JPH0226034A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0226034A
JPH0226034A JP17661488A JP17661488A JPH0226034A JP H0226034 A JPH0226034 A JP H0226034A JP 17661488 A JP17661488 A JP 17661488A JP 17661488 A JP17661488 A JP 17661488A JP H0226034 A JPH0226034 A JP H0226034A
Authority
JP
Japan
Prior art keywords
film
gate electrode
gate
insulating film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17661488A
Other languages
Japanese (ja)
Inventor
Manzo Saito
斉藤 万蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17661488A priority Critical patent/JPH0226034A/en
Publication of JPH0226034A publication Critical patent/JPH0226034A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent defects within an element-forming area from being generated by making a polycrystalline silicon film to be an etching stopper when eliminating a PSG film of other parts leaving the PSG film only at the side wall part of a gate electrode in anisotropy etching of all surfaces. CONSTITUTION:A field insulation film 2 zoning an element forming are is provided on a semiconductor substrate 1, a gate insulation film 3 is formed on the surface of that area, and a gate electrode 4 is formed selectively on that insulation film 3. Then, a polycrystalline silicon film 7 and a silicon oxide film (PSG film) 8 where impurities were added are accumulated in sequence, anisotropic etching is performed on the entire surface leaving the PSG film 8 only on the side wall of the gate, impurities are ion-implanted with the gate electrode 4 and the PSG film 8 as well as the field insulation film 2 as masks, and a high-concentration diffusion area 9 connected to a low-concentration diffusion area 6 is formed within the element-forming area. It prevents the surface within the element forming area from being exposed to etching environment and defects within the area from being generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に絶縁ゲート
型電界効果トランジスタを有する半導体装置の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device having an insulated gate field effect transistor.

〔従来の技術〕[Conventional technology]

絶縁ゲート型電界効果トランジスタの微細化にともない
発生するホットエレクトロンによる特性。
Characteristics due to hot electrons generated as insulated gate field effect transistors become smaller.

変動やパンチスルー等を回避するために、ゲート電極の
側壁部に形成したマスク層を使用して拡散領域の不純物
濃度を部分的に変えることにより、ドレイン領域の電界
を緩和させる方法がある。
In order to avoid fluctuations, punch-through, etc., there is a method of relaxing the electric field in the drain region by partially changing the impurity concentration in the diffusion region using a mask layer formed on the sidewalls of the gate electrode.

第2図(a)〜(C)は従来の半導体装置の製造方法を
説明するための工程順に示した半導体チップの断面図で
ある。
FIGS. 2(a) to 2(C) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a conventional method of manufacturing a semiconductor device.

第2図(a)に示すように、P型シリコン基板1の上に
選択的にフィールド絶縁膜を設けて素子形成領域を区画
し、前記素子形成領域の表面にゲート酸化膜3を形成す
る。次に、ゲート酸化膜3を含む表面に多結晶シリコン
層を堆積し、これをjx択的にエツチングしてゲート電
極4を形成する。次に、ゲート電極4及びフィールド酸
化膜3をマスクとしてリンイオンをドーズ量10 ”c
m−”でイオン注入し前記素子形成領域内に低濃度のN
−型拡散領域6を形成する0次に、全面にCVD法によ
り酸化シリコン膜13を0.3μmの厚さに堆積する。
As shown in FIG. 2(a), a field insulating film is selectively provided on the P-type silicon substrate 1 to define an element formation region, and a gate oxide film 3 is formed on the surface of the element formation region. Next, a polycrystalline silicon layer is deposited on the surface including the gate oxide film 3, and this is selectively etched to form the gate electrode 4. Next, using the gate electrode 4 and field oxide film 3 as a mask, phosphorus ions are applied at a dose of 10"c.
ion implantation at a low concentration of N into the element formation region.
Next, a silicon oxide film 13 is deposited to a thickness of 0.3 μm over the entire surface by CVD.

次に、第2図(b)に示すように、反応性イオンエツチ
ング法により全面を異方性エツチングしてゲート電極4
の側壁部にのみ酸化シリコン膜13を残す。次に、酸化
シリコン膜13に整合して前記素子形成領域内にヒ素イ
オンをドーズ量]、 015cm−2でイオン注入し、
N−型拡散領域6と接続する高濃度のN+型拡散領域9
を形成する。
Next, as shown in FIG. 2(b), the entire surface is anisotropically etched using a reactive ion etching method to form the gate electrode 4.
The silicon oxide film 13 is left only on the side wall portions. Next, arsenic ions are implanted into the element formation region at a dose of 015 cm-2 in alignment with the silicon oxide film 13,
High concentration N+ type diffusion region 9 connected to N− type diffusion region 6
form.

次に、第2図(c)に示すように、゛全面に酸化シリコ
ン膜14を堆積し、コンタクト用の開孔部11を設け、
開孔部11のN+型拡散領域9と接続するアルミニウム
電極12を選択的に設けてL D D (Lightl
y Doped Drain)構造の半導体装置を構成
する。
Next, as shown in FIG. 2(c), a silicon oxide film 14 is deposited on the entire surface, and an opening 11 for contact is provided.
By selectively providing an aluminum electrode 12 connected to the N+ type diffusion region 9 of the opening 11, L D D (Light
y Doped Drain) structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置の製造方法は、酸化シリコン
膜を異方性エツチングしてゲート電極の側壁部にのみ酸
化シリコン膜を残存させる工程で、前記側壁部以外の酸
化シリコン膜を完全に除去しようとして過剰なエツチン
グを行う、このため、素子形成領域上のゲート酸化膜が
除去された後もエツチングを続行することになり、素子
形成領域の表面がエツチング雰囲気にさらされ、素子形
成領域内に欠陥が導入される。このように欠陥を内在さ
せた状態で引き続き製造工程を進めて半導体装置が形成
された場合には、前記欠陥に起因するリーク電流の発生
やトランジスタ特性の劣化などを生ずるという開題点が
ある。
The conventional semiconductor device manufacturing method described above is a process in which the silicon oxide film is anisotropically etched so that the silicon oxide film remains only on the side walls of the gate electrode, and the silicon oxide film other than the side walls is completely removed. As a result, etching is continued even after the gate oxide film on the element forming area is removed, and the surface of the element forming area is exposed to the etching atmosphere, causing defects in the element forming area. will be introduced. If a semiconductor device is formed by continuing to proceed with the manufacturing process with such defects present, there is an open problem that the defects cause leakage current and deterioration of transistor characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、−導電型半導体基板
の主表面に素子形成領域を区画するフィールド絶縁膜を
設け前記素子形成領域の表面にゲート絶縁膜を形成する
工程と、前記ゲート絶縁膜上に選択的にゲート電極を形
成する工程と、前記ゲート電極を被覆する絶縁膜を形成
する工程と、前記ゲート電極及び前記フィールド絶縁膜
をマスクにして不純物をイオン注入し前記素子形成領域
内に自己整合的に逆導電型の低濃度拡散領域を形成する
工程と、前記ゲート電極を含む表面に多結晶シリコン膜
及び不純物を添加した酸化シリコン膜を順次堆積する工
程と、全面を異方性エツチングして前記ゲートの側壁に
のみ前記酸化シリコン膜を残す工程と、前記ゲート電極
及び前記酸化シリコン膜と前記フィールド絶縁膜をマス
クにして不純物をイオン注入し前記素子形成領域内に前
記低濃度拡散領域と接続する高濃度拡散領域を形成する
工程とを含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes the steps of: - providing a field insulating film on the main surface of a conductive type semiconductor substrate to define an element formation region, and forming a gate insulating film on the surface of the element formation region; a step of selectively forming a gate electrode thereon; a step of forming an insulating film covering the gate electrode; and a step of implanting impurity ions into the element forming region using the gate electrode and the field insulating film as masks. A step of forming a low concentration diffusion region of opposite conductivity type in a self-aligned manner, a step of sequentially depositing a polycrystalline silicon film and an impurity-doped silicon oxide film on the surface including the gate electrode, and anisotropic etching of the entire surface. and leaving the silicon oxide film only on the side walls of the gate, and ion-implanting impurities using the gate electrode, the silicon oxide film, and the field insulating film as masks to form the low concentration diffusion region in the element forming region. and a step of forming a high concentration diffusion region connected to the.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を説明するための工程順に示
した半導体チップの断面図である。
FIG. 1 is a cross-sectional view of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention.

まず、第1図(a)に示すように、P型シリコン基板1
の上に選択的にフィールド絶縁膜2を設けて素子形成領
域を区画し、熱酸化法により前記素子形成領域の表面に
ゲート酸化膜3を形成する。次に、ゲート酸化膜3を含
む表面に多結晶シリコン層を堆積し、これを選択的にエ
ツチングして幅約1μmのゲート電極4を形成し、熱酸
化法によりゲート電極4の表面に酸化シリコン膜5を形
成する。次に、ゲート電極4及びフィールド絶縁膜2を
マスクとしてリンイオンをドーズ量1013cm−2で
イオン注入し前記素子形成領域内に低濃度のN−型拡散
領域6を形成する。
First, as shown in FIG. 1(a), a P-type silicon substrate 1
A field insulating film 2 is selectively provided thereon to define an element formation region, and a gate oxide film 3 is formed on the surface of the element formation region by thermal oxidation. Next, a polycrystalline silicon layer is deposited on the surface including the gate oxide film 3, and this is selectively etched to form a gate electrode 4 with a width of approximately 1 μm. A film 5 is formed. Next, using the gate electrode 4 and the field insulating film 2 as masks, phosphorus ions are implanted at a dose of 1013 cm@-2 to form a low concentration N@- type diffusion region 6 in the element formation region.

次に、第1図(b)に示すように、酸化シリコン膜5を
含む表面にCVD法により20nmの厚さの多結晶シリ
コン膜7及び0.3μmの厚さのリンを含有する酸化シ
リコン膜(以下PSG膜と記す)8を順次堆積する。
Next, as shown in FIG. 1(b), a polycrystalline silicon film 7 with a thickness of 20 nm and a silicon oxide film containing phosphorus with a thickness of 0.3 μm are formed by CVD on the surface including the silicon oxide film 5. (hereinafter referred to as PSG film) 8 is sequentially deposited.

次に、第1図(c)に示すように、反応性イオンエツチ
ング法により全面を異方性エツチングしてゲート電極4
の側壁部にのみPSG膜8を残して他の部分のPSG膜
8を除去する。このとき多結晶シリコン膜7はエツチン
グストッパとして働き、N−型拡散領域6の上のゲート
酸化膜3が除去されるのを防ぐため、前記素子形成領域
中に欠陥が導入されるのを防ぐことができる0次に、P
SG膜8に整合してヒ素イオンをドーズ量10 ”cm
−2でイオン注入しN−型拡散領域6と接続する高濃度
のN+型拡散領域9を形成する。
Next, as shown in FIG. 1(c), the entire surface is anisotropically etched using a reactive ion etching method to form the gate electrode 4.
The PSG film 8 is left only on the side wall portions and the other portions of the PSG film 8 are removed. At this time, the polycrystalline silicon film 7 acts as an etching stopper to prevent the gate oxide film 3 on the N-type diffusion region 6 from being removed, thereby preventing defects from being introduced into the element formation region. 0th order, P
Arsenic ions are applied at a dose of 10”cm in alignment with the SG film 8.
-2 ion implantation to form a high concentration N+ type diffusion region 9 connected to the N- type diffusion region 6.

次に、第1図(d)に示すように、水蒸気雰囲気中で多
結晶シリコン膜7を酸化し、酸化シリコン膜5、ゲート
酸化膜3及びPSG膜8と一体化した酸化シリコン膜1
0を形成する。ここで、PSG膜8は多結晶シリコン膜
7を酸化させる水蒸気を速やかに拡散させることができ
、またPSGJilS中のリンを多結晶シリコン膜7中
に拡散して酸化を増速させる働きをする0次に、酸化シ
リコン膜10にコンタクト用の開孔部11を設け、開孔
部11のN+型拡散領域9と接続するアルミニウム電極
12を選択的に設けて半導体装置を構成する。
Next, as shown in FIG. 1(d), the polycrystalline silicon film 7 is oxidized in a water vapor atmosphere, and the silicon oxide film 1 is integrated with the silicon oxide film 5, the gate oxide film 3, and the PSG film 8.
form 0. Here, the PSG film 8 can quickly diffuse the water vapor that oxidizes the polycrystalline silicon film 7, and also has the function of diffusing phosphorus in the PSG JilS into the polycrystalline silicon film 7 to accelerate the oxidation. Next, a contact opening 11 is provided in the silicon oxide film 10, and an aluminum electrode 12 is selectively provided to connect to the N+ type diffusion region 9 in the opening 11, thereby forming a semiconductor device.

なお、ゲート電極4は多結晶シリコン層の代りに多結晶
シリコン層と高融点金属硅化物層との積層構造であって
も良く、PSG膜8の代りにリンとホウ素を含んだ酸化
シリコン膜を使用しても良い、またN−型拡散領域6を
形成するための不純物原子としてリンの代りにヒ素を使
用しても良゛い。
Note that the gate electrode 4 may have a laminated structure of a polycrystalline silicon layer and a high melting point metal silicide layer instead of the polycrystalline silicon layer, and a silicon oxide film containing phosphorus and boron may be used instead of the PSG film 8. Alternatively, arsenic may be used instead of phosphorus as an impurity atom for forming the N-type diffusion region 6.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、酸化シリコン膜で被覆し
たゲート電極を含む表面に多結晶シリコン膜及びPSG
膜を順次積層して形成し、全面の異方性エツチングによ
りゲート電極の側壁部にのみPSG膜を残して他の部分
のPSG膜を除去する際に、多結晶シリコン膜をエツチ
ングストッパにすることにより、素子形成領域の表面が
露出されてエツチング雰囲気にさらされることを防ぎ、
素子形成領域内の欠陥の発生を防止して、信頼性を向上
させた半導体装置を実現できるという効果を有する。
As explained above, the present invention provides a polycrystalline silicon film and a PSG film on the surface including the gate electrode covered with the silicon oxide film.
To use the polycrystalline silicon film as an etching stopper when forming films by sequentially stacking them and removing the PSG film from other parts while leaving only the PSG film on the sidewalls of the gate electrode by anisotropic etching of the entire surface. This prevents the surface of the element forming area from being exposed to the etching atmosphere.
This has the effect of preventing the occurrence of defects in the element formation region and realizing a semiconductor device with improved reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図(a
)〜(C)は従来の半導体装置の製造方法を説明するた
めの工程順に示した半導体チップの断面図である。 1・・・P型シリコン基板、2・・・フィールド酸化膜
、3・・・ゲート酸化膜、4・・・ゲート電極、5・・
・酸化シリコン膜、6・・・N−型拡散領域、7・・・
多結晶シリコン膜、8・・・PSG膜、9・・・N+型
拡散領域、10・・・酸化シリコン膜、11・・・開孔
部、12・・・アルミニウム電極、13.14・・・酸
化シリコン膜。
1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention, and FIG. 2(a)
) to (C) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a conventional method of manufacturing a semiconductor device. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Field oxide film, 3... Gate oxide film, 4... Gate electrode, 5...
・Silicon oxide film, 6... N- type diffusion region, 7...
Polycrystalline silicon film, 8...PSG film, 9...N+ type diffusion region, 10...silicon oxide film, 11...opening portion, 12...aluminum electrode, 13.14... Silicon oxide film.

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板の主表面に素子形成領域を区画する
フィールド絶縁膜を設け前記素子形成領域の表面にゲー
ト絶縁膜を形成する工程と、前記ゲート絶縁膜上に選択
的にゲート電極を形成する工程と、前記ゲート電極を被
覆する絶縁膜を形成する工程と、前記ゲート電極及び前
記フィールド絶縁膜をマスクにして不純物をイオン注入
し前記素子形成領域内に自己整合的に逆導電型の低濃度
拡散領域を形成する工程と、前記ゲート電極を含む表面
に多結晶シリコン膜及び不純物を添加した酸化シリコン
膜を順次堆積する工程と、全面を異方性エッチングして
前記ゲートの側壁にのみ前記酸化シリコン膜を残す工程
と、前記ゲート電極及び前記酸化シリコン膜と前記フィ
ールド絶縁膜をマスクにして不純物をイオン注入し前記
素子形成領域内に前記低濃度拡散領域と接続する高濃度
拡散領域を形成する工程とを含むことを特徴とする半導
体装置の製造方法。
a step of providing a field insulating film for partitioning an element formation region on the main surface of a semiconductor substrate of one conductivity type, forming a gate insulating film on the surface of the element formation region, and selectively forming a gate electrode on the gate insulating film; a step of forming an insulating film covering the gate electrode; and a step of ion-implanting an impurity using the gate electrode and the field insulating film as a mask to form a low concentration of a reverse conductivity type in the element formation region in a self-aligned manner. a step of forming a diffusion region, a step of sequentially depositing a polycrystalline silicon film and an impurity-doped silicon oxide film on the surface including the gate electrode, and anisotropically etching the entire surface to remove the oxide only on the sidewalls of the gate. a step of leaving a silicon film, and ion implantation of impurities using the gate electrode, the silicon oxide film, and the field insulating film as masks to form a high concentration diffusion region connected to the low concentration diffusion region in the element formation region. A method for manufacturing a semiconductor device, comprising the steps of:
JP17661488A 1988-07-14 1988-07-14 Manufacture of semiconductor device Pending JPH0226034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17661488A JPH0226034A (en) 1988-07-14 1988-07-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17661488A JPH0226034A (en) 1988-07-14 1988-07-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0226034A true JPH0226034A (en) 1990-01-29

Family

ID=16016647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17661488A Pending JPH0226034A (en) 1988-07-14 1988-07-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0226034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206127A (en) * 1989-02-06 1990-08-15 Rohm Co Ltd Manufacture of semiconductor device
KR100523014B1 (en) * 1998-02-23 2005-10-19 소니 가부시끼 가이샤 Method for producing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206127A (en) * 1989-02-06 1990-08-15 Rohm Co Ltd Manufacture of semiconductor device
KR100523014B1 (en) * 1998-02-23 2005-10-19 소니 가부시끼 가이샤 Method for producing semiconductor device

Similar Documents

Publication Publication Date Title
US6566208B2 (en) Method to form elevated source/drain using poly spacer
JP3049496B2 (en) Method of manufacturing MOSFET
JPH0226034A (en) Manufacture of semiconductor device
JP3088547B2 (en) Method for manufacturing semiconductor device
JP2931243B2 (en) Method for manufacturing semiconductor device
KR0170436B1 (en) Method of manufacturing mosfet
JP2659190B2 (en) Method for manufacturing semiconductor device
JP2741042B2 (en) Semiconductor device and manufacturing method thereof
JP3311082B2 (en) Method for manufacturing semiconductor device
JPS62273774A (en) Manufacture of field-effect transistor
JP2818060B2 (en) Method for manufacturing semiconductor device
JP3366709B2 (en) Method for manufacturing MOS transistor
JP3371600B2 (en) Method for manufacturing MIS transistor
JPH01117066A (en) Manufacture of mos type semiconductor device
JP3408299B2 (en) Insulated gate field effect transistor and method of manufacturing the same
KR940007663B1 (en) Manufacturing method of mosfet
JP3030569B2 (en) Manufacturing method of nonvolatile semiconductor memory
JPS62261174A (en) Manufacture of semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JPH0629310A (en) Semiconductor device and manufacture thereof
KR100898257B1 (en) Method for manufacturing of semiconductor device
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JPH0230145A (en) Manufacture of semiconductor device
JPH05144839A (en) Manufacturing method of semiconductor device
JPH0964361A (en) Manufacture of semiconductor device