JPH05102179A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH05102179A
JPH05102179A JP25685791A JP25685791A JPH05102179A JP H05102179 A JPH05102179 A JP H05102179A JP 25685791 A JP25685791 A JP 25685791A JP 25685791 A JP25685791 A JP 25685791A JP H05102179 A JPH05102179 A JP H05102179A
Authority
JP
Japan
Prior art keywords
insulating film
gate
region
gate electrode
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25685791A
Other languages
Japanese (ja)
Inventor
Shinichi Takagi
信一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25685791A priority Critical patent/JPH05102179A/en
Publication of JPH05102179A publication Critical patent/JPH05102179A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title semiconductor device wherein its resistance value of an LDD region is reduced, its current driving power is high and its operating speed is high by a method wherein fixed electric charges having opposite conductivity type to that of a channel are introduced into an insulating film on the sidewall of a gate corresponding to the upper part of the LDD region or into the interface between the insulating film and a semiconductor substrate. CONSTITUTION:A gate region provided with a gate insulating film 3 and a gate electrode 4 which are laminated on a semiconductor substrate 1 is formed; a source region and drain region 7, 8 are formed on both sides of the gate region. In such a MOS field-effect transistor, fixed positive charges 9 in the case of an n-channel MOS field-effect transistor or fixed negative charges in the case of a p-channel MOS field-effect transistor are contained in an insulating film 6 at the sidewall part of the gate or in the interface between the insulating film 6 at the sidewall part of the gate and the semiconductor substrate 1. For example, fixed electric charges is introduced when the insulating film on the sidewall of a gate is deposited, or ions of Cs or the like are implanted after a gate electrode has been formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超小型半導体装置に係わ
り、特にMOS型電界効果トランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro semiconductor device, and more particularly to a MOS field effect transistor.

【0002】[0002]

【従来の技術】従来、Si MOS集積回路の高集積化
・高性能化は素子の微細化により達成されてきている。
特に、ゲート長を短縮することは、素子面積を低下させ
るだけでなく、素子の電流駆動力を向上させるため、動
作速度を改善するうえできわめて重要である。この際、
ゲート長1μm以下の領域では、いわゆるショートチャ
ネル効果を生ぜしめず、かつドレイン耐圧・ホットキャ
リア信頼性を確保するために、ソース・ドレイン領域に
並地して、ソース・ドレイン領域と同じ導電型でかつ不
純物濃度が低い領域を設ける。いわゆる、Lightl
y−dopedDrain(LDD)構造が採用されて
いる。しかしながら、チャネル長が微細化されていって
も上記のLDD領域の長さは、ドレイン端での電界集中
やショートチャネル効果を抑制するという観点から、ま
た製造上の難しさやマージンの確保の観点から、十分に
スケーリングする事ができない。加えて、ショートチャ
ネル効果の抑制のため、このLDD領域のpn接合深さ
を低く抑えることが必要であるため、この領域の不純物
濃度は十分高くすることができない。この結果として、
0.3μm以下程度になるとMOSFETの全抵抗に占
めるLDD領域の抵抗成分の割合が増大して、チャネル
長の低減によるドレイン電流の増大や動作速度の向上が
期待できないという問題点があった。
2. Description of the Related Art Conventionally, high integration and high performance of Si MOS integrated circuits have been achieved by miniaturization of elements.
In particular, shortening the gate length is extremely important not only for reducing the element area but also for improving the current driving force of the element and thus for improving the operation speed. On this occasion,
In a region with a gate length of 1 μm or less, in order to prevent the so-called short channel effect and to secure the drain breakdown voltage and hot carrier reliability, the source and drain regions are parallel to each other and have the same conductivity type as the source and drain regions. A region having a low impurity concentration is provided. So-called Lightl
A y-doped Drain (LDD) structure is adopted. However, even if the channel length is miniaturized, the length of the LDD region is from the viewpoint of suppressing electric field concentration and the short channel effect at the drain end, and from the viewpoint of manufacturing difficulty and securing a margin. , Can't scale well. In addition, in order to suppress the short channel effect, it is necessary to keep the pn junction depth of this LDD region low, so that the impurity concentration in this region cannot be made sufficiently high. As a result of this,
If the thickness is about 0.3 μm or less, the ratio of the resistance component of the LDD region to the total resistance of the MOSFET increases, so that there is a problem that the increase in drain current and the improvement in operating speed due to the reduction in channel length cannot be expected.

【0003】[0003]

【発明が解決しようとする課題】以上のように、従来型
のLDDを用いたMOSFETでは、ゲート長短縮にと
もないLDD領域の長さを十分短くすることができない
ため、この領域の抵抗がMOSFETの全抵抗に占める
割合が増大し、この結果としてドレイン電流が増大しな
くなって、極微細領域では動作速度の向上が期待できな
いという問題点を有していた。
As described above, in the MOSFET using the LDD of the conventional type, the length of the LDD region cannot be shortened sufficiently as the gate length is shortened. The ratio of the total resistance increases, and as a result, the drain current does not increase, and there is a problem in that an improvement in operating speed cannot be expected in the ultrafine region.

【0004】[0004]

【課題を解決するための手段】本発明に係わる半導体装
置は、LDD領域の上部に相当するゲート側壁絶縁膜中
あるいはこの絶縁膜とLDD領域を構成している半導体
基板との界面に、チャネルの導電型と反対符号の固定電
荷が導入されていることを特徴とするMOSFETを含
むことを基本とする。
According to the semiconductor device of the present invention, a channel is formed in the gate sidewall insulating film corresponding to the upper part of the LDD region or at the interface between this insulating film and the semiconductor substrate forming the LDD region. Basically, it includes a MOSFET characterized in that a fixed charge having a sign opposite to the conductivity type is introduced.

【0005】[0005]

【作用】本発明によれば、nチャネルMOSFETの場
合には、n型LDD領域上に正の固定電荷が、またpチ
ャネルMOSFETの場合には、p型LDD領域上に負
の固定電荷が形成されている。このため、LDD領域の
表面には静電的にキャリアの蓄積層が形成されるので、
上記の固定電荷が無い場合と比較して、LDD領域中の
キャリア濃度が高くなり、LDD領域の抵抗が低減され
る。LDD領域のキャリア増大をLDD層形成時のイオ
ン注入量の増大によって達成しようとした場合、pn接
合深さも深くなりショートチャネル効果を引き起こす
が、本発明では、キャリア濃度の増大は、固定電荷によ
って作られた静電ポテンシャルによっており、その影響
は半導体のごく表面にのみ影響を与えるだけなので、シ
ョートチャネル効果を招くことが無い。
According to the present invention, positive fixed charges are formed on the n-type LDD region in the case of the n-channel MOSFET, and negative fixed charges are formed on the p-type LDD region in the case of the p-channel MOSFET. Has been done. Therefore, since the carrier accumulation layer is electrostatically formed on the surface of the LDD region,
Compared with the case where there is no fixed charge, the carrier concentration in the LDD region becomes higher, and the resistance in the LDD region is reduced. If an attempt is made to increase the carriers in the LDD region by increasing the amount of ions implanted during the formation of the LDD layer, the pn junction depth also becomes deep and causes a short channel effect. It is due to the generated electrostatic potential, and its influence only affects the very surface of the semiconductor, so that the short channel effect is not brought about.

【0006】また上記の固定電荷の形成は、ゲート側壁
絶縁膜堆積時に膜中に導入する方法や、ゲート電極形成
後にセシウムなどのイオン注入を行なう方法などによっ
て実現できるが、いずれの場合にも自己整合的にLDD
領域上の固定電荷を形成できるため、チャネル部分には
影響を与えることがなく有利である。
The formation of the fixed charges described above can be realized by a method of introducing into the film at the time of depositing the gate side wall insulating film, a method of implanting ions such as cesium after forming the gate electrode, and in any case LDD consistently
Since a fixed charge can be formed on the region, the channel portion is not affected, which is advantageous.

【0007】[0007]

【実施例】以下、本発明の実施例を説明する。図1は、
本発明を用いたnチャネルMOSFETの一実施例を示
す断面図、図2は、本発明を用いたpチャネルMOSF
ETの一実施例を示す断面図である。ここで、各々
(a)は界面に電荷が存在する場合、(b)は側壁絶縁
膜中に電荷が存在する場合を示している。
EXAMPLES Examples of the present invention will be described below. Figure 1
FIG. 2 is a sectional view showing an embodiment of an n-channel MOSFET according to the present invention. FIG. 2 is a p-channel MOSF according to the present invention.
It is sectional drawing which shows one Example of ET. Here, each of (a) shows a case where electric charges exist in the interface, and (b) shows a case where electric charges exist in the sidewall insulating film.

【0008】まず、図1を説明する。p型シリコン基板
1上に素子分離酸化膜2が形成され、ゲート絶縁膜3を
介して、nチャネルMOSFETのゲート電極4が形成
されている。このゲート電極の両側及びゲート電極表面
に後酸化膜5が形成され、またゲート電極の両側に側壁
絶縁膜6が配置されている。これらに自己整合されて、
n型のLDD(Lightly doped drai
n)領域7及び高濃度n型のソース領域・ドレイン領域
8が形成されている。ここで、(a)図では後酸化膜5
とLDD領域7との界面に正電荷9が、(b)図では側
壁絶縁膜6中に正電荷9が配置されている。MOSFE
Tが形成された基板上は絶縁膜10で覆われており、こ
の絶縁膜はソース・ドレイン領域8上で開口され、金属
電極11が形成されている。
First, FIG. 1 will be described. An element isolation oxide film 2 is formed on a p-type silicon substrate 1, and a gate electrode 4 of an n-channel MOSFET is formed via a gate insulating film 3. A post oxide film 5 is formed on both sides of the gate electrode and the surface of the gate electrode, and side wall insulating films 6 are arranged on both sides of the gate electrode. Self-aligned to these,
n-type LDD (Lightly doped drain)
n) Region 7 and high-concentration n-type source / drain region 8 are formed. Here, in FIG.
And the LDD region 7 are provided with a positive charge 9, and in the side wall insulating film 6 in FIG. MOSFE
The substrate on which T is formed is covered with an insulating film 10, which is opened on the source / drain region 8 and a metal electrode 11 is formed.

【0009】次に、図2を説明する。n型シリコン基板
12上に素子分離酸化膜2が形成され、ゲート絶縁膜3
を介して、pチャネルMOSFETのゲート電極4が形
成されている。このゲート電極の両側及びゲート電極表
面に後酸化膜5が形成され、またゲート電極の両側に側
壁絶縁膜6が配置されている。これらに自己整合され
て、p型のLDD(Lightly doped dr
ain)領域13及び高濃度p型のソース領域・ドレイ
ン領域14が形成されている。ここで、(a)図では後
酸化膜5とLDD領域13との界面に負電荷15が、
(b)図では側壁絶縁膜6中に負電荷15が配置されて
いる。MOSFETが形成された基板上は絶縁膜10で
覆われており、この絶縁膜はソース・ドレイン領域14
上で開口され、金属電極11が形成されている。
Next, FIG. 2 will be described. The element isolation oxide film 2 is formed on the n-type silicon substrate 12, and the gate insulating film 3 is formed.
The gate electrode 4 of the p-channel MOSFET is formed via the. A post oxide film 5 is formed on both sides of the gate electrode and the surface of the gate electrode, and side wall insulating films 6 are arranged on both sides of the gate electrode. Self-aligned with these, p-type LDD (Lightly doped dr)
an ain) region 13 and a high-concentration p-type source / drain region 14 are formed. Here, in the figure (a), the negative charge 15 is generated at the interface between the post oxide film 5 and the LDD region 13.
In the diagram (b), the negative charges 15 are arranged in the sidewall insulating film 6. The substrate on which the MOSFET is formed is covered with an insulating film 10, which is the source / drain region 14
The metal electrode 11 is formed by opening above.

【0010】上記の正電荷9あるいは負電荷15は、代
表的には次に示す様な方法で形成できる。(1)セシウ
ムなどの酸化膜中あるいは酸化膜と半導体界面において
固定電荷を形成する元素をイオン注入する(イオン注入
されたセシウムがシリコン酸化膜中で正電荷となること
は例えば、IEEE Trans.Electron Devices,ED-34(1987)2
8に示されている)。(2)側壁絶縁膜堆積時に絶縁膜
内に固定電荷を閉じこめる。(3)側壁絶縁膜を形成し
た後、急速熱窒化あるいはプラズマ窒化を行なって、絶
縁膜内に固定電荷を形成する。(4)MOSFET形成
後に、ソース・ドレインとゲート間に高電圧を短時間印
加して、キャリア注入を行ない絶縁膜中の電子・正孔ト
ラップにキャリアを捕獲させる。
The above-mentioned positive charge 9 or negative charge 15 can be typically formed by the following method. (1) An element such as cesium which forms a fixed charge in an oxide film or at an interface between the oxide film and a semiconductor is ion-implanted. (Ion-implanted cesium becomes a positive charge in a silicon oxide film. Devices, ED-34 (1987) 2
8). (2) Fixed charges are trapped in the insulating film when the sidewall insulating film is deposited. (3) After forming the sidewall insulating film, rapid thermal nitriding or plasma nitriding is performed to form fixed charges in the insulating film. (4) After forming the MOSFET, a high voltage is applied between the source / drain and the gate for a short time to inject carriers to trap the carriers in the electron / hole traps in the insulating film.

【0011】図3〜図9は、上記の固定電荷形成法のな
かで、固定電荷をイオン注入により形成する方法の製造
工程を具体的に示す断面図である。これらの工程断面図
を参照しながら具体的な製造工程を説明する。
3 to 9 are sectional views specifically showing the manufacturing steps of the method of forming fixed charges by ion implantation in the above-mentioned fixed charge forming method. A specific manufacturing process will be described with reference to these process sectional views.

【0012】まず、通常のMOS集積回路の工程と同様
にシリコン基板1に素子分離絶縁膜2を形成し、ゲート
電極4となる多結晶シリコンを熱CVD法により堆積し
てパターニングを行なう。その後、LDD領域を形成す
るため、燐を注入エネルギー20KeV,ドーズ量4×
1013cm-2の条件でイオン注入する(図3)。その後、
後酸化膜を850℃、乾燥酸素中で形成する(図4)。
次に、正の固定電荷を形成するためのセシウムのイオン
注入を20KeV,4×1012cm-2の条件で行なう(図
5)。この後、側壁絶縁膜となる窒化シリコン膜17を
熱CVD法により100nm堆積する(図6)。次に、
RIE(反応性イオンエッチング)法により、窒化シリ
コン膜17をエッチバックし、ゲート側壁にシリコン窒
化膜6を残す(図7)。この後、ソース・ドレイン領域
8を形成するためのイオン注入を、イオン種に砒素を用
い、注入エネルギー30KeV,ドーズ量5×1015cm
-2の条件で行なう(図8)。最後に、CVD法によりシ
リコン酸化膜10を堆積し、パターニングを行なった後
アルミニウムなどの金属薄膜をスパッタリング法により
堆積する。更にこの金属薄膜をパターニングし、電極1
1を形成して完成する(図9)。
First, the element isolation insulating film 2 is formed on the silicon substrate 1 in the same manner as in the normal MOS integrated circuit process, and polycrystalline silicon to be the gate electrode 4 is deposited by the thermal CVD method and patterned. Then, in order to form an LDD region, phosphorus is implanted with an energy of 20 KeV and a dose of 4 ×.
Ions are implanted under the condition of 10 13 cm -2 (FIG. 3). afterwards,
A post oxide film is formed at 850 ° C. in dry oxygen (FIG. 4).
Next, cesium ion implantation for forming positive fixed charges is performed under the conditions of 20 KeV and 4 × 10 12 cm −2 (FIG. 5). After that, a silicon nitride film 17 to be a sidewall insulating film is deposited to 100 nm by a thermal CVD method (FIG. 6). next,
The silicon nitride film 17 is etched back by the RIE (reactive ion etching) method to leave the silicon nitride film 6 on the side wall of the gate (FIG. 7). After that, the ion implantation for forming the source / drain regions 8 is performed by using arsenic as the ion species, the implantation energy is 30 KeV, and the dose amount is 5 × 10 15 cm.
Perform under the condition of -2 (Fig. 8). Finally, the silicon oxide film 10 is deposited by the CVD method, patterned, and then a metal thin film such as aluminum is deposited by the sputtering method. Further, by patterning this metal thin film, the electrode 1
1 is formed and completed (FIG. 9).

【0013】本実施例では、側壁絶縁膜として窒化シリ
コン膜を用いたが、本発明はこれに限るものではなく、
酸化シリコン膜、酸化タンタル膜なども同様に用いるこ
とができる。
In this embodiment, the silicon nitride film is used as the side wall insulating film, but the present invention is not limited to this.
A silicon oxide film, a tantalum oxide film, or the like can be used as well.

【0014】[0014]

【発明の効果】以上述べたように本発明によれば、極微
細チャネル長のLDD型MOSFETにおいて、ショー
トチャネル効果などの弊害を招くことなく、 LDD領
域の抵抗値を低減させることができ、高い電流駆動力・
高速の動作速度を実現させることができる。
As described above, according to the present invention, in the LDD type MOSFET having an extremely fine channel length, the resistance value of the LDD region can be reduced without causing any adverse effect such as the short channel effect. Current driving force
A high operating speed can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例のnチャネルMOSFET
の断面図。
FIG. 1 is an n-channel MOSFET according to an embodiment of the present invention.
Sectional view of.

【図2】 本発明の一実施例のpチャネルMOSFET
の断面図。
FIG. 2 is a p-channel MOSFET according to an embodiment of the present invention.
Sectional view of.

【図3】 同断面図。FIG. 3 is a sectional view of the same.

【図4】 同断面図。FIG. 4 is a sectional view of the same.

【図5】 同断面図。FIG. 5 is a sectional view of the same.

【図6】 同断面図。FIG. 6 is a sectional view of the same.

【図7】 同断面図。FIG. 7 is a sectional view of the same.

【図8】 同断面図。FIG. 8 is a sectional view of the same.

【図9】 同断面図。FIG. 9 is a sectional view of the same.

【符号の説明】[Explanation of symbols]

1…p型シリコン基板 2…素子分離酸化膜 3…ゲート絶縁膜 4…ゲート電極 5…後酸化膜 6…側壁絶縁膜 7…n型のLDD(Lightly doped dr
ain)領域 8…高濃度n型のソース領域・ドレイン領域 9…正の固定電荷 10…層間絶縁膜 11…金属電極 12…n型シリコン基板 13…p型のLDD(Lightly doped d
rain)領域 14…高濃度p型ソース・ドレイン領域 15…負の固定電荷 16…n型のイオン注入領域 17…窒化シリコン膜
DESCRIPTION OF SYMBOLS 1 ... P-type silicon substrate 2 ... Element isolation oxide film 3 ... Gate insulating film 4 ... Gate electrode 5 ... Post oxide film 6 ... Side wall insulating film 7 ... N-type LDD (Lightly doped dr)
ain) region 8 ... High-concentration n-type source / drain region 9 ... Positive fixed charge 10 ... Interlayer insulating film 11 ... Metal electrode 12 ... N-type silicon substrate 13 ... P-type LDD (Lightly doped d)
Rain region 14 ... High-concentration p-type source / drain region 15 ... Negative fixed charge 16 ... N-type ion implantation region 17 ... Silicon nitride film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に積層されたゲート絶縁膜
及びゲート電極を備えたゲート領域と、このゲート領域
の両側にソース、ドレイン領域が形成されたMOS型電
界効果トランジスタにおいて、ゲート側壁部分の絶縁膜
中あるいはゲート側壁部分の絶縁膜と半導体基板界面
に、nチャネルMOS型電界効果トランジスタならば固
定正電荷、pチャネルMOS型電界効果トランジスタな
らば固定負電荷を含むことを特徴とする半導体装置。
1. A MOS type field effect transistor having a gate region having a gate insulating film and a gate electrode laminated on a semiconductor substrate, and a source and drain regions formed on both sides of the gate region. A semiconductor device characterized in that a fixed positive charge is included in an n-channel MOS type field effect transistor and a fixed negative charge is included in a p-channel MOS type field effect transistor at an interface between the insulating film in the insulating film or the side wall of the gate and the semiconductor substrate. ..
【請求項2】 半導体基板上にゲート絶縁膜を形成する
工程と、このゲート絶縁膜上にゲート電極を形成する工
程と、このゲート電極の側壁部に絶縁膜を形成する工程
と、この側壁部分の絶縁膜中あるいはこの側壁部分の絶
縁膜と半導体界面において固定電荷となる元素をゲート
電極形成後にイオン注入する工程とを具備したことを特
徴とする半導体装置の製造方法。
2. A step of forming a gate insulating film on a semiconductor substrate, a step of forming a gate electrode on the gate insulating film, a step of forming an insulating film on a side wall portion of the gate electrode, and a side wall portion thereof. 2. A method for manufacturing a semiconductor device, comprising the step of: ion-implanting an element that becomes a fixed charge in the insulating film in the insulating film or on the side wall of the insulating film after forming a gate electrode.
JP25685791A 1991-10-04 1991-10-04 Semiconductor device and its manufacture Pending JPH05102179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25685791A JPH05102179A (en) 1991-10-04 1991-10-04 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25685791A JPH05102179A (en) 1991-10-04 1991-10-04 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH05102179A true JPH05102179A (en) 1993-04-23

Family

ID=17298385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25685791A Pending JPH05102179A (en) 1991-10-04 1991-10-04 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH05102179A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175376A (en) * 2003-12-15 2005-06-30 Sharp Corp Semiconductor device and its manufacturing method
JP2005175378A (en) * 2003-12-15 2005-06-30 Sharp Corp Semiconductor device and its manufacturing method
JP2006270089A (en) * 2005-02-28 2006-10-05 Infineon Technologies Ag Field effect transistor with gate spacer structure and low-resistance channel coupling
JP2010067920A (en) * 2008-09-12 2010-03-25 Sharp Corp Photoelectric conversion device
JP2010067921A (en) * 2008-09-12 2010-03-25 Sharp Corp Photoelectric conversion device
JP2011086961A (en) * 2011-01-26 2011-04-28 Sharp Corp Photoelectric conversion device
US20120098055A1 (en) * 2010-07-06 2012-04-26 Maxpower Semiconductor, Inc. Power Semiconductor Devices, Structures, and Related Methods
US8330186B2 (en) * 2008-07-30 2012-12-11 Maxpower Semiconductor, Inc. Lateral devices containing permanent charge
US20140239390A1 (en) * 2008-07-30 2014-08-28 Maxpower Semiconductor, Inc. Lateral devices containing permanent charge
US10062788B2 (en) * 2008-07-30 2018-08-28 Maxpower Semiconductor Inc. Semiconductor on insulator devices containing permanent charge

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175378A (en) * 2003-12-15 2005-06-30 Sharp Corp Semiconductor device and its manufacturing method
JP2005175376A (en) * 2003-12-15 2005-06-30 Sharp Corp Semiconductor device and its manufacturing method
JP4713078B2 (en) * 2003-12-15 2011-06-29 シャープ株式会社 Semiconductor device manufacturing method and semiconductor device
JP4723182B2 (en) * 2003-12-15 2011-07-13 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP2006270089A (en) * 2005-02-28 2006-10-05 Infineon Technologies Ag Field effect transistor with gate spacer structure and low-resistance channel coupling
US8946769B2 (en) * 2008-07-30 2015-02-03 Maxpower Semiconductor Inc. Lateral devices containing permanent charge
US10062788B2 (en) * 2008-07-30 2018-08-28 Maxpower Semiconductor Inc. Semiconductor on insulator devices containing permanent charge
US9419085B2 (en) * 2008-07-30 2016-08-16 Maxpower Semiconductor, Inc. Lateral devices containing permanent charge
US20160172452A1 (en) * 2008-07-30 2016-06-16 Maxpower Semiconductor, Inc. Lateral devices containing permanent charge
US8330186B2 (en) * 2008-07-30 2012-12-11 Maxpower Semiconductor, Inc. Lateral devices containing permanent charge
US9196724B2 (en) * 2008-07-30 2015-11-24 Maxpower Semiconductor Inc. Lateral devices containing permanent charge
US20140239390A1 (en) * 2008-07-30 2014-08-28 Maxpower Semiconductor, Inc. Lateral devices containing permanent charge
JP2010067921A (en) * 2008-09-12 2010-03-25 Sharp Corp Photoelectric conversion device
JP2010067920A (en) * 2008-09-12 2010-03-25 Sharp Corp Photoelectric conversion device
US8390060B2 (en) * 2010-07-06 2013-03-05 Maxpower Semiconductor, Inc. Power semiconductor devices, structures, and related methods
US20120098055A1 (en) * 2010-07-06 2012-04-26 Maxpower Semiconductor, Inc. Power Semiconductor Devices, Structures, and Related Methods
JP2011086961A (en) * 2011-01-26 2011-04-28 Sharp Corp Photoelectric conversion device

Similar Documents

Publication Publication Date Title
JP2835216B2 (en) Method for manufacturing semiconductor device
US4935379A (en) Semiconductor device and method of manufacturing the same
US4788160A (en) Process for formation of shallow silicided junctions
US6255152B1 (en) Method of fabricating CMOS using Si-B layer to form source/drain extension junction
JPH10510951A (en) Method for manufacturing an asymmetric LDD MOS device
JPH01205470A (en) Semiconductor device and its manufacture
JPH06204469A (en) Field-effect transistor and manufacture thereof
US6217357B1 (en) Method of manufacturing two-power supply voltage compatible CMOS semiconductor device
JP3954140B2 (en) Semiconductor device and manufacturing method thereof
JPH05102179A (en) Semiconductor device and its manufacture
JPH08264789A (en) Insulated gate semiconductor device and manufacture
US20050062129A1 (en) Semiconductor device and method for manufacturing the same
JPH0685262A (en) Field effect transistor and its manufacture
US6087238A (en) Semiconductor device having reduced-width polysilicon gate and non-oxidizing barrier layer and method of manufacture thereof
JPH04212467A (en) Semiconductor device and manufacture thereof
JP2888857B2 (en) Semiconductor device
JPH0234936A (en) Semiconductor device and its manufacture
JP3105229B2 (en) Semiconductor device and manufacturing method thereof
JPH06268057A (en) Manufacture of semiconductor device
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
JP2573319B2 (en) Method for manufacturing semiconductor device
JP3708370B2 (en) Semiconductor device and manufacturing method thereof
JP3132455B2 (en) Method for manufacturing semiconductor device
JPH0637106A (en) Manufacture of semiconductor device
JP3338128B2 (en) Semiconductor device