酸
化膜10を形成する。この時n+型型数散層の活性層と
押込みも同時に行なわれる。
Next, as shown in FIG. 1(c), the polycrystalline silicon M8 remaining on the side surfaces of the gate electrode 5 is oxidized at about 900° C. to form an oxide film 10. At this time, the active layer and the indentation of the n+ type scattering layer are also performed at the same time.

次に第1図(f)に示すように全面に層間絶縁膜11を
堆積してコンタクト用開口部を設け、開口部を含む表面
にアルミニウム膜を堆積してこれを選択的にエツチング
し、n+型型数散層と接続し層間絶縁IPA]、 0の
上に延在する配線12を形成する。また、この時ゲート
電極5の側壁の段差を緩和するため、ウェットエッチで
酸化膜10を軽くエツチングするとより効果的である。
Next, as shown in FIG. 1(f), an interlayer insulating film 11 is deposited over the entire surface to form contact openings, and an aluminum film is deposited on the surface including the openings and selectively etched. A wiring 12 is formed which is connected to the multilayer scattering layer and extends over the interlayer insulation IPA. Further, at this time, in order to reduce the level difference on the side wall of the gate electrode 5, it is more effective to lightly etch the oxide film 10 by wet etching.

また、酸化膜4bも同時にエツチングされるため、n+
型型数散層上再酸化して20nm程度の酸化膜を形成す
ると良い 第2図は本発明の第2の実施例を示す半導体チップの断
面図である。
Furthermore, since the oxide film 4b is also etched at the same time, n+
It is preferable to re-oxidize the scattering layer to form an oxide film of about 20 nm. FIG. 2 is a cross-sectional view of a semiconductor chip showing a second embodiment of the present invention.

図に示すように、′第1図(a)〜(d)までに説明し
た第1の実施例と同じ工程を経た後、n型拡散層6及び
ゲート電極5の上面の薄い酸化膜4bを除去し、スパッ
タ法により全面にチタン膜を堆積する。次に、600℃
程度の窒素雰囲気中で熱処理し、ゲート電極5の表面及
びn+型型数散層9表面に自己整合的に硅化チタン膜1
3を形成した後、未反応のチタン膜を除去する。以後第
1の実施例と同様の工程により半導体装置を構成する。
As shown in the figure, after going through the same steps as in the first embodiment described in FIGS. Then, a titanium film is deposited on the entire surface by sputtering. Next, 600℃
A titanium silicide film 1 is formed in a self-aligned manner on the surface of the gate electrode 5 and the surface of the n+ type scattering layer 9.
After forming No. 3, the unreacted titanium film is removed. Thereafter, a semiconductor device is constructed through the same steps as in the first embodiment.

ここで、第1−の実施例の第1図(d)において、ゲー
ト電極5及びn+型型数散層9上に薄く酸化M4bを残
すことが望ましいが、第2の実施例では酸化膜4bを残
す必要がなく、先に硅化チタン膜13を形成した後ヒ素
をイオン注入してn“拡散層9を形成しても良い。
Here, in FIG. 1(d) of the first embodiment, it is desirable to leave a thin layer of oxide M4b on the gate electrode 5 and the n+ type scattering layer 9, but in the second embodiment, the oxide film 4b It is not necessary to leave the titanium silicide film 13, and then arsenic ions may be implanted to form the n'' diffusion layer 9.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明は、側壁の形成に於いて従来行
なわれている反応性イオンエツチングの最終段階でゲー
ト電極側面以外の素子形成領域上の絶縁膜をウェットエ
ツチングにより除去するため、素子形成領域の表面にダ
メージを与えることがなく、リーク電流の少ないソース
・ドレイン拡散層を形成できる。
As explained above, the present invention removes the insulating film on the element formation region other than the side surface of the gate electrode by wet etching in the final stage of the conventional reactive ion etching in forming the sidewalls. Source/drain diffusion layers with low leakage current can be formed without damaging the surface of the region.

また、前記ウェットエツチングに於いて、本発明ではゲ
ート電極側面に絶縁膜よりエツチングレートの小さい多
結晶シリコン膜を用いるため、この多結晶シリコン膜の
下に位置する絶縁膜の膜厚を制御することで側壁の幅を
精度良く形成でき、MOSFETの特性を十分制御する
ことが可能で、高集積度・高信頼性を有する半導体装置
製造方法が実現できるという効果を有する。
Furthermore, in the wet etching, since the present invention uses a polycrystalline silicon film having a lower etching rate than the insulating film on the side surface of the gate electrode, it is necessary to control the thickness of the insulating film located below the polycrystalline silicon film. This has the effect that the width of the sidewall can be formed with high accuracy, the characteristics of the MOSFET can be sufficiently controlled, and a method of manufacturing a semiconductor device with high degree of integration and high reliability can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明の第1の実施例を説明す
るための工程順に示した半導体チップの断面図、第2図
は本発明の第2の実施例を説明するための半導体チップ
の断面図である。 1・・p型シリコン基板、2・・・チャネルストッパ、
3・・・フィールド酸化膜、4a・・・ゲート酸化膜、
4b・・・酸化1膜、5・・・ゲート電極、6・・・n
−型拡散層、7・・・酸化シリコン膜、8・・・多結晶
シリコン膜、9・・・n+型型数散層10・・・酸化膜
、11・・層間絶縁膜、12・・・配線、13・・・硅
化チタン膜。 代理人 弁理士  内 原  昔 あ[囚 り( あ?丙
FIGS. 1(a) to (f) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a first embodiment of the present invention, and FIG. 2 is a cross-sectional view for explaining a second embodiment of the present invention. FIG. 2 is a cross-sectional view of a semiconductor chip of FIG. 1...p-type silicon substrate, 2...channel stopper,
3...Field oxide film, 4a...Gate oxide film,
4b...1 oxide film, 5...gate electrode, 6...n
- type diffusion layer, 7... silicon oxide film, 8... polycrystalline silicon film, 9... n+ type scattering layer 10... oxide film, 11... interlayer insulating film, 12... Wiring, 13...Titanium silicide film. Agent Patent Attorney Uchihara Uchihara

Claims (1)

【特許請求の範囲】 (A)一導電型半導体基板の主表面に選択的に素子分離
用のフィールド絶縁膜を設けて素子形成領域を区画し、
前記素子形成領域の表面にゲート絶縁膜を形成する工程
、 (B)前記ゲート絶縁膜を含む表面に多結晶シリコン膜
を堆積し、選択的にエッチングして ゲート電極を形成し、前記ゲート電極の表面を熱酸化し
て酸化膜を形成する工程、 (c)前記ゲート電極及び前記フィールド絶縁膜をマス
クとして低濃度の不純物をイオン注入して前記素子形成
領域に逆導電型の低濃度拡散層を形成する工程、 (D)前記ゲート電極を含む表面に前記酸化膜とエッチ
ングレートの異なる絶縁膜を堆積し、前記絶縁膜の上に
多結晶シリコン膜を形成する工程、 (E)異方性エッチングにより前記ゲート電極の側面に
のみ前記多結晶シリコン膜を残して側壁を設け、他の部
分の前記多結晶シリコン膜を除去する工程、 (F)前記側壁をマスクとしてウェットエッチングによ
り前記絶縁膜をエッチングして前記側壁以外の前記絶縁
膜を除去する工程、 (G)前記側壁を含むゲート電極及び前記フィールド絶
縁膜をマスクとして不純物をイオン注入し、前記素子形
成領域に前記低濃度拡散層と接続する逆導電型の高濃度
拡散層を形成する工程、 を含むことを特徴とする半導体装置の製造方法。
[Claims] (A) selectively providing a field insulating film for element isolation on the main surface of a semiconductor substrate of one conductivity type to demarcate an element formation region;
forming a gate insulating film on the surface of the element formation region; (B) depositing a polycrystalline silicon film on the surface including the gate insulating film and selectively etching it to form a gate electrode; a step of thermally oxidizing the surface to form an oxide film; (c) using the gate electrode and the field insulating film as masks, ion-implanting low concentration impurities to form a low concentration diffusion layer of the opposite conductivity type in the element formation region; (D) depositing an insulating film having an etching rate different from the oxide film on the surface including the gate electrode, and forming a polycrystalline silicon film on the insulating film; (E) anisotropic etching. (F) etching the insulating film by wet etching using the sidewall as a mask; (F) etching the insulating film by wet etching using the sidewall as a mask; (G) implanting impurity ions using the gate electrode including the side walls and the field insulating film as a mask, and connecting the element forming region to the low concentration diffusion layer; A method for manufacturing a semiconductor device, comprising the steps of: forming a highly doped diffusion layer of opposite conductivity type.
JP8752089A 1989-04-05 1989-04-05 Manufacture of semiconductor device Pending JPH02265250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8752089A JPH02265250A (en) 1989-04-05 1989-04-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8752089A JPH02265250A (en) 1989-04-05 1989-04-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02265250A true JPH02265250A (en) 1990-10-30

Family

ID=13917271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8752089A Pending JPH02265250A (en) 1989-04-05 1989-04-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02265250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517398A (en) * 2003-12-30 2007-06-28 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for forming rectangular spacer of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138379A (en) * 1983-01-27 1984-08-08 Toshiba Corp Manufacture of semiconductor device
JPS63257231A (en) * 1987-04-14 1988-10-25 Nec Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138379A (en) * 1983-01-27 1984-08-08 Toshiba Corp Manufacture of semiconductor device
JPS63257231A (en) * 1987-04-14 1988-10-25 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517398A (en) * 2003-12-30 2007-06-28 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for forming rectangular spacer of semiconductor device

Similar Documents

Publication Publication Date Title
JPH05283519A (en) Manufacture of semiconductor device
US20090096023A1 (en) Method for manufacturing semiconductor device
JPS63257231A (en) Manufacture of semiconductor device
JPS60145664A (en) Manufacture of semiconductor device
JPH02265250A (en) Manufacture of semiconductor device
JPS62285468A (en) Manufacture of ldd field-effect transistor
JP2968548B2 (en) Semiconductor device and manufacturing method thereof
JP2513312B2 (en) Method for manufacturing MOS transistor
JPS63305566A (en) Semiconductor device and manufacture thereof
JP2602589B2 (en) Method for manufacturing LDD transistor
JPH025436A (en) Manufacture of field-effect transistor
JPS6316672A (en) Manufacture of semiconductor element
JPH01117066A (en) Manufacture of mos type semiconductor device
JPH07335893A (en) Semiconductor device
JPH05343419A (en) Semiconductor device
JPH04139834A (en) Manufacture of semiconductor device
JPS61156883A (en) Manufacture of semiconductor device
JPH01125977A (en) Mos semiconductor device
JPH0226034A (en) Manufacture of semiconductor device
JP2887902B2 (en) Method for manufacturing semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JPH02305444A (en) Manufacture of semiconductor device
JPS63150965A (en) Manufacture of semiconductor device
JP2001196585A (en) Insulated-gate field-effect transistor and manufacturing method therefor
JPH01286363A (en) Mos type semiconductor device