JPH0590254A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0590254A
JPH0590254A JP24981091A JP24981091A JPH0590254A JP H0590254 A JPH0590254 A JP H0590254A JP 24981091 A JP24981091 A JP 24981091A JP 24981091 A JP24981091 A JP 24981091A JP H0590254 A JPH0590254 A JP H0590254A
Authority
JP
Japan
Prior art keywords
film
oxide film
thermal oxide
silicon substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24981091A
Other languages
Japanese (ja)
Inventor
Yoshitaka Tsunashima
祥隆 綱島
Masahiro Kiyotoshi
正弘 清利
Kikuo Yamabe
紀久夫 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24981091A priority Critical patent/JPH0590254A/en
Publication of JPH0590254A publication Critical patent/JPH0590254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To provide a method of manufacturing a semiconductor device, where thermal oxide films different in thickness can be formed on a semiconductor substrate or a semiconductor film without increasing manufacturing processes in number. CONSTITUTION:A first process where a nitriding preventive film 9 is formed on a silicon substrate 1 in a cell region A, a second process where the surface of a silicon substrate in a peripheral circuit region B is nitrided in an atmosphere of ammonia, a third process where the nitriding preventive film 9 is removed, and a fourth process where thermal oxide films 12a and 12 are formed on the silicon substrate in both the cell region A and the peripheral circuit region B are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、膜厚の異なる熱酸化膜
を形成する工程を有する半導体装置の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a step of forming thermal oxide films having different thicknesses.

【0002】[0002]

【従来の技術】半導体装置の製造において、信頼性や性
能の向上の目的のために、半導体基板や半導体膜の異な
る領域に厚さの異なる熱酸化膜を形成したい場合があ
る。例えば、DRAMの場合、情報を記憶するセル領域
のMOSトランジスタのゲ−ト酸化膜を、情報を処理す
る周辺回路のMOSトランジスタのそれより厚くした
い。何故なら、セル領域はDRAMを構成するMOSト
ランジスタで多く占められているので、信頼性の点か
ら、ゲ−ト酸化膜は厚いほうが良く、一方、周辺回路は
MOSトランジスタの数が多くないので、信頼性確保の
ためにゲ−ト酸化膜を厚くする必要がなく、むしろ性能
の点、即ち、処理速度の高速化のためにゲ−ト酸化膜は
薄いほうが良い。
2. Description of the Related Art In the manufacture of semiconductor devices, it is sometimes desired to form thermal oxide films having different thicknesses on different regions of a semiconductor substrate or semiconductor film for the purpose of improving reliability and performance. For example, in the case of DRAM, it is desired to make the gate oxide film of the MOS transistor in the cell region for storing information thicker than that of the MOS transistor in the peripheral circuit for processing information. This is because the cell region is mostly occupied by the MOS transistors that make up the DRAM, so it is better for the gate oxide film to be thicker from the viewpoint of reliability. On the other hand, the peripheral circuit does not have many MOS transistors. It is not necessary to make the gate oxide film thick to ensure reliability, but rather the gate oxide film is preferably thin in order to improve performance, that is, to increase the processing speed.

【0003】しかしながら、実際には、セル領域と周辺
回路とでゲ−ト酸化膜の膜厚を変えることはあまり行わ
れていない。即ち、ゲ−ト絶縁膜の膜厚をセル領域のM
OSトランジスタに合わせて信頼性を確保し、性能を犠
牲にする場合が多かった。何故なら、不純物濃度の差が
小さいチャネル領域に膜厚の異なるゲ−ト絶縁膜を同一
の熱酸化工程で形成するのが困難であるため、各膜厚毎
に熱酸化工程を行なってゲ−ト酸化膜を形成しなければ
ならず、製造工程数の増大を引き起こすからである。D
RAMの高集積化のために、今後、DRAMの製造工程
数は増加することが予想され、これに伴いコストも上昇
するので、工程数増加の抑制の観点から上記熱酸化工程
による工程数の増大は受け入れ難いことである。
However, in practice, the thickness of the gate oxide film is not so changed between the cell region and the peripheral circuit. That is, the thickness of the gate insulating film is set to M in the cell region.
In many cases, reliability was ensured according to the OS transistor, and performance was sacrificed. This is because it is difficult to form gate insulating films having different film thicknesses in the same thermal oxidation process in the channel regions having a small difference in impurity concentration. Therefore, the thermal oxidation process is performed for each film thickness. This is because the oxide film must be formed, which causes an increase in the number of manufacturing steps. D
Due to the higher integration of RAM, it is expected that the number of DRAM manufacturing steps will increase in the future, and the cost will increase accordingly. Therefore, from the viewpoint of suppressing the increase in the number of steps, the number of steps by the thermal oxidation step increases. Is unacceptable.

【0004】[0004]

【発明が解決しようとする課題】上述の如く、DRAM
のセル領域のゲ−ト酸化膜の膜厚と周辺回路のそれとは
異なるほうが望ましいが、プロセス上、セル領域のゲ−
ト酸化膜の膜厚に合わせてDRAMを形成していたの
で、処理速度等の性能が犠牲になるという問題があっ
た。
As described above, the DRAM
It is desirable that the thickness of the gate oxide film in the cell region and the thickness in the peripheral circuit are different from each other.
Since the DRAM is formed according to the thickness of the oxide film, there is a problem that performance such as processing speed is sacrificed.

【0005】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、製造工程数の増大を招
くこと無く、半導体基板上や半導体膜上に膜厚の異なる
熱酸化膜を形成できる工程を有する半導体装置の製造方
法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a thermal oxide film having a different film thickness on a semiconductor substrate or a semiconductor film without increasing the number of manufacturing steps. It is an object of the present invention to provide a method for manufacturing a semiconductor device, the method including the step of forming a semiconductor.

【0006】[0006]

【課題を解決するための手段】本発明の骨子は、熱酸化
膜の成膜速度を制御し、同一の熱酸化工程で膜厚の異な
る熱酸化膜を形成することにある。
The essence of the present invention is to control the deposition rate of a thermal oxide film to form thermal oxide films having different thicknesses in the same thermal oxidation process.

【0007】即ち、上記の目的を達成するために、本発
明の半導体装置の製造方法は、半導体基板の所望の表面
上を選択的に窒化する工程と、熱処理により前記半導体
基板上に膜厚の異なる熱酸化膜を形成する工程とを備え
ていることを特徴とする。
In other words, in order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention comprises a step of selectively nitriding a desired surface of a semiconductor substrate and a heat treatment for forming a film on the semiconductor substrate. And a step of forming different thermal oxide films.

【0008】また、本発明の他の半導体装置の製造方法
は、半導体基板表面又はその上の所望の領域に選択的に
イオンを注入する工程と、熱処理により前記半導体基板
上に膜厚の異なる熱酸化膜を形成する工程とを備えてい
ることを特徴とする。
Another method of manufacturing a semiconductor device according to the present invention comprises a step of selectively implanting ions on a surface of a semiconductor substrate or a desired region on the surface of the semiconductor substrate, and a heat treatment with different thicknesses on the semiconductor substrate. And a step of forming an oxide film.

【0009】[0009]

【作用】本発明の半導体装置の製造方法では、例えば、
窒化防止膜を設けることで半導体基板又は半導体膜の所
望の表面を窒化している。本発明者等は、窒化が施され
た場合、熱酸化の初期の段階ではほとんど熱酸化膜が形
成されないことを見出した。一方、窒化が施されていな
い場合には、熱酸化の開始から単調に熱酸化膜が形成さ
れる。したがって、窒化が施された部分と施されていな
い部分とを同時に熱酸化をすれば、窒化が施された部分
の熱酸化膜の膜厚の方が厚くなり、一回の熱酸化で異な
る膜厚の熱酸化膜を形成することができる。
In the method of manufacturing a semiconductor device of the present invention, for example,
By providing the nitriding prevention film, the desired surface of the semiconductor substrate or the semiconductor film is nitrided. The present inventors have found that when nitriding is performed, almost no thermal oxide film is formed in the initial stage of thermal oxidation. On the other hand, when nitriding is not performed, a thermal oxide film is monotonically formed from the start of thermal oxidation. Therefore, if the nitrided portion and the non-nitrided portion are subjected to thermal oxidation at the same time, the thermal oxide film in the nitrided portion becomes thicker, and a different film is obtained by one thermal oxidation. A thick thermal oxide film can be formed.

【0010】本発明の他の半導体装置の製造方法では、
例えば、イオン注入防止膜を設けることで半導体基板又
は半導体膜の所望の領域にイオンを注入している。イオ
ンが注入された部分には点欠陥が形成され、この点欠陥
の一部は熱処理の際に表面まで拡散し、イオンが注入さ
れた部分の酸化速度はイオンが注入されていない部分の
それより速くなる。したがって、イオンが注入された部
分と注入されていない部分とを同時に熱酸化すれば、イ
オンが注入された部分の熱酸化膜の膜厚の方が厚くな
り、一回の熱酸化で異なる膜厚の熱酸化膜を形成するこ
とができる。なお、本発明で、半導体基板とは、その表
面上に半導体膜が設けられたものも含んでいる。
According to another method of manufacturing a semiconductor device of the present invention,
For example, ions are implanted into a desired region of the semiconductor substrate or the semiconductor film by providing an ion implantation prevention film. Point defects are formed in the ion-implanted part, and some of these point defects diffuse to the surface during heat treatment, and the oxidation rate of the ion-implanted part is higher than that of the non-ion-implanted part. Get faster Therefore, if the ion-implanted portion and the non-implanted portion are thermally oxidized at the same time, the film thickness of the thermally-oxidized film at the ion-implanted portion becomes thicker, and the film thickness is different by one thermal oxidation. The thermal oxide film can be formed. In the present invention, the semiconductor substrate also includes a substrate having a semiconductor film provided on the surface thereof.

【0011】[0011]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1〜図7は本発明の一実施例に係るCMOS集積
回路の製造工程断面図である。
Embodiments will be described below with reference to the drawings. 1 to 7 are cross-sectional views of manufacturing steps of a CMOS integrated circuit according to an embodiment of the present invention.

【0012】先ず、図1に示す如く、比抵抗が10Ω・
cmで表面が(100)面のp型のシリコン基板1に、
pウェル2及びnウェル3を周知の方法を用いて形成
し、次いで素子形成領域(セル領域A,周辺回路領域
B)をシリコン酸化膜4で区分する。次いでセル領域A
のpウェル2に溝を開口し、トレンチキャパシタを形成
する。即ち、この溝の底部,側壁部にn- 層5,キャパ
シタ絶縁膜6を順次形成した後、この溝を導電性材料で
埋め、この導電性材料を電極形状にパタ−ニングしてキ
ャパシタ電極7を形成する。
First, as shown in FIG. 1, the specific resistance is 10Ω.
cm, and the surface is a (100) plane p-type silicon substrate 1,
The p well 2 and the n well 3 are formed by a known method, and then the element formation region (cell region A, peripheral circuit region B) is divided by the silicon oxide film 4. Then cell area A
A trench is formed in the p-well 2 to form a trench capacitor. That is, n − is formed on the bottom and side walls of this groove. After the layer 5 and the capacitor insulating film 6 are sequentially formed, the groove is filled with a conductive material, and the conductive material is patterned into an electrode shape to form a capacitor electrode 7.

【0013】次に図2に示す如く、シリコン基板1の露
出面に厚さ15nmの熱酸化膜8を形成する。次いで後
工程の窒化工程でセル領域Aのシリコン基板1の表面が
窒化されるのを防止するために、窒化防止膜として厚さ
50nmのシリコン窒化膜(Si3 4 )9を全面に形
成する。このシリコン窒化膜9は、例えば、原料ガスと
してジクロルシラン(SiH2 Cl2 )とアンモニア
(NH3 )とを用いたLPCVD法により形成できる。
次いでシリコン窒化膜9上にフォトレジスト10を塗布
した後、フォトリソグラフィ工程,フォトエッチング工
程によりフォトレジスト10を加工し、セル領域Aのみ
にフォトレジスト10を残す。
Next, as shown in FIG. 2, a thermal oxide film 8 having a thickness of 15 nm is formed on the exposed surface of the silicon substrate 1. Then, in order to prevent the surface of the silicon substrate 1 in the cell region A from being nitrided in the subsequent nitriding step, a silicon nitride film (Si 3 N 4 ) 9 having a thickness of 50 nm is formed on the entire surface as a nitriding prevention film. .. The silicon nitride film 9 can be formed, for example, by the LPCVD method using dichlorosilane (SiH 2 Cl 2 ) and ammonia (NH 3 ) as source gases.
Next, a photoresist 10 is applied on the silicon nitride film 9, and then the photoresist 10 is processed by a photolithography process and a photoetching process to leave the photoresist 10 only in the cell region A.

【0014】次に図3に示す如く、残ったフォトレジス
ト10をマスクとし、加熱されたリン酸溶液を用いたウ
エットエッチングにより、周辺回路領域Bのシリコン窒
化膜9を選択的にエッチング除去する。次いでフォトレ
ジスト10を除去した後、例えば、900℃,1気圧の
アンモニア雰囲気にシリコン基板1を1分間晒すことに
より、熱酸化膜8を介して周辺回路領域Bのシリコン基
板1の表面11を選択的に窒化する。
Next, as shown in FIG. 3, the remaining photoresist 10 is used as a mask to selectively remove the silicon nitride film 9 in the peripheral circuit region B by wet etching using a heated phosphoric acid solution. Next, after removing the photoresist 10, the surface 11 of the silicon substrate 1 in the peripheral circuit region B is selected via the thermal oxide film 8 by exposing the silicon substrate 1 to an ammonia atmosphere at 900 ° C. and 1 atm for 1 minute, for example. Nitriding.

【0015】次に図4に示す如く、セル領域Aのシリコ
ン窒化膜9を加熱されたリン酸溶液を用いてエッチング
除去し、引き続き、希釈弗酸溶液を用いて熱酸化膜8を
エッチング除去する。
Next, as shown in FIG. 4, the silicon nitride film 9 in the cell region A is removed by etching with a heated phosphoric acid solution, and then the thermal oxide film 8 is removed by etching with a diluted hydrofluoric acid solution. .

【0016】次に図5に示す如く、950℃,水素と酸
素との流量比が1:10のガス雰囲気中で10分間の酸
化を行ない、熱酸化膜12a,12bを形成する。この
とき、セル領域A上の熱酸化膜12aの膜厚は15nm
で、周辺回路領域B上の熱酸化膜12bの膜厚は8nm
であった。即ち、一回の熱酸化で異なる領域上に膜厚の
異なる熱酸化膜を形成できた。
Next, as shown in FIG. 5, oxidation is performed for 10 minutes at 950 ° C. in a gas atmosphere having a flow ratio of hydrogen and oxygen of 1:10 to form thermal oxide films 12a and 12b. At this time, the film thickness of the thermal oxide film 12a on the cell region A is 15 nm.
Then, the film thickness of the thermal oxide film 12b on the peripheral circuit region B is 8 nm.
Met. That is, thermal oxide films having different film thicknesses could be formed on different regions by one thermal oxidation.

【0017】この工程で膜厚の異なる熱酸化膜が形成さ
れたのは、酸化が始まるまでの時間がシリコン窒化膜の
方がシリコン膜より長いからである。したがって、基板
表面11が窒化されシリコン窒化膜が形成された周辺回
路領域B上では、熱酸化膜12b膜の成膜開始時間が遅
れるため、セル領域A及び周辺回路領域Bのシリコン基
板1の表面に対して同じ時間だけ酸化を行なえば、周辺
回路領域Bにおける熱酸化膜12b膜の膜厚は、セル領
域A上の熱酸化膜12aのそれより小さくなる。
The thermal oxide films having different thicknesses are formed in this step because the time until the oxidation starts is longer in the silicon nitride film than in the silicon film. Therefore, since the film formation start time of the thermal oxide film 12b is delayed on the peripheral circuit region B where the substrate surface 11 is nitrided and the silicon nitride film is formed, the surface of the silicon substrate 1 in the cell region A and the peripheral circuit region B is delayed. On the other hand, if the oxidation is performed for the same time, the film thickness of the thermal oxide film 12b in the peripheral circuit region B becomes smaller than that of the thermal oxide film 12a in the cell region A.

【0018】図8はシリコン基板表面の窒化の有無によ
る熱酸化膜の成膜過程の違いを示す特性図である。図8
(a)は表面が窒化されていないシリコン基板をウエッ
ト酸化した場合の酸化時間と酸化膜厚との関係を示す特
性図であり、H2 /O2 流量比が0.5,0.22,
0.11の3つの場合について示してある。図8(b)
はシリコン基板の表面に厚さ14nmの熱酸化膜を形成
した後、1000℃,1分間のアンモニア雰囲気で熱処
理して熱酸化膜を通してシリコン基板表面を窒化し、そ
の後酸化を待った場合の酸化時間と酸化膜厚との関係を
示す特性図であり、H2 /O2 流量比が0.5,0.2
2,0.11の3つの場合について示してある。
FIG. 8 is a characteristic diagram showing the difference in the process of forming the thermal oxide film depending on the presence or absence of nitriding on the surface of the silicon substrate. Figure 8
(A) is a characteristic diagram showing the relationship between the oxidation time and the oxide film thickness when wet-oxidizing a silicon substrate whose surface is not nitrided, and the H 2 / O 2 flow rate ratio is 0.5, 0.22,
It is shown for three cases of 0.11. Figure 8 (b)
Forms a 14 nm-thick thermal oxide film on the surface of a silicon substrate, heat-treats it in an ammonia atmosphere at 1000 ° C. for 1 minute to nitrid the silicon substrate surface through the thermal oxide film, and then waits for oxidation. It is a characteristic view showing the relationship with the oxide film thickness, H 2 / O 2 flow ratio of 0.5,0.2
Two cases of 2 and 0.11 are shown.

【0019】図8(a)からシリコン基板の表面が窒化
されていない場合には、H2 /O2流量比にかかわらず
酸化膜厚は酸化時間に比例し、単調に増加していること
が分かる。一方、図8(b)からシリコン基板の表面を
窒化した場合には、酸化開始時間から一定期間、例え
ば、H2 /O2 流量比が0.11の場合には、最初の2
6.5分間はほとんど酸化が進まず、酸化膜厚がほぼ一
定となり、その後、シリコン基板の表面を窒化しない場
合と同様に酸化時間に比例して酸化膜厚が大きくなって
いることが分かる。以上の工程の後、従来と同様なCM
OS集積回路の形成工程に移る。
From FIG. 8A, when the surface of the silicon substrate is not nitrided, the oxide film thickness is proportional to the oxidation time and monotonically increases regardless of the H 2 / O 2 flow rate ratio. I understand. On the other hand, when nitriding the surface of the silicon substrate from FIG. 8 (b), the first two are given for a certain period from the oxidation start time, for example, when the H 2 / O 2 flow rate ratio is 0.11.
It can be seen that the oxidation hardly progresses for 6.5 minutes and the oxide film thickness becomes almost constant, and thereafter, the oxide film thickness increases in proportion to the oxidation time as in the case where the surface of the silicon substrate is not nitrided. After the above steps, the same CM as before
The process of forming the OS integrated circuit is started.

【0020】即ち、図6に示す如く、シラン(Si
4 )を原料ガスに用いたLPCVD法により、厚さ4
00nmの多結晶シリコン膜13を全面に堆積した後、
この多結晶シリコン膜13にBF2 イオンを加速電圧4
0keV,ド−ズ量1×1015nm-2の条件で注入す
る。次いでSOG膜(塗布型シリコン酸化膜)14を多
結晶シリコン膜13上に堆積した後、このSOG膜14
上にフォトレジスト(不図示)を塗布し、引き続き、フ
ォトリソグラフィ工程,フォトエッチング工程を行な
い、pチャネル上となる領域のみにフォトレジストを残
す。この後、残ったフォトレジストをマスクに用い、反
応性イオンエッチング(RIE)によりSOG膜14を
エッチングする。この結果、pウェル2上の多結晶シリ
コン膜13が露出する。次いでシリコン基板1をオキシ
塩化リン(POCl3 )と酸素とを含む温度が850℃
のガス雰囲気中で熱処理することにより、露出した多結
晶シリコン膜13中のリン濃度をボロンのそれより高く
してn型の多結晶シリコン膜13を形成すると共に、S
OG膜14の下部の多結晶シリコン膜13中のボロンを
活性化してn型の多結晶シリコン膜13を形成する。
That is, as shown in FIG. 6, silane (Si
The H 4) a LPCVD method using a raw material gas, thickness 4
After depositing a polycrystalline silicon film 13 of 00 nm on the entire surface,
BF 2 ions are applied to the polycrystalline silicon film 13 at an accelerating voltage of 4
Implantation is performed under the conditions of 0 keV and a dose amount of 1 × 10 15 nm -2 . Next, after depositing an SOG film (coating type silicon oxide film) 14 on the polycrystalline silicon film 13, the SOG film 14 is deposited.
A photoresist (not shown) is applied on top, and then a photolithography process and a photoetching process are performed to leave the photoresist only in the region on the p channel. Then, using the remaining photoresist as a mask, the SOG film 14 is etched by reactive ion etching (RIE). As a result, the polycrystalline silicon film 13 on the p well 2 is exposed. Next, the temperature of the silicon substrate 1 containing phosphorus oxychloride (POCl 3 ) and oxygen is 850 ° C.
The phosphorus concentration in the exposed polycrystalline silicon film 13 is made higher than that of boron to form the n-type polycrystalline silicon film 13 by heat treatment in the gas atmosphere of S.
Boron in the polycrystalline silicon film 13 below the OG film 14 is activated to form the n-type polycrystalline silicon film 13.

【0021】次に図7に示す如く、弗酸溶液を用いてS
OG膜14を除去した後、多結晶シリコン膜13をゲ−
ト電極状にパタ−ニングする。次いでn型ソ−ス,ドレ
イン16及びp型ソ−ス,ドレイン17を形成した後、
全面に絶縁膜15を堆積する。次いでソ−ス・ドレイン
領域上の絶縁膜15にコンタクトホ−ルを開孔した後、
引き出し電極18を形成する。
Next, as shown in FIG. 7, S using a hydrofluoric acid solution.
After removing the OG film 14, the polycrystalline silicon film 13 is gated.
The electrode is patterned like an electrode. Next, after forming the n-type source and drain 16 and the p-type source and drain 17,
The insulating film 15 is deposited on the entire surface. Then, after opening a contact hole in the insulating film 15 on the source / drain region,
The extraction electrode 18 is formed.

【0022】以上述べたように本実施例によれば、シリ
コン基板1の表面の窒化の有無による熱酸化膜の成膜開
始時間の違いを利用することにより、一回の熱酸化工程
でセル領域A,周辺回路B領域B上にそれぞれ膜厚の厚
い熱酸化膜12a,膜厚の薄い熱酸化膜12b、即ち、
各MOSトランジスタに適した膜厚のゲ−ト絶縁膜を形
成でき、もって製造工程数の増大を招くこと無く、高信
頼性,高性能のCMOS集積回路を形成できる。
As described above, according to this embodiment, by utilizing the difference in the film formation start time of the thermal oxide film depending on the presence or absence of nitriding on the surface of the silicon substrate 1, the cell region can be formed by one thermal oxidation process. A, the thermal oxide film 12a having a thick film thickness and the thermal oxide film 12b having a thin film thickness on the peripheral circuit B region B, that is,
A gate insulating film having a film thickness suitable for each MOS transistor can be formed, so that a highly reliable and high performance CMOS integrated circuit can be formed without increasing the number of manufacturing steps.

【0023】なお、本実施例では、アンモニアを用いた
熱窒化反応を利用してシリコン基板1の表面11を窒化
したが、アンモニア以外の窒化剤を用いても良い。更
に、熱窒化反応の代わりに他の方法でシリコン基板1を
窒化しても良い。例えば、プラズマにより活性種を生成
し、これを窒化剤として用いるプラズマ窒化法によりシ
リコン基板1を窒化しても良い。また、本実施例では窒
化防止膜としてシリコン窒化膜(Si3 4 )9を用い
たが、他の膜、例えば、多結晶シリコンからなる膜を用
いても良い。図9,図10は本発明の他の実施例に係る
CMOS集積回路の製造工程断面図である。
In this embodiment, the surface 11 of the silicon substrate 1 is nitrided by utilizing the thermal nitriding reaction using ammonia, but a nitriding agent other than ammonia may be used. Further, the silicon substrate 1 may be nitrided by another method instead of the thermal nitriding reaction. For example, the silicon substrate 1 may be nitrided by a plasma nitriding method in which activated species are generated by plasma and this is used as a nitriding agent. Further, although the silicon nitride film (Si 3 N 4 ) 9 is used as the nitriding prevention film in this embodiment, another film, for example, a film made of polycrystalline silicon may be used. 9 and 10 are sectional views of a manufacturing process of a CMOS integrated circuit according to another embodiment of the present invention.

【0024】本実施例の製造方法が先の実施例のそれと
異なる点は、シリコン基板を窒化する代わりに、シリコ
ン基板にイオン注入することで酸化開始時間を制御した
ことにある。
The manufacturing method of this embodiment is different from that of the previous embodiment in that the oxidation start time is controlled by implanting ions into the silicon substrate instead of nitriding the silicon substrate.

【0025】即ち、図9に示す如く、先の実施例と同様
にトレンチキャパシタを形成した後(図1)、全面にフ
ォトレジスト19を塗布し、これをパタ−ニングして周
辺回路領域Bのみに残す。次いでフォトレジスト19を
マスクにして、加速電圧40keV,ド−ズ量1×10
16の条件で、セル領域Aの表面が露出したシリコン基板
1にSiイオン20を注入する。この結果、セル領域A
のシリコン基板1中に多量の格子間原子や空格子点等の
点欠陥22が形成される。
That is, as shown in FIG. 9, after forming a trench capacitor in the same manner as in the previous embodiment (FIG. 1), a photoresist 19 is applied on the entire surface and patterned to form only the peripheral circuit region B. Leave on. Then, using the photoresist 19 as a mask, an acceleration voltage of 40 keV and a dose amount of 1 × 10
Under the conditions of 16 , Si ions 20 are implanted into the silicon substrate 1 where the surface of the cell region A is exposed. As a result, the cell area A
A large number of interstitial atoms and point defects 22 such as vacancies are formed in the silicon substrate 1.

【0026】次に図10に示す如く、フォトレジスト1
9を除去した後、950℃,水素と酸素との流量比が
1:10の条件でシリコン基板1を5分間熱酸化するこ
とにより、セル領域A,周辺回路領域Bのシリコン基板
1上にそれぞれ厚さ15nm,10nmの熱酸化膜21
a,21bを形成する。セル領域Aの熱酸化膜21aの
膜厚が周辺回路領域Bの熱酸化膜21bのそれより厚い
のは、上記熱酸化の工程でセル領域Aのシリコン基板1
中の点欠陥22が基板表面まで拡散して酸化速度が大き
くなるからである。この後、先の実施例と同様の工程に
より、ゲ−ト電極,ソ−ス・ドレイン拡散領域,引き出
し電極を形成してCMOS集積回路が完成する。
Next, as shown in FIG. 10, photoresist 1
After removing 9, the silicon substrate 1 is thermally oxidized for 5 minutes at 950 ° C. under the condition that the flow rate ratio of hydrogen and oxygen is 1:10. Thermal oxide film 21 having a thickness of 15 nm and 10 nm
a and 21b are formed. The thermal oxide film 21a in the cell region A is thicker than the thermal oxide film 21b in the peripheral circuit region B because the silicon substrate 1 in the cell region A is formed in the thermal oxidation process.
This is because the point defect 22 therein diffuses to the substrate surface and the oxidation rate increases. Thereafter, the gate electrode, the source / drain diffused region, and the lead electrode are formed by the same steps as in the previous embodiment to complete the CMOS integrated circuit.

【0027】かくして本実施例では点欠陥22の有無で
酸化開始時間を制御することで、膜厚の異なる熱酸化膜
21a,21bを形成できるので先の実施例と同様な効
果が得られる。
Thus, in this embodiment, by controlling the oxidation start time depending on the presence or absence of the point defect 22, the thermal oxide films 21a and 21b having different film thicknesses can be formed, and the same effect as the previous embodiment can be obtained.

【0028】なお、本発明は上述した実施例に限定され
るものではない。例えば、選択的な窒化やイオン注入
は、別に設けたマスクにより、窒素,シリコン等のイオ
ンを注入して行なっても良い。また、上記実施例ではシ
リコン基板の場合について説明したが、他の半導体基板
でも同様にして異なる領域に膜厚の異なる熱酸化膜を形
成できる。更にまた、本発明はCMOS集積回路以外の
半導体装置にも適用できる。更に、半導体基板上に半導
体膜が設けられた半導体基板の場合でも同様に膜厚の異
なる熱酸化膜を同一の熱酸化工程で形成できる。その
他、本発明の要旨を逸脱しない範囲で、種々変形して実
施できる。
The present invention is not limited to the above embodiment. For example, selective nitriding or ion implantation may be performed by implanting ions of nitrogen, silicon or the like with a mask provided separately. Further, although the case of the silicon substrate has been described in the above embodiment, thermal oxide films having different film thicknesses can be similarly formed in different regions in other semiconductor substrates. Furthermore, the present invention can be applied to semiconductor devices other than CMOS integrated circuits. Further, even in the case of a semiconductor substrate in which a semiconductor film is provided on the semiconductor substrate, thermal oxide films having different film thicknesses can be similarly formed in the same thermal oxidation process. Besides, various modifications can be made without departing from the scope of the present invention.

【0029】[0029]

【発明の効果】以上詳述したように本発明によれば、熱
酸化膜の成膜開始時間を制御することで、膜厚の異なる
熱酸化膜を同一の熱酸化工程で形成できる。したがっ
て、製造工程数の増大を招くこと無く、各素子に適切な
膜厚の熱酸化膜を形成できる。
As described above in detail, according to the present invention, by controlling the film formation start time of the thermal oxide film, thermal oxide films having different film thicknesses can be formed in the same thermal oxidation process. Therefore, a thermal oxide film having an appropriate film thickness can be formed on each element without increasing the number of manufacturing steps.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るCMOS集積回路の製
造工程断面図。
FIG. 1 is a sectional view of a manufacturing process of a CMOS integrated circuit according to an embodiment of the present invention.

【図2】本発明の一実施例に係るCMOS集積回路の製
造工程断面図。
FIG. 2 is a sectional view of a manufacturing process of a CMOS integrated circuit according to an embodiment of the present invention.

【図3】本発明の一実施例に係るCMOS集積回路の製
造工程断面図。
FIG. 3 is a sectional view of a manufacturing process of a CMOS integrated circuit according to an embodiment of the present invention.

【図4】本発明の一実施例に係るCMOS集積回路の製
造工程断面図。
FIG. 4 is a sectional view of a manufacturing process of a CMOS integrated circuit according to an embodiment of the present invention.

【図5】本発明の一実施例に係るCMOS集積回路の製
造工程断面図。
FIG. 5 is a sectional view of a manufacturing process of a CMOS integrated circuit according to an embodiment of the present invention.

【図6】本発明の一実施例に係るCMOS集積回路の製
造工程断面図。
FIG. 6 is a sectional view of a manufacturing process of a CMOS integrated circuit according to an embodiment of the present invention.

【図7】本発明の一実施例に係るCMOS集積回路の製
造工程断面図。
FIG. 7 is a sectional view of a manufacturing process of a CMOS integrated circuit according to an embodiment of the present invention.

【図8】酸化時間と酸化膜との関係を示す特性図。FIG. 8 is a characteristic diagram showing a relationship between an oxidation time and an oxide film.

【図9】本発明の他の実施例に係るCMOS集積回路の
製造工程断面図。
FIG. 9 is a sectional view of a manufacturing process of a CMOS integrated circuit according to another embodiment of the present invention.

【図10】本発明の他の実施例に係るCMOS集積回路
の製造工程断面図。
FIG. 10 is a sectional view of a manufacturing process of a CMOS integrated circuit according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…シリコン基板1、2…pウェル、3…nウェル、4
…シリコン酸化膜、5…n- 層、6…キャパシタ絶縁
膜、7…キャパシタ電極、8…熱酸化膜、9…シリコン
窒化膜、10…フォトレジスト、11…窒化表面、12
a,12b…熱酸化膜、13…多結晶シリコン膜、14
…SOG膜、15…絶縁膜、16,17…ソ−ス・ドレ
イン領域、18…引き出し電極、19…フォトレジス
ト、20…Siイオン、21a,21b…熱酸化膜、2
2…点欠陥。
1 ... Silicon substrate 1, 2 ... P well, 3 ... N well, 4
... silicon oxide film, 5 ... n - Layer, 6 ... Capacitor insulating film, 7 ... Capacitor electrode, 8 ... Thermal oxide film, 9 ... Silicon nitride film, 10 ... Photoresist, 11 ... Nitrided surface, 12
a, 12b ... Thermal oxide film, 13 ... Polycrystalline silicon film, 14
... SOG film, 15 ... Insulating film, 16, 17 ... Source / drain region, 18 ... Extraction electrode, 19 ... Photoresist, 20 ... Si ion, 21a, 21b ... Thermal oxide film, 2
2 ... Point defect.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の所望の表面上を選択的に窒化
する工程と、 熱処理により前記半導体基板上に膜厚の異なる熱酸化膜
を形成する工程とを有することを特徴とする半導体装置
の製造方法。
1. A semiconductor device comprising: a step of selectively nitriding a desired surface of a semiconductor substrate; and a step of forming a thermal oxide film having a different thickness on the semiconductor substrate by heat treatment. Production method.
【請求項2】半導体基板表面又はその上の所望の領域に
選択的にイオンを注入する工程と、 熱処理により前記半導体基板上に膜厚の異なる熱酸化膜
を形成する工程とを有することを特徴とする半導体装置
の製造方法。
2. A step of selectively implanting ions on a surface of a semiconductor substrate or a desired region on the surface, and a step of forming a thermal oxide film having a different thickness on the semiconductor substrate by heat treatment. And a method for manufacturing a semiconductor device.
JP24981091A 1991-09-27 1991-09-27 Manufacture of semiconductor device Pending JPH0590254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24981091A JPH0590254A (en) 1991-09-27 1991-09-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24981091A JPH0590254A (en) 1991-09-27 1991-09-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0590254A true JPH0590254A (en) 1993-04-09

Family

ID=17198546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24981091A Pending JPH0590254A (en) 1991-09-27 1991-09-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0590254A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121450A (en) * 1997-10-17 1999-04-30 Samsung Electron Co Ltd Formation of dual oxide film
US6294481B1 (en) 1998-01-19 2001-09-25 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
JP2010268014A (en) * 1997-07-11 2010-11-25 Applied Materials Inc Method for forming oxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268014A (en) * 1997-07-11 2010-11-25 Applied Materials Inc Method for forming oxide
JP2014209640A (en) * 1997-07-11 2014-11-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for forming oxide
JPH11121450A (en) * 1997-10-17 1999-04-30 Samsung Electron Co Ltd Formation of dual oxide film
US6294481B1 (en) 1998-01-19 2001-09-25 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US6383856B2 (en) 1998-01-19 2002-05-07 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US8043916B2 (en) Method of fabricating semiconductor device having multiple gate insulating layer
IE57557B1 (en) Method of manufacturing a semiconductor device,in which a silicon slice is locally provided with field oxide with a channel stopper
US5185279A (en) Method of manufacturing insulated-gate type field effect transistor
WO2002037561A2 (en) Dual gate oxide process for uniform oxide thickness
JPH09232445A (en) Semiconductor device and its manufacture
JPH0794503A (en) Oxidizing method for silicon substrate
US5290717A (en) Method of manufacturing semiconductor devices having a resist patern coincident with gate electrode
JPH0324727A (en) Manufacture of semiconductor device
JPH0590254A (en) Manufacture of semiconductor device
KR100200184B1 (en) Manufacturing method of semiconductor device
JPS6261345A (en) Manufacture of semiconductor device
JP2000188291A (en) Manufacture of semiconductor device
JPH08186082A (en) Manufacture of semiconductor device
US5953632A (en) Method for manufacturing semiconductor device comprising a silicide film
JP3376305B2 (en) Method for manufacturing semiconductor device
JPH03297147A (en) Manufacture of semiconductor device
JP3371600B2 (en) Method for manufacturing MIS transistor
JP3050190B2 (en) Method for manufacturing semiconductor device
JPH027558A (en) Semiconductor device and manufacture thereof
JPH11176959A (en) Manufacture of semiconductor device
JPH0644559B2 (en) Method for manufacturing semiconductor integrated circuit
JPS62131538A (en) Manufacture of semiconductor device
JPS63261879A (en) Manufacture of semiconductor device
JP4541582B2 (en) Manufacturing method of semiconductor device
JPH025411A (en) Manufacture of semiconductor device