JP2936624B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2936624B2
JP2936624B2 JP2046114A JP4611490A JP2936624B2 JP 2936624 B2 JP2936624 B2 JP 2936624B2 JP 2046114 A JP2046114 A JP 2046114A JP 4611490 A JP4611490 A JP 4611490A JP 2936624 B2 JP2936624 B2 JP 2936624B2
Authority
JP
Japan
Prior art keywords
film
forming
gate electrode
insulating film
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2046114A
Other languages
Japanese (ja)
Other versions
JPH03248433A (en
Inventor
秀幸 大岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12737977&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2936624(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2046114A priority Critical patent/JP2936624B2/en
Publication of JPH03248433A publication Critical patent/JPH03248433A/en
Application granted granted Critical
Publication of JP2936624B2 publication Critical patent/JP2936624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に微細な絶
縁ゲート型電界効果トランジスタ(以下、MOSトランジ
スタと略記する)を歩留り良く形成する半導体装置の製
造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device in which a fine insulated gate field effect transistor (hereinafter abbreviated as MOS transistor) is formed with a high yield. It relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

半導体装置の高集積化に伴い、該装置内で使用される
MOSトランジスタの微細化が急がれている。微細化に従
いMOSトランジスタの内部電界強度が増大し、これがデ
バイスの信頼性に関し、問題となりつつある。
As semiconductor devices become more highly integrated, they are used in these devices.
The miniaturization of MOS transistors is urgent. The internal electric field strength of a MOS transistor increases with miniaturization, and this is becoming a problem with respect to device reliability.

第5図はこの種の半導体装置の従来例を示す縦断面
図、第6図(a),(b),〜,(e)は第5図の従来
例を形成する工程を示す縦断面図である。
FIG. 5 is a longitudinal sectional view showing a conventional example of this type of semiconductor device, and FIGS. 6 (a), (b),..., (E) are longitudinal sectional views showing steps of forming the conventional example of FIG. It is.

第6図(a)に示すように、P型シリコン基板1上に
選択酸化法等により素子分離用の厚い酸化膜2を形成
し、その後、活性領域上に、ゲート酸化膜12を形成す
る。続いて、基板表面上にゲート電極用の導電膜として
例えば多結晶シリコン膜4を成長し、その上にレジスト
膜のゲート電極パターン5を形成する。なお、図示しな
いが、フィールド酸化膜2の直下にはチャネルストッパ
ー用のP型高不純物層を形成してもよい。また、チャネ
ル領域の半導体基板表面には、トランジスタのしきい値
を調整するため、適当な不純物添加をする。
As shown in FIG. 6A, a thick oxide film 2 for element isolation is formed on a P-type silicon substrate 1 by a selective oxidation method or the like, and then a gate oxide film 12 is formed on an active region. Subsequently, for example, a polycrystalline silicon film 4 is grown as a conductive film for a gate electrode on the substrate surface, and a gate electrode pattern 5 of a resist film is formed thereon. Although not shown, a P-type high impurity layer for a channel stopper may be formed immediately below the field oxide film 2. An appropriate impurity is added to the surface of the semiconductor substrate in the channel region in order to adjust the threshold value of the transistor.

次に第6図(b)に示すように、ゲート電極13を形成
し、ゲート電極13とフィールド酸化膜2に対して自己整
合的に例えばリンを1013cm-2程度イオン注入して、n-
ース・ドレイン層6,7を形成する。その後、第6図
(c)に示すように、基板上に例えば気相成長法により
酸化膜8を堆積する。そして、この酸化膜を選択的に異
方性エッチし、ゲート4の側壁にのみ残すようにする。
次に、第6図(d)に示すように、側壁酸化膜8を含む
ゲート領域に例えばヒ素を1015cm-2程度イオン注入し、
n+ソース・ドレイン層9,10を形成する。その後、第6図
(c)に示すように層間絶縁膜15を堆積し、以下、通常
のプロセスにより、金属配線をほどこしして、第5図に
示すMOSトランジスタを得る。この構造のMOSトランジス
タは、ソース・ドレイン層がゲートとオーバーラップす
るチャネル領域側にn-層を有するため、従来の単独ドレ
イン構造に比べ、ドレイン端での電界強度が緩和される
という利点がある。
Next, as shown in FIG. 6 (b), a gate electrode 13 is formed, and for example, phosphorus is ion-implanted into the gate electrode 13 and the field oxide film 2 in a self-aligning manner by about 10 13 cm −2 , and n - forming the source and drain layer 6. Thereafter, as shown in FIG. 6C, an oxide film 8 is deposited on the substrate by, for example, a vapor growth method. Then, this oxide film is selectively anisotropically etched so as to be left only on the side wall of the gate 4.
Next, as shown in FIG. 6 (d), for example, arsenic is ion-implanted into the gate region including the sidewall oxide film 8 by about 10 15 cm −2 .
The n + source / drain layers 9 and 10 are formed. Thereafter, an interlayer insulating film 15 is deposited as shown in FIG. 6 (c), and thereafter, metal wiring is applied by a normal process to obtain the MOS transistor shown in FIG. The MOS transistor having this structure has an advantage that the electric field strength at the drain end is reduced as compared with the conventional single drain structure because the source / drain layer has the n layer on the channel region side overlapping the gate. .

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、MOSトランジスタの微細化には、ゲート長
の微小と同時にゲート絶縁膜の薄膜化が重要である。
By the way, for miniaturization of the MOS transistor, it is important to make the gate insulating film thinner at the same time as making the gate length minute.

しかし、上述した従来の製造方法では、ゲート絶縁膜
を薄膜化する際、下記のような問題が生じる。まず従来
法では、形成されたゲート電極に対して、自己整合的に
ソース・ドレイン拡散層を形成することを目的に、高ド
ーズのイオン注入をゲート形成後に行なっている。イオ
ン注入法は荷電粒子を半導体基板に打込む方法であるた
め、本質的に帯電現象を伴う。ゲート絶縁膜が薄膜化さ
れるに従い、このイオン注入工程による静電破壊が顕在
化し、今後、前述した従来法では、MOSトランジスタの
製品歩留りの低下が懸念される。
However, in the above-described conventional manufacturing method, when the gate insulating film is thinned, the following problems occur. First, in the conventional method, high-dose ion implantation is performed after the gate is formed in order to form a source / drain diffusion layer in a self-aligned manner with respect to the formed gate electrode. The ion implantation method is a method in which charged particles are implanted into a semiconductor substrate, and thus essentially involves a charging phenomenon. As the gate insulating film becomes thinner, electrostatic breakdown due to this ion implantation process becomes apparent, and there is a concern that the yield of MOS transistors will be reduced in the conventional method described above.

また、MOSトランジスタの短チャネル化に際し、チャ
ネル領域の半導体基板表面濃度を高める必要があるが、
従来法では、チャネル領域以外の余分な領域にも、チャ
ネルドープが行なわれる。このためソース・ドレインの
拡散層容量が増大し、デバイスの動作速度を低下させる
原因となる。
Also, when shortening the channel of the MOS transistor, it is necessary to increase the surface concentration of the semiconductor substrate in the channel region.
In the conventional method, channel doping is performed on an extra region other than the channel region. For this reason, the diffusion layer capacitance of the source / drain increases, which causes a reduction in the operation speed of the device.

本発明は上記の欠点に鑑み、ソース・ドレイン拡散層
を形成した後、チャネル領域上に薄いゲート酸化膜を介
して自己整合的にゲート電極を配置して、製造歩留りの
よい、かつ、デバイスの動作速度を低下させない半導体
装置の製造方法を提供することを解決すべき課題とす
る。
The present invention has been made in view of the above-described drawbacks, and after forming a source / drain diffusion layer, a gate electrode is arranged on a channel region in a self-aligned manner via a thin gate oxide film, so that a manufacturing yield is good and a device is manufactured. It is an object to provide a method for manufacturing a semiconductor device which does not lower the operation speed.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の半導体装置の製造方法は、半導体基板上に素
子分離領域を形成する工程と、前記素子分離領域により
分離された素子形成領域に第1絶縁膜を形成する工程
と、前記基板上に第2被膜を形成し、前記第2被膜のゲ
ート電極予定部上にレジストパターンを形成する工程
と、前記レジストパターンをマスクとして、前記第2被
膜を選択的にエッチングする工程と、前記ゲート電極パ
ターンを有する第2被膜に対し、自己整合的に低濃度ソ
ース・ドレイン層を形成する工程と、前記第2被膜の少
なくとも側壁に第3被膜を形成する工程と、前記第3被
膜を形成された第2被膜パターンに対し、自己整合的に
高濃度ソース・ドレイン層を形成する工程と、前記基板
上の全面に絶縁性被膜を堆積し、前記絶縁性被膜を前記
第2及び第3被膜で構成されたゲート電極パターンの上
面が露出するまで選択的にエッチング除去する工程と、
少なくとも前記第2被膜を選択的に除去し、露出したゲ
ート電極予定部上の第1絶縁膜を除去する工程と、前記
ゲート電極予定部の半導体基板表面上にゲート絶縁膜を
形成する工程と、前記基板上に導電膜を堆積し、前記導
電膜をゲート電極予定部にのみ残るように選択的にエッ
チング除去し、ゲート電極を形成する工程とを有する。
A method of manufacturing a semiconductor device according to the present invention includes a step of forming an element isolation region on a semiconductor substrate, a step of forming a first insulating film in an element formation region separated by the element isolation region, and a step of forming a first insulating film on the substrate. (2) forming a coating and forming a resist pattern on the gate electrode scheduled portion of the second coating; selectively etching the second coating using the resist pattern as a mask; Forming a low-concentration source / drain layer in a self-aligned manner with respect to the second coating, forming a third coating on at least a side wall of the second coating, and forming the second coating on the second coating. Forming a high-concentration source / drain layer in a self-aligned manner with respect to the coating pattern, depositing an insulating coating on the entire surface of the substrate, and forming the insulating coating with the second and third coatings; Selectively etching removed until the top surface of the gate electrode pattern is exposed that,
Selectively removing at least the second film and removing the first insulating film on the exposed gate electrode scheduled portion; and forming a gate insulating film on the semiconductor substrate surface of the gate electrode scheduled portion. Forming a gate electrode by depositing a conductive film on the substrate, and selectively removing the conductive film by etching so that the conductive film remains only in a predetermined portion of the gate electrode.

〔作 用〕(Operation)

ソース・ドレイン形成のための高濃度のイオン注入を
行なった後、薄いゲート絶縁膜を形成し、ソース・ドレ
イン層に対して、自己整合的にゲート電極を形成し、イ
オン注入によるゲート絶縁膜の静電破壊を防止する。
After performing high-concentration ion implantation for source / drain formation, a thin gate insulating film is formed, and a gate electrode is formed in a self-aligned manner with respect to the source / drain layer. Prevent electrostatic breakdown.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の半導体装置の製造方法の第1の実施
例を示す半導体装置(MOSトランジスタ)の縦断面図、
第2図(a),(b),〜,(j)は第1図の実施例の
製造工程を示す工程図である。
FIG. 1 is a longitudinal sectional view of a semiconductor device (MOS transistor) showing a first embodiment of a method of manufacturing a semiconductor device according to the present invention;
2 (a), (b),..., (J) are process diagrams showing the manufacturing process of the embodiment of FIG.

第2図(a)に示すように、P型シリコン基板1上に
選択酸化法によりフィールド酸化膜2(以降、酸化膜2
と記す)を形成し、素子形成領域上には、熱酸化膜3を
形成する。さらに、例えばリン添加多結晶シリコン膜4
を2000Å〜8000Å堆積する。そして、ゲート電極パター
ンを有するレジスト膜5を例えばフォトリソグラフィに
より形成する。次にレジスト膜5をマスクに多結晶シリ
コン膜を選択的に異方性エッチし、第2図(b)に示す
ように、この多結晶シリコン膜4に対し自己整合的に例
えばリンを加速エネルギー20KeVないし50KeVで1013cm-2
程度イオン注入し、n-層6,7を形成する。そして基板上
に例えば酸化膜を1000Å〜4000Å程度気相成長法により
堆積する。次に第2図(c)に示すように、酸化膜8を
異方性エッチし、多結晶シリコン膜4の側壁にのみ残
す。そして、この側壁酸化膜8に対して自己整合的に、
例えばヒ素を注入エネルギー50KeV〜80KeVで1015cm-2
度、イオン注入し、n+層9,10を形成する。その後、第2
図(d)に示すように、基板上に絶縁膜11、例えばBPS
G、スピンガラスあるいは、その他溶融性絶縁膜を堆積
する。そして、この絶縁膜11を第2図(e)に示すよう
に、多結晶シリコン層4の上面が露出するまで選択エッ
チする。次に、第2図(f)に示すように、露出した多
結晶シリコン層をウェットエッチ等により選択的に除去
する。そして、露出した酸化膜3をウェットエッチし、
第2図(g)に示すように、所望の膜厚のゲート酸化膜
12を形成する。その後ゲート電極予定部を含む基板表面
上に導電膜13、例えば多結晶シリコンを堆積し、第2図
(h)に示すように、少なくともゲート領域には残るよ
うに基板上の導電膜を選択エッチすることによりゲート
電極13を形成する。その後、基板全面に、例えばタング
ステン、チタン等の高融点金属膜14を第2図(i)に示
すように被着し、窒素雰囲気中でアニールすることによ
り、ゲート電極上のみにシリサイド層16を形成してもよ
い。その後、第2図(j)に示すように層間絶縁膜15を
形成し、以下通常の工程を経て、第1図のMOSトランジ
スタを得る。
As shown in FIG. 2A, a field oxide film 2 (hereinafter referred to as oxide film 2) is formed on a P-type silicon substrate 1 by selective oxidation.
Is formed, and a thermal oxide film 3 is formed on the element formation region. Further, for example, the phosphorus-doped polycrystalline silicon film 4
From 2000 to 8000Å. Then, a resist film 5 having a gate electrode pattern is formed by, for example, photolithography. Next, the polycrystalline silicon film is selectively anisotropically etched using the resist film 5 as a mask, and as shown in FIG. 10 13 cm -2 at 20 KeV or 50 KeV
Ion implantation is performed to a degree to form n layers 6 and 7. Then, an oxide film is deposited on the substrate by, for example, about 1000 to 4000 degrees by a vapor deposition method. Next, as shown in FIG. 2 (c), oxide film 8 is anisotropically etched to leave only on the side walls of polycrystalline silicon film 4. Then, the side wall oxide film 8 is self-aligned,
For example, arsenic is ion-implanted at an implantation energy of 50 KeV to 80 KeV at about 10 15 cm −2 to form n + layers 9 and 10. Then the second
As shown in FIG. 4D, an insulating film 11, for example, a BPS
G, spin glass or other fusible insulating film is deposited. Then, as shown in FIG. 2 (e), the insulating film 11 is selectively etched until the upper surface of the polycrystalline silicon layer 4 is exposed. Next, as shown in FIG. 2 (f), the exposed polycrystalline silicon layer is selectively removed by wet etching or the like. Then, the exposed oxide film 3 is wet-etched,
As shown in FIG. 2 (g), a gate oxide film having a desired film thickness is formed.
Form 12. Thereafter, a conductive film 13, for example, polycrystalline silicon, is deposited on the surface of the substrate including the planned gate electrode portion, and as shown in FIG. By doing so, the gate electrode 13 is formed. Thereafter, a refractory metal film 14 of, for example, tungsten, titanium or the like is deposited on the entire surface of the substrate as shown in FIG. It may be formed. Thereafter, an interlayer insulating film 15 is formed as shown in FIG. 2 (j), and the MOS transistor shown in FIG. 1 is obtained through the following ordinary steps.

第3図は本発明の第2の実施例を示すMOSトランジス
タの縦断面図、第4図(a),(b),〜,(i)は第
3図の実施例の製造工程を示す工程図である。本実施例
では、n-層とゲート電極をオーバーラップさせているた
め、LDDトランジスタのn-層による寄生抵抗の影響を緩
和することができる。
FIG. 3 is a longitudinal sectional view of a MOS transistor showing a second embodiment of the present invention, and FIGS. 4 (a), (b),..., (I) show steps of manufacturing the embodiment of FIG. FIG. In this embodiment, since the n layer and the gate electrode overlap, the influence of the parasitic resistance due to the n layer of the LDD transistor can be reduced.

素子分離領域を形成し、第4図(a)に示すように、
素子領域上に熱酸化膜3を成長し、ゲート電極予定部を
おおう多結晶シリコンパターン4を形成した後、この多
結晶シリコン膜に対し、自己整合的にn-層6,7を形成す
るまでは、第1の実施例1と同様である。次に第4図
(b)に示すように、多結晶シリコン表面にタングステ
ン膜14等を選択的に1000Å〜3000Å程度気相成長法によ
り成長する。そして第4図(c)に示すように、タング
ステン膜14に対して、自己整合的にn+層9,10を形成す
る。次に第4図(d)に示すように、絶縁膜11例えば気
相成長による酸化膜、BPSG膜、あるいは塗布膜等を成長
する。その後、第4図(e)に示すように、絶縁膜11を
タングステン膜14の上面が露出するまで選択エッチす
る。次に第4図(f)に示すように露出したタングステ
ン膜及び多結晶シリコン膜を順次ウェットエッチ等によ
り選択的に除去する。ここで、表出したゲート領域のシ
リコン基板表面に、パンチスルー防止及び、しきい値電
圧調整のため、例えばボロンを20KeV〜200KeVの加速エ
ネルギーで1011〜1012cm-2程度イオン注入する。その
後、酸化膜3をウェットエッチ等により除去した後、30
Å〜100Å程度のゲート酸化膜12を形成する。そして第
4図(g)に示すように、ゲート電極予定部を含む基板
上に、導電膜13、例えば多結晶シリコン膜あるいは高融
点金属膜等を形成する。その後、第4図(h)に示すよ
うに、導電膜13を少なくともゲート領域に残るように選
択エッチする。そして第4図(i)に示すように層間絶
縁膜15を形成し、以下通常の工程を経て、第2図に示す
MOSトランジスタを得る。
An element isolation region is formed, and as shown in FIG.
After growing a thermal oxide film 3 on the element region and forming a polycrystalline silicon pattern 4 covering the intended gate electrode portion, until the n layers 6 and 7 are formed in a self-aligned manner with respect to this polycrystalline silicon film. Is the same as in the first embodiment. Next, as shown in FIG. 4 (b), a tungsten film 14 or the like is selectively grown on the surface of the polycrystalline silicon by a vapor phase epitaxy of about 1000 to 3000 degrees. Then, as shown in FIG. 4C, n + layers 9 and 10 are formed on the tungsten film 14 in a self-aligned manner. Next, as shown in FIG. 4 (d), an insulating film 11, for example, an oxide film, a BPSG film, a coating film or the like is grown by vapor phase growth. Thereafter, as shown in FIG. 4E, the insulating film 11 is selectively etched until the upper surface of the tungsten film 14 is exposed. Next, as shown in FIG. 4 (f), the exposed tungsten film and polycrystalline silicon film are selectively removed sequentially by wet etching or the like. Here, for example, boron is ion-implanted into the exposed silicon substrate surface in the exposed gate region at an acceleration energy of 20 KeV to 200 KeV in an amount of about 10 11 to 10 12 cm −2 in order to prevent punch-through and adjust the threshold voltage. After removing the oxide film 3 by wet etching or the like, 30
A gate oxide film 12 of about {100} is formed. Then, as shown in FIG. 4 (g), a conductive film 13, for example, a polycrystalline silicon film or a high melting point metal film is formed on the substrate including the gate electrode planned portion. Thereafter, as shown in FIG. 4H, selective etching is performed so that the conductive film 13 remains at least in the gate region. Then, as shown in FIG. 4 (i), an interlayer insulating film 15 is formed.
Obtain MOS transistor.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、ソース・ドレイン形
成のための高濃度のイオン注入を行なった後、薄いゲー
ト絶縁膜を形成し、ソース・ドレイン層に対して、自己
整合的にゲート電極を形成できることにより、イオン注
入によるゲート絶縁膜の静電破壊を防止できる効果があ
り、プロセス制御性の良いイオン注入法が、従来通り適
用できるため高集積度の半導体装置の高歩留りで再現性
良く製造できる効果もあり、さらに、チャネル領域にの
み、パンチスルー防止用の不純物添加が可能なため、拡
散層容量の増大を抑制でき、高速な半導体装置を製造で
きる効果もある。
As described above, according to the present invention, after performing high-concentration ion implantation for forming a source / drain, a thin gate insulating film is formed, and a gate electrode is self-aligned with respect to the source / drain layer. The formation of the gate insulating film has the effect of preventing electrostatic breakdown of the gate insulating film due to ion implantation, and the ion implantation method with good process control can be applied as before, so that highly integrated semiconductor devices can be manufactured with high yield and high reproducibility. In addition, since an impurity for preventing punch-through can be added only to the channel region, an increase in diffusion layer capacitance can be suppressed, and a high-speed semiconductor device can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の半導体装置の製造方法の第1の実施例
を示す半導体装置(MOSトランジスタ)の縦断面図、第
2図(a),(b),〜,(j)は第1図の実施例の製
造工程を示す工程図、第3図は本発明の第2の実施例を
示すMOSトランジスタの縦断面図、第4図)(a),
(b),〜,(i)は第3図の実施例の製造工程を示す
工程図、第5図はこの種の半導体の従来例を示す縦断面
図、第6図(a),(b),〜,(e)は第5図の従来
例を形成する工程を示す縦断面図である。 1……P型シリコン基板、 2,3,8,12……酸化膜、 4……多結晶シリコン膜、 5……レジスト膜、 6,7……n-層、 9,10……n+層、 11……絶縁膜、 13……導電膜 16……シリサイド膜、 17……金属膜。
FIG. 1 is a longitudinal sectional view of a semiconductor device (MOS transistor) showing a first embodiment of a method of manufacturing a semiconductor device according to the present invention, and FIGS. 2 (a), (b),. FIG. 3 is a process diagram showing a manufacturing process of the embodiment shown in FIG. 3, FIG. 3 is a vertical sectional view of a MOS transistor showing a second embodiment of the present invention, and FIG.
6 (a), 6 (a) and 6 (b) are process diagrams showing a manufacturing process of the embodiment of FIG. 3, FIG. 5 is a longitudinal sectional view showing a conventional example of this type of semiconductor, and FIGS. 5) to 5 (e) are longitudinal sectional views showing steps of forming the conventional example of FIG. 1 ... P-type silicon substrate, 2,3,8,12 ... oxide film, 4 ... polycrystalline silicon film, 5 ... resist film, 6,7 ... n - layer, 9,10 ... n + Layer, 11 insulating film, 13 conductive film 16 silicide film, 17 metal film.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に素子分離領域を形成する工
程と、前記素子分離領域により分離された素子形成領域
に第1絶縁膜を形成する工程と、前記基板上に第2被膜
を形成し、前記第2被膜のゲート電極予定部上にレジス
トパターンを形成する工程と、前記レジストパターンを
マスクとして、前記第2被膜を選択的にエッチングする
工程と、前記ゲート電極パターンを有する第2被膜に対
し、自己整合的に低濃度ソース・ドレイン層を形成する
工程と、前記第2被膜の少なくとも側壁に第3被膜を形
成する工程と、前記第3被膜を形成された第2被膜パタ
ーンに対し、自己整合的に高濃度ソース・ドレイン層を
形成する工程と、前記基板上の全面に絶縁性被膜を堆積
し、前記絶縁性被膜を前記第2及び第3被膜で構成され
たゲート電極パターンの上面が露出するまで選択的にエ
ッチング除去する工程と、少なくとも前記第2被膜を選
択的に除去し、露出したゲート電極予定部上の第1絶縁
膜を除去する工程と、前記ゲート電極予定部の半導体基
板表面上にゲート絶縁膜を形成する工程と、前記基板上
に導電膜を堆積し、前記導電膜をゲート電極予定部にの
み残るように選択的にエッチング除去し、ゲート電極を
形成する工程とを有する半導体装置の製造方法。
A step of forming an element isolation region on a semiconductor substrate; a step of forming a first insulating film in an element formation region separated by the element isolation region; and forming a second film on the substrate. Forming a resist pattern on the gate electrode scheduled portion of the second film, selectively etching the second film using the resist pattern as a mask, and forming the second film having the gate electrode pattern on the second film having the gate electrode pattern. On the other hand, a step of forming a low-concentration source / drain layer in a self-aligning manner, a step of forming a third coating on at least a side wall of the second coating, and a second coating pattern on which the third coating is formed, Forming a high concentration source / drain layer in a self-aligned manner, depositing an insulating film on the entire surface of the substrate, and replacing the insulating film with a gate electrode pattern comprising the second and third films; Selectively removing by etching until the upper surface of the gate electrode is exposed; selectively removing at least the second coating to remove the first insulating film on the exposed portion of the expected gate electrode; Forming a gate insulating film on the surface of a portion of the semiconductor substrate, depositing a conductive film on the substrate, and selectively etching away the conductive film so as to remain only in the intended gate electrode portion to form a gate electrode And a method of manufacturing a semiconductor device.
JP2046114A 1990-02-26 1990-02-26 Method for manufacturing semiconductor device Expired - Fee Related JP2936624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2046114A JP2936624B2 (en) 1990-02-26 1990-02-26 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2046114A JP2936624B2 (en) 1990-02-26 1990-02-26 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH03248433A JPH03248433A (en) 1991-11-06
JP2936624B2 true JP2936624B2 (en) 1999-08-23

Family

ID=12737977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2046114A Expired - Fee Related JP2936624B2 (en) 1990-02-26 1990-02-26 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2936624B2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870485B2 (en) * 1996-06-03 1999-03-17 日本電気株式会社 Method for manufacturing semiconductor device
JP4580914B2 (en) * 1996-07-12 2010-11-17 株式会社東芝 Manufacturing method of semiconductor device
JP2008153686A (en) * 1997-06-30 2008-07-03 Toshiba Corp Method of manufacturing semiconductor device
US6251763B1 (en) 1997-06-30 2001-06-26 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing same
US6200869B1 (en) 1998-11-06 2001-03-13 Advanced Micro Devices, Inc. Method of fabricating an integrated circuit with ultra-shallow source/drain extensions
US6297115B1 (en) 1998-11-06 2001-10-02 Advanced Micro Devices, Inc. Cmos processs with low thermal budget
US6225173B1 (en) 1998-11-06 2001-05-01 Advanced Micro Devices, Inc. Recessed channel structure for manufacturing shallow source/drain extensions
US5985726A (en) * 1998-11-06 1999-11-16 Advanced Micro Devices, Inc. Damascene process for forming ultra-shallow source/drain extensions and pocket in ULSI MOSFET
US6265291B1 (en) 1999-01-04 2001-07-24 Advanced Micro Devices, Inc. Circuit fabrication method which optimizes source/drain contact resistance
US6225176B1 (en) 1999-02-22 2001-05-01 Advanced Micro Devices, Inc. Step drain and source junction formation
US6184097B1 (en) 1999-02-22 2001-02-06 Advanced Micro Devices, Inc. Process for forming ultra-shallow source/drain extensions
US6271095B1 (en) 1999-02-22 2001-08-07 Advanced Micro Devices, Inc. Locally confined deep pocket process for ULSI mosfets
US6443686B1 (en) 1999-03-05 2002-09-03 Pri Automation, Inc. Material handling and transport system and process
US6492249B2 (en) 1999-05-03 2002-12-10 Advanced Micro Devices, Inc. High-K gate dielectric process with process with self aligned damascene contact to damascene gate and a low-k inter level dielectric
US6271132B1 (en) 1999-05-03 2001-08-07 Advanced Micro Devices, Inc. Self-aligned source and drain extensions fabricated in a damascene contact and gate process
US6194748B1 (en) 1999-05-03 2001-02-27 Advanced Micro Devices, Inc. MOSFET with suppressed gate-edge fringing field effect
US6265293B1 (en) 1999-08-27 2001-07-24 Advanced Micro Devices, Inc. CMOS transistors fabricated in optimized RTA scheme
US6403433B1 (en) 1999-09-16 2002-06-11 Advanced Micro Devices, Inc. Source/drain doping technique for ultra-thin-body SOI MOS transistors
US6248637B1 (en) 1999-09-24 2001-06-19 Advanced Micro Devices, Inc. Process for manufacturing MOS Transistors having elevated source and drain regions
US6333244B1 (en) 2000-01-26 2001-12-25 Advanced Micro Devices, Inc. CMOS fabrication process with differential rapid thermal anneal scheme
US6372589B1 (en) 2000-04-19 2002-04-16 Advanced Micro Devices, Inc. Method of forming ultra-shallow source/drain extension by impurity diffusion from doped dielectric spacer
US6420218B1 (en) 2000-04-24 2002-07-16 Advanced Micro Devices, Inc. Ultra-thin-body SOI MOS transistors having recessed source and drain regions
US6361874B1 (en) 2000-06-20 2002-03-26 Advanced Micro Devices, Inc. Dual amorphization process optimized to reduce gate line over-melt
US6368947B1 (en) 2000-06-20 2002-04-09 Advanced Micro Devices, Inc. Process utilizing a cap layer optimized to reduce gate line over-melt
US6399450B1 (en) 2000-07-05 2002-06-04 Advanced Micro Devices, Inc. Low thermal budget process for manufacturing MOS transistors having elevated source and drain regions
US6630386B1 (en) 2000-07-18 2003-10-07 Advanced Micro Devices, Inc CMOS manufacturing process with self-amorphized source/drain junctions and extensions
US6521502B1 (en) 2000-08-07 2003-02-18 Advanced Micro Devices, Inc. Solid phase epitaxy activation process for source/drain junction extensions and halo regions
US6472282B1 (en) 2000-08-15 2002-10-29 Advanced Micro Devices, Inc. Self-amorphized regions for transistors
US6551885B1 (en) 2001-02-09 2003-04-22 Advanced Micro Devices, Inc. Low temperature process for a thin film transistor
US6756277B1 (en) 2001-02-09 2004-06-29 Advanced Micro Devices, Inc. Replacement gate process for transistors having elevated source and drain regions
US6403434B1 (en) 2001-02-09 2002-06-11 Advanced Micro Devices, Inc. Process for manufacturing MOS transistors having elevated source and drain regions and a high-k gate dielectric
US6787424B1 (en) 2001-02-09 2004-09-07 Advanced Micro Devices, Inc. Fully depleted SOI transistor with elevated source and drain
US6495437B1 (en) 2001-02-09 2002-12-17 Advanced Micro Devices, Inc. Low temperature process to locally form high-k gate dielectrics
US6509253B1 (en) 2001-02-16 2003-01-21 Advanced Micro Devices, Inc. T-shaped gate electrode for reduced resistance
US6420776B1 (en) 2001-03-01 2002-07-16 Amkor Technology, Inc. Structure including electronic components singulated using laser cutting
JP4971559B2 (en) * 2001-07-27 2012-07-11 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
US6905923B1 (en) 2003-07-15 2005-06-14 Advanced Micro Devices, Inc. Offset spacer process for forming N-type transistors
US7312125B1 (en) 2004-02-05 2007-12-25 Advanced Micro Devices, Inc. Fully depleted strained semiconductor on insulator transistor and method of making the same

Also Published As

Publication number Publication date
JPH03248433A (en) 1991-11-06

Similar Documents

Publication Publication Date Title
JP2936624B2 (en) Method for manufacturing semiconductor device
US4948745A (en) Process for elevated source/drain field effect structure
US5482871A (en) Method for forming a mesa-isolated SOI transistor having a split-process polysilicon gate
US4521448A (en) Method of manufacturing semiconductor device
US4354309A (en) Method of manufacturing a metal-insulator-semiconductor device utilizing a graded deposition of polycrystalline silicon
JP2638004B2 (en) Method of manufacturing semiconductor integrated circuit structure on insulator
US4249968A (en) Method of manufacturing a metal-insulator-semiconductor utilizing a multiple stage deposition of polycrystalline layers
US5073512A (en) Method of manufacturing insulated gate field effect transistor having a high impurity density region beneath the channel region
JP3152959B2 (en) Semiconductor device and manufacturing method thereof
US4560421A (en) Semiconductor device and method of manufacturing the same
US5550073A (en) Method for manufacturing an EEPROM cell
US5731240A (en) Manufacturing method for semiconductor depositing device
US6373108B1 (en) Semiconductor device having reduced sheet resistance of source/drain regions
US5476803A (en) Method for fabricating a self-spaced contact for semiconductor devices
JPH0324069B2 (en)
JPH0298143A (en) Manufacture of ldd structure polysilicon thin film transistor
JP2793141B2 (en) Method of manufacturing semiconductor device having trench element isolation film
JP2773146B2 (en) Method for manufacturing semiconductor device
JPH11145457A (en) Vertical field effect transistor
US5893759A (en) Semiconductor device and method of fabricating the same
JP2001036071A (en) Manufacture for semiconductor device
US7164186B2 (en) Structure of semiconductor device with sinker contact region
JPS63227059A (en) Semiconductor device and manufacture thereof
EP0849803B1 (en) Improvements in or relating to field effect transistor method
JP2745640B2 (en) Method for manufacturing field effect semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees