JPS6254959A - Manufacture of mis semiconductor device - Google Patents

Manufacture of mis semiconductor device

Info

Publication number
JPS6254959A
JPS6254959A JP19380685A JP19380685A JPS6254959A JP S6254959 A JPS6254959 A JP S6254959A JP 19380685 A JP19380685 A JP 19380685A JP 19380685 A JP19380685 A JP 19380685A JP S6254959 A JPS6254959 A JP S6254959A
Authority
JP
Japan
Prior art keywords
gate electrode
regions
insulating film
region
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19380685A
Other languages
Japanese (ja)
Inventor
Katsuhiko Hieda
克彦 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19380685A priority Critical patent/JPS6254959A/en
Publication of JPS6254959A publication Critical patent/JPS6254959A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a current driving capacity from decreasing by forming the third impurity diffused region of lower density than the second impurity diffused region in higher density than the first impurity diffused region in source and drain regions with a gate electrode and the sidewall coating portion of the first insulating film layer as masks. CONSTITUTION:After a field oxide film 2 is formed on a P-type silicon substrate 1, a gate oxide film 3 is formed on an insular substrate 1 region surface to form a gate electrode 4. With the film 2 and the electrode 4 as masks phosphorus ions are implanted to form impurity diffused layer regions 51, 52. With multiplayer films 6, 7 and the electrode 4 as masks arsenic ions are implanted to be activated to form higher density N<+> type diffused regions 81, 82 together with low density N<-> type diffused regions 51, 52 on the substrate 1. The film 7 is removed, the film layer 6 is exposed, As or P ions are implanted to form lower density impurity diffused region than the regions 81, 82 in higher density than the regions 51, 52, then activated to form N<+> type diffused regions 91, 92. Thus, it can prevent a current driving capacity from decreasing upon increasing of a parasitic resistance.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、MIS型半導体装置の製造方法に関し、特に
ドレイン領域の構造を改良したMIS型半導体装置の製
造方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing an MIS type semiconductor device, and more particularly to a method for manufacturing an MIS type semiconductor device in which the structure of a drain region is improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近、MIS型半導体装置(例えばMO8型半導体集積
回路)の高集積化が進行し、そのトランジスタがより微
細化されるに伴ってドレイン領域近傍の高電界を緩和し
、耐圧を向上するために、ドレイン値域を低濃度及び高
濃度の不純物拡散領域の二重構造とした、いわゆるLD
D(LihtDoped Drain )構造が開発、
実用化されている。
Recently, as MIS type semiconductor devices (for example, MO8 type semiconductor integrated circuits) have become highly integrated and their transistors have become smaller, in order to alleviate the high electric field near the drain region and improve the breakdown voltage, A so-called LD whose drain range has a double structure of low concentration and high concentration impurity diffusion regions.
D (Light Doped Drain) structure was developed,
It has been put into practical use.

しかしながら、LDD構造の低濃度不純物拡散領域はド
レイン電界を緩和することによ勺ホットキャリアの発生
を抑制する反面、ホットキャリアによってゲート絶縁膜
等の絶縁膜中に生成された電界の影響を受けて、該低濃
度不純物拡散領域の表面が空乏化し易くなる。その結果
、LDD構造のトランジスタは低濃度不純物拡散領域よ
り寄生抵抗力1増加し電流駆動能力が低下するという特
有の劣化現象を生じる。LDD構造において、ドレイン
電界緩和効果は低濃度不純物拡散領域の濃度が低い程大
きいが、上述した特有の劣化現象も濃度が低くなる程大
きくなり、相反する要求にょシ低a度不純物拡散領域の
濃度選択範囲は小さくなると旨う問題があった。
However, while the low concentration impurity diffusion region of the LDD structure suppresses the generation of hot carriers by relaxing the drain electric field, it is affected by the electric field generated by the hot carriers in the gate insulation film and other insulation films. , the surface of the low concentration impurity diffusion region becomes easily depleted. As a result, a peculiar deterioration phenomenon occurs in the LDD structure transistor in that the parasitic resistance increases by 1 compared to the low concentration impurity diffusion region, and the current driving ability decreases. In the LDD structure, the drain electric field relaxation effect increases as the concentration of the low-a-degree impurity diffusion region decreases, but the above-mentioned specific deterioration phenomenon also increases as the concentration decreases, resulting in contradictory requirements. There was a problem that the selection range became smaller.

〔発明の目的〕[Purpose of the invention]

本発明は、LDDQ造の低濃度不純物拡散領域によるド
レイン電界緩和効果を維持しつつ、該拡散領域による寄
生抵抗増加に伴う電流駆動能力の低下を防止した高性能
で高信頼性のMIS型半導体装置を提供しようとするも
のである。
The present invention provides a high-performance and highly reliable MIS type semiconductor device that maintains the drain electric field relaxation effect of a low-concentration impurity diffusion region of LDDQ structure and prevents a decrease in current drive capability due to an increase in parasitic resistance due to the diffusion region. This is what we are trying to provide.

〔発明の概要〕[Summary of the invention]

本発明は、第1導電型の半導体基板と、この基板表面に
互いに電気的に分離して設けられた第2導電型のソース
、ドレイン領域と、これら領域間のチャンネル領域を含
む基板表面に絶縁膜を介して設けられたゲート電極とを
具備したMI S型半導体装置の製造方法であって、ゲ
ート電極を形成した後、前記ゲート電極をマスクとして
、前記ソース、ドレイン領域に低濃度の第1の不純物拡
散層領域を形成し、第1の絶縁膜層と第2の絶縁膜層を
堆積した後、異方性エッチングを行なう事により、前記
ゲート電極の側壁部に前記第1の絶縁膜層、第2の絶縁
膜層を残置し、前記ゲート電極側壁部の第1の絶縁膜層
と第2の絶縁膜層及び前記ゲート電極をマスクとして、
前記ソース、ドレイン領域に、第1の不純物拡散領域よ
フ高濃度の第2の不純物拡散領域を形成し、前記第2の
絶縁膜層を除去した後、前記ゲート電極と前記第1の絶
縁膜層の側壁被着部をマスクとして、前記ソース、ドレ
イン領域に、前記第1の不純物拡散領域より高濃度で、
前記第2の不純物拡散領域より低濃度の第3の不純物拡
散領域を形成することを特徴とするものである〇 〔発明の効果〕 かかる本発明によれば、I、DD槽構造低濃度不純物拡
散領域によるドレイン電界緩勅を維持しつつ、被拡散領
域による寄生抵抗増加に伴う電流駆動能力の低下を防上
した高性能で高信頼性のMIS型半導体装置を得ること
ができる。
The present invention includes a semiconductor substrate of a first conductivity type, a source and drain region of a second conductivity type provided electrically isolated from each other on the surface of the substrate, and an insulated surface of the substrate including a channel region between these regions. A method for manufacturing an MI S type semiconductor device having a gate electrode provided through a film, wherein after forming the gate electrode, using the gate electrode as a mask, a low concentration first layer is applied to the source and drain regions. After forming an impurity diffusion layer region and depositing a first insulating film layer and a second insulating film layer, anisotropic etching is performed to form the first insulating film layer on the side wall portion of the gate electrode. , leaving a second insulating film layer and using the first insulating film layer and second insulating film layer on the side wall portion of the gate electrode and the gate electrode as a mask,
A second impurity diffusion region having a higher concentration than the first impurity diffusion region is formed in the source and drain regions, and after removing the second insulating film layer, the gate electrode and the first insulating film are removed. Using the sidewall adhering portion of the layer as a mask, the source and drain regions are doped at a higher concentration than the first impurity diffusion region,
A third impurity diffusion region having a lower concentration than the second impurity diffusion region is formed. [Effects of the Invention] According to the present invention, the I, DD tank structure low concentration impurity diffusion It is possible to obtain a high-performance and highly reliable MIS type semiconductor device that prevents a decrease in current drive capability due to an increase in parasitic resistance due to the diffused region while maintaining drain electric field relaxation due to the region.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をLDD構造を有するnチャンネルMOS
トランジスタに適用した例について第1図の製造方法を
併記して説明する。
Hereinafter, the present invention will be described as an n-channel MOS having an LDD structure.
An example of application to a transistor will be described with reference to the manufacturing method shown in FIG.

まず、P型シリコン基板IK選択酸化法にょシフイール
ド酸化膜2を形成した後、熱酸化処理を施して該フィー
ルド酸化膜2で分離された島状の基板1領域表面に厚さ
250 Aのゲート酸化膜3を形成した。つづいて、全
面に厚さ4000Aの多結晶シリコン膜を堆積し、PO
C/8の雰囲気中でリン拡散を行なって該多結晶シリコ
ン膜にリンをドープし低抵抗化させた後、フォトエッチ
ング技術によりバターニングしてゲート電極4を形成す
る。
First, a field oxide film 2 is formed using the IK selective oxidation method on a P-type silicon substrate, and then a thermal oxidation treatment is performed to form a gate oxide film with a thickness of 250 A on the surface of the island-shaped substrate 1 area separated by the field oxide film 2. Film 3 was formed. Next, a polycrystalline silicon film with a thickness of 4000A was deposited on the entire surface, and the PO
After doping the polycrystalline silicon film with phosphorus to lower its resistance by performing phosphorus diffusion in a C/8 atmosphere, the gate electrode 4 is formed by patterning using a photo-etching technique.

(第1図(a)図示) 次いで、フィールド酸化膜2及びグー電極4をマスクと
して例えばリンを加速電圧40 Keyl ドーK f
fk2 X 10”cm−”の菌性でイオン注入し第1
の不純物拡散層領域58,5□を形成する。(第1図(
b))次に、第1の絶縁膜として、例えばOVD法でシ
リコン窒化膜6、箇2の絶縁膜として、例えばOVD法
でシリコン酸化膜7を順次堆積する。その後、例えば反
応性イオ/エッチ/グ法を用いて異方性エッチングを行
ない、ゲート電極の側壁に第1の絶縁膜6、第2の絶縁
膜7の多層膜を残置する。さらにこの多層膜6,7及び
ゲートに極4をマスクとして例えば砒素を加速電圧50
KeV 、 ドーズ量5 X 10”cm−”の条件で
イオン注入を行なう。
(Illustrated in FIG. 1(a)) Next, using the field oxide film 2 and the goo electrode 4 as a mask, for example, phosphorus is accelerated at a voltage of 40 K f
Ion implantation with fk2 x 10"cm-"
Impurity diffusion layer regions 58, 5□ are formed. (Figure 1 (
b)) Next, as the first insulating film, a silicon nitride film 6 is deposited, for example, by the OVD method, and as the second insulating film, a silicon oxide film 7, for example, is deposited in sequence by the OVD method. Thereafter, anisotropic etching is performed using, for example, a reactive ion/etch/etching method to leave a multilayer film of the first insulating film 6 and the second insulating film 7 on the side walls of the gate electrode. Further, using the pole 4 as a mask, arsenic is applied to the multilayer films 6, 7 and the gate at an accelerating voltage of 50.
Ion implantation is performed under the conditions of KeV and a dose of 5 x 10"cm-".

この後活性化して基板1の表面に低濃度のn−拡散領域
(第1の拡散領域)5..5□を形成すると共に前記n
−型拡散領域51.52よQ高濃度のn4型拡散領域(
第2の拡散領域)81.82を形成する。(第1図(C
)) 次に、ゲートTI!、極側壁の絶縁膜層6,7のうち、
第2の絶縁膜7を例えばNH,F液により除去し、フレ
ーム状の絶縁膜層6を露出する。この後ゲート電極とゲ
ート電極の側壁部に付着した@2の絶縁膜6をマスクと
してフレーム底部を越える飛程でn型不純物、例えばA
s、又はPをイオン注入して第1の不純物拡散領域5.
 、52より高P度でかつ第2の不純物拡散領域8. 
、8.より低濃度の第3の不純物拡散領域を形成した後
、活性化してn++拡散領域(第3の拡散領域)9□、
92を形成する。
Thereafter, it is activated and a low concentration n-diffusion region (first diffusion region) is formed on the surface of the substrate 15. .. 5 □ and said n
− type diffusion region 51.52 and Q high concentration n4 type diffusion region (
second diffusion regions) 81 and 82 are formed. (Figure 1 (C
)) Next, Gate TI! , among the insulating film layers 6 and 7 on the pole side walls,
The second insulating film 7 is removed using, for example, NH, F solution to expose the frame-shaped insulating film layer 6. After that, using the @2 insulating film 6 attached to the gate electrode and the side walls of the gate electrode as a mask, an n-type impurity, for example, A
s or P ion implantation to form the first impurity diffusion region 5.
, 52 and the second impurity diffusion region 8.
, 8. After forming a third impurity diffusion region with a lower concentration, it is activated to form an n++ diffusion region (third diffusion region) 9□,
Form 92.

こうした工程によりn−型拡散領域51+52、n型拡
散領域9. 、9.、n++拡散領域8. 、8.から
なるソース、ドレイン領域が形成される。(第1図(d
))次いで、全面にC!VD−sio、膜1oを堆積し
、該0VD−810,膜10及びゲート酸化膜3にフォ
トエッチング技術によりコンタクトホールを開孔した後
、A7膜の蒸着、バターニングを行なうことにより前記
ソース、ドレイン領域とコンタクトホールを通して接続
するAl配線11を形成してnチャンネルMOSトラン
ジスタを製造した(第1図fe))OL、かして、本発
明のMOS)ランジス4は、第1図(elに示すように
ゲート電極4の端部近傍に位置する基板1表面に設けら
れたn−1Jl拡散領域5□。
Through these steps, n-type diffusion regions 51+52, n-type diffusion regions 9. ,9. , n++ diffusion region8. , 8. Source and drain regions are formed. (Figure 1(d)
)) Then C! After depositing a VD-sio film 1o and opening contact holes in the 0VD-810 film 10 and gate oxide film 3 by photo-etching, an A7 film is deposited and patterned to form the source and drain regions. An n-channel MOS transistor was manufactured by forming an Al wiring 11 connected to the region through a contact hole (FIG. 1fe)). An n-1 Jl diffusion region 5 □ is provided on the surface of the substrate 1 near the end of the gate electrode 4 .

52と、同拡散領域51+52表面の大部分に設けられ
、その拡散領域58,5□よυ高濃度のn型拡散領域9
1゜92と、前記ゲート電極4の端部と離間した位置の
基板1表面に設けられ、前記n型拡散領域90,9□よ
り高濃度のn++拡散領域8..8□とからなるソース
、ドレイン領域が形成されたLDD構造を有する。従っ
て、ドレイン領域のn−型拡散領域52によりホットキ
ャリアの発生を抑制してドレイン電界を緩和することが
できる。また、ホットキャリアによってゲート酸化膜3
中に生成した電界の影響による該n−型拡散領域5.の
空乏化を、その表面に設けたn型拡散領域92により防
止でき、ひいては電界駆動能力に低下を解消することが
できる。
52, and an n-type diffusion region 9 which is provided on most of the surface of the diffusion regions 51+52 and has a high concentration of υ than the diffusion regions 58, 5□.
An n++ diffusion region 8.1°92 is provided on the surface of the substrate 1 at a position spaced apart from the end of the gate electrode 4, and has a higher concentration than the n-type diffusion regions 90, 9□. .. It has an LDD structure in which source and drain regions are formed with 8 squares. Therefore, the n-type diffusion region 52 in the drain region can suppress the generation of hot carriers and relax the drain electric field. In addition, hot carriers cause the gate oxide film 3 to
5. The n-type diffusion region due to the influence of the electric field generated in it. The depletion of can be prevented by the n-type diffusion region 92 provided on the surface thereof, and as a result, the decrease in electric field driving ability can be eliminated.

なお、第1、第2及び第3の不純物拡散領域としてのn
−型拡散領域、n++拡散領域及びn型拡散領域に形成
条件は上記実施例に限定されず、本発明の目的を達成す
る範囲内で自由に変更できる。
Note that n as the first, second and third impurity diffusion regions
The conditions for forming the − type diffusion region, the n++ diffusion region, and the n type diffusion region are not limited to those in the above embodiments, and can be freely changed within the scope of achieving the object of the present invention.

次に比較例について第2図(al〜(clの製造工程断
面図を用いて説明する。
Next, a comparative example will be explained using FIG. 2 (al to cl) manufacturing process cross-sectional views.

まずP型シリコン基板1に選択酸化法によりフイールド
酸化膜2を形成し、た後、熱酸化法によりフイールド酸
化膜2で分離された島状の基板1領域表面に厚さ200
人のゲート酸化膜3を形成する。つづいて、通常のフォ
トマスク工程を用いてリンをドープし、た多結晶シリコ
ンでゲート電極4を形成する。次いで、フィールド酸化
膜2及びゲート電極4をマスクとして例えばリンを加速
電圧40 KeV 1 ドーズ量2 X 10”cm−
”  の条件でオン注入し、低濃度のn−型拡散層5.
 、5.を形成する(図(a))。次いで全面に5−i
02膜を堆積し、反応性イオンエッチング法にょシ全面
エッチングを行なってゲート電極4の側面にSin、か
らなる壁体6を形成する。この後フィールド酸化膜2、
ゲート電極4及び壁体6に対して自己整合的に前記n−
拡散層58,5□より高濃度のn型拡散層91 + 9
.を例えば砒素を加速電圧30KeV、  ドーズ量I
 X 10”cm−”の条件でイオン注入して形成する
(図(b))。サラに再度例えば5in2膜8を全面堆
積し、反応性イオンエッチング法により全面エッチング
することによりゲート電極4及び壁体6の側面に泥2の
壁体8を形成する。次にフィールド酸化膜2、ゲート電
極4、壁体6,8をマスクとして自己整合的に前記n型
拡散層91 + 92より高濃度のn+型型数散層8 
、8.を例えば砒素を加速電圧40KeV、ドーズ量5
×10cWt  の条件でイオン注入して形成する。
First, a field oxide film 2 is formed on a P-type silicon substrate 1 by selective oxidation, and then a thermal oxidation method is applied to the surface of the island-shaped substrate 1 separated by the field oxide film 2 to a thickness of 200 mm.
A human gate oxide film 3 is formed. Subsequently, a gate electrode 4 is formed of polycrystalline silicon doped with phosphorus using a normal photomask process. Next, using the field oxide film 2 and the gate electrode 4 as a mask, for example, phosphorus is accelerated at a voltage of 40 KeV 1 and a dose of 2 x 10"cm.
" On-implantation is performed under the conditions of 5. to form a low concentration n-type diffusion layer.
,5. (Figure (a)). Then apply 5-i to the entire surface.
02 film is deposited, and the entire surface is etched using a reactive ion etching method to form a wall body 6 made of Sin on the side surface of the gate electrode 4. After this, field oxide film 2,
The n-
N-type diffusion layer 91 + 9 with higher concentration than diffusion layer 58, 5□
.. For example, arsenic is accelerated at a voltage of 30 KeV and a dose of I.
It is formed by ion implantation under the condition of x 10"cm-" (Figure (b)). For example, a 5 in 2 film 8 is deposited on the entire surface again, and the entire surface is etched using a reactive ion etching method, thereby forming a wall 8 of mud 2 on the side surfaces of the gate electrode 4 and the wall 6. Next, using the field oxide film 2, gate electrode 4, and walls 6 and 8 as masks, an n+ type diffused layer 8 with a higher concentration than the n type diffused layers 91 + 92 is formed in a self-aligned manner.
, 8. For example, arsenic is accelerated at a voltage of 40 KeV and a dose of 5.
It is formed by ion implantation under the condition of ×10 cWt.

上記実施例では、nチャンネルMOSトランジスタに適
用した例について説明したが、pチャンネルMOSトラ
ンジスタ、CMOSトランジスタ、或いはMNOS等の
ゲート絶縁膜として酸化膜以外の材料を使用したMIS
型トランジスタにも同様に適用できる。
In the above embodiment, an example was explained in which the application was applied to an n-channel MOS transistor, but MIS using a material other than an oxide film as the gate insulating film of a p-channel MOS transistor, CMOS transistor, or MNOS, etc.
The same applies to type transistors.

以上詳述した如く、本発明によればLDD構造の低濃度
不純物拡散領域によるドレイン電界緩和効果を維持しつ
つ、該拡散領域による寄生抵抗増加に伴う電流駆動能力
の低下を防止した高性能で高信頼性のMO8型半導体装
置等のM I S型半導体装置を提供できるものでらる
As described in detail above, according to the present invention, the low concentration impurity diffusion region of the LDD structure maintains the drain electric field relaxation effect while preventing the decrease in current drive capability due to the increase in parasitic resistance due to the diffusion region. It is possible to provide reliable MIS type semiconductor devices such as MO8 type semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜telは本発明の実施例におけるLDD
構造を有するnチャンネルMO8)ランジスタを得るた
めの製造工稈を示す断面図、第2図(a)〜(clは比
較列の断面図である。図において、1・・・P型シリコ
ン基板 2・・フィールド酸化膜 3・・・ゲート酸化膜 4・・・ゲート電極 5、 、5.・・・n−型拡散領域(第1の拡散領域)
6・・・ゲート電極側壁の第1の絶縁膜層7・・・ゲー
ト電極側壁の第2の絶縁膜層81.8□・・・n+型拡
散領域(第2の拡散領域)98,9□・・・n型拡散領
域(第3の拡散領域)11・・Al配線 代理人 弁理士 則 近 憲 佑 同  竹花喜久男
FIG. 1 (al to tel are LDDs in the embodiment of the present invention.
A cross-sectional view showing a manufacturing process for obtaining an n-channel MO8) transistor having a structure, FIGS. 2(a) to 2(cl) are cross-sectional views of comparison rows. ...Field oxide film 3...Gate oxide film 4...Gate electrode 5, , 5...n-type diffusion region (first diffusion region)
6...First insulating film layer on the side wall of the gate electrode 7...Second insulating film layer on the side wall of the gate electrode 81.8□...N+ type diffusion region (second diffusion region) 98, 9□ ...N-type diffusion region (third diffusion region) 11 ...Al wiring agent Patent attorney Noriyuki Chika Yudo Kikuo Takehana

Claims (1)

【特許請求の範囲】  第1導電型の半導体基板と、この基板表面に互いに電
気的に分離して設けられた第2の導電型のソース、ドレ
イン領域と、これら領域間のチャンネル領域を含む基板
表面に絶縁膜を介して設けられたゲート電極とを具備し
たMIS型半導体装置の製造方法であつて、 ゲート電極を形成した後、前記ゲート電極をマスクとし
て、前記ソース、ドレイン領域に低濃度の第1の不純物
拡散層領域を形成する工程と、第1の絶縁膜層と第2の
絶縁膜層を堆積し、異方性エッチングを行なう事により
、前記ゲート電極の側壁部に前記第1の絶縁膜層、第2
の絶縁膜層を残置する工程と、前記ゲート電極側壁部の
第1の絶縁膜層と第2の絶縁膜層及び前記ゲート電極を
マスクとして前記ソース、ドレイン領域に、第1の不純
物拡散領域より高濃度の第2の不純物拡散領域を形成す
る工程と、前記第2の絶縁膜層を除去した後、前記ゲー
ト電極と前記第1の絶縁膜層の側壁被着部をマスクとし
て、前記ソース、ドレイン領域に、前記第1の不純物拡
散領域より高濃度で、前記第2の不純物拡散領域より低
濃度の第3の不純物拡散領域を形成する工程とを備えた
ことを特徴とするMIS型半導体装置の製造方法。
[Scope of Claims] A substrate including a semiconductor substrate of a first conductivity type, source and drain regions of a second conductivity type provided electrically isolated from each other on the surface of the substrate, and a channel region between these regions. A method for manufacturing an MIS type semiconductor device including a gate electrode provided on the surface with an insulating film interposed therebetween, wherein after forming the gate electrode, using the gate electrode as a mask, a low concentration is applied to the source and drain regions. By forming a first impurity diffusion layer region, depositing a first insulating film layer and a second insulating film layer, and performing anisotropic etching, the first impurity diffusion layer region is formed on the side wall of the gate electrode. Insulating film layer, second
a first insulating film layer and a second insulating film layer on the side wall portion of the gate electrode and the gate electrode as a mask to the source and drain regions from the first impurity diffusion region. After forming a high concentration second impurity diffusion region and removing the second insulating film layer, using the gate electrode and the sidewall adhering portion of the first insulating film layer as a mask, a step of forming a third impurity diffusion region in a drain region at a higher concentration than the first impurity diffusion region and at a lower concentration than the second impurity diffusion region. manufacturing method.
JP19380685A 1985-09-04 1985-09-04 Manufacture of mis semiconductor device Pending JPS6254959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19380685A JPS6254959A (en) 1985-09-04 1985-09-04 Manufacture of mis semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19380685A JPS6254959A (en) 1985-09-04 1985-09-04 Manufacture of mis semiconductor device

Publications (1)

Publication Number Publication Date
JPS6254959A true JPS6254959A (en) 1987-03-10

Family

ID=16314077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19380685A Pending JPS6254959A (en) 1985-09-04 1985-09-04 Manufacture of mis semiconductor device

Country Status (1)

Country Link
JP (1) JPS6254959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165171A (en) * 1987-12-22 1989-06-29 Sony Corp Mis field-effect transistor and manufacture of the same
JPH0228940A (en) * 1988-07-19 1990-01-31 Matsushita Electron Corp Manufacture of mos type transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165171A (en) * 1987-12-22 1989-06-29 Sony Corp Mis field-effect transistor and manufacture of the same
JPH0228940A (en) * 1988-07-19 1990-01-31 Matsushita Electron Corp Manufacture of mos type transistor

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPH02250331A (en) Semiconductor device and its manufacture
JP2730535B2 (en) Method for manufacturing semiconductor device
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0228939A (en) Mos type transistor
JP3744438B2 (en) Semiconductor device
JPH0656855B2 (en) Insulated gate type field effect transistor
JPS63217664A (en) Misfet and manufacture thereof
JP2727590B2 (en) MIS type semiconductor device
JPH06177376A (en) Manufacture of mos field-effect semiconductor device
JPS6254959A (en) Manufacture of mis semiconductor device
JPH10163338A (en) Semiconductor device and its manufacturing method
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPS62262462A (en) Semiconductor device
JP2000068499A (en) Semiconductor device and manufacture of the same
JPS60175458A (en) Semiconductor device and manufacture thereof
JPS61210673A (en) Mis type semiconductor device
JPH06132489A (en) Mos transistor, integrated circuit employing same, and manufacture of mos transistor
JP2004063918A (en) Lateral mos transistor
JPH0878685A (en) Soi-mosfet and its manufacture
JPH01191476A (en) Semiconductor device
JPH0221648A (en) Semiconductor device and manufacture thereof
JPH0864820A (en) Semiconductor device and method of fabrication thereof
JPS61154173A (en) Mis type semiconductor device