JPH0346238A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0346238A
JPH0346238A JP1181862A JP18186289A JPH0346238A JP H0346238 A JPH0346238 A JP H0346238A JP 1181862 A JP1181862 A JP 1181862A JP 18186289 A JP18186289 A JP 18186289A JP H0346238 A JPH0346238 A JP H0346238A
Authority
JP
Japan
Prior art keywords
drain
source
layer
gate electrode
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1181862A
Other languages
Japanese (ja)
Inventor
Takashi Hosaka
俊 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1181862A priority Critical patent/JPH0346238A/en
Publication of JPH0346238A publication Critical patent/JPH0346238A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To inhibit the spread of a depletion layer and to obtain stable transistor characteristics by a method wherein with the first source and drain of a P-channel MOS transistor formed, nitrogen or oxygen ions are implanted and high-resistance regions are respectively formed between the first source and drain and the second source and drain of the transistor. CONSTITUTION:First source and drain 4 and 5 are formed and thereafter, N or O ion-implantated layers 6 are formed. Then, when second source and drain 8 and 9 are formed, the structure of a P-channel MOS transistor becomes a structure, in which the high-resistance layers 6 of a strong N or O concentration respectively exist in the vicinities of the shoulders of the P-type impurity second source and drain 8 and 9. With this when a voltage is applied to the first and second sources and drains 4, 5, 8 and 9, a depletion layer 10 is generated, but there are the layers 6 of a strong N or O concentration at the circumferential parts, at which the spread of the layer 10 becomes widest, of the second source and drain 8 and 9, in short, at the parts of the shoulders of the source and drain 8 and 9 and have a high resistance. Thereby, the existence of the layers 6 inhibits the spread of the layer 10 and stable transistor characteristics can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は金属、酸化物、半導体(以下MOSと呼ぶ)
型半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to metals, oxides, and semiconductors (hereinafter referred to as MOS).
The present invention relates to a method for manufacturing a type semiconductor device.

〔発明の概要〕[Summary of the invention]

PチャネルMOS型トランジスタのゲート電極を形成し
た後に、P型の不純物濃度を有する第1のソース・ドレ
インを形成すると同時にゲート電極をマスクとして窒素
または酸素をイオン打ち込みし、次にゲート電極の側壁
スペーサーを形成し、さらにP型の不純物濃度を有する
第2のソース・ドレインを形成する0以上により、ソー
ス・ドレインの間に抵抗の高い領域を形成する。
After forming the gate electrode of the P-channel MOS transistor, a first source/drain having a P-type impurity concentration is formed, and at the same time nitrogen or oxygen ions are implanted using the gate electrode as a mask, and then sidewall spacers of the gate electrode are formed. A region with high resistance is formed between the source and drain by forming a second source/drain having a P-type impurity concentration.

〔従来の技術〕[Conventional technology]

第3図に示す様に、ゲート電極23のチャネル長lが2
.0μmより短くなるとPMOS)ランジスタのソース
・ドレインの間の電界が増してきてパンチスルーが発生
し易くなるために、P型MOSトランジスタのソース・
ドレインをゲートt123をマスクにして自己整合的に
2回形成していた。
As shown in FIG. 3, the channel length l of the gate electrode 23 is 2.
.. If the length is less than 0 μm, the electric field between the source and drain of the PMOS transistor increases and punch-through is more likely to occur.
The drain was formed twice in a self-aligned manner using the gate t123 as a mask.

すなわち、ゲート電極23を形成した後にP型の不純物
濃度を有する第1のソース・ドレイン24.25を形成
し、次に側壁のスペーサー26を作成する。
That is, after forming the gate electrode 23, first sources and drains 24 and 25 having a P-type impurity concentration are formed, and then sidewall spacers 26 are formed.

次に上記のゲート電極23と側壁スペーサー26をマス
クにしてP型の不純物濃度を有する第2のソ−ス・ドレ
イン27.28を形成する。ここで第1のソース・ドレ
イン24.25の濃度は第2のソース・ドレイン27.
28の濃度より一般には薄くなっている。
Next, using the gate electrode 23 and sidewall spacer 26 as masks, second sources and drains 27 and 28 having a P-type impurity concentration are formed. Here, the concentration of the first source/drain 24.25 is the same as that of the second source/drain 27.25.
It is generally thinner than the concentration of No. 28.

この構造を一般にはLightly Doped Dr
ain(略してLDD))ランジスタと呼んでいる。
This structure is generally called Lightly Doped Dr.
ain (abbreviated as LDD)) transistor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

LDDトランジスタになっても、ソース・ドレインを形
成してからの熱処理温度が高くなるとP型の不純物濃度
の高い第2のソース・ドレインが横方向に伸びてくるか
、あるいはゲート電極23が短くなってくるかすると、
実質的な有効チャネル長が短くなってきて、第3図に示
す襟に、ソース・ドレインに電圧を印加すると空乏層2
9が発生し、電界を大きくするに従い空乏層中が広がり
ソースとドレインの空乏層が直接つながって大きなt流
が流れるようになり、トランジスタとしての特性を示さ
なくなる0本発明はこの欠点を解消した半導体装置の製
造方法を提供することを目的とする。
Even in the case of an LDD transistor, if the heat treatment temperature after forming the source/drain becomes high, the second source/drain with a high P-type impurity concentration will extend laterally, or the gate electrode 23 will become short. When you run around,
As the actual effective channel length becomes shorter, as shown in Figure 3, when a voltage is applied to the source and drain, the depletion layer 2
9 occurs, and as the electric field is increased, the depletion layer expands and the source and drain depletion layers are directly connected, causing a large t current to flow, and the transistor no longer exhibits characteristics as a transistor.0 The present invention has solved this drawback. The purpose of the present invention is to provide a method for manufacturing a semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために、下記の方法を採用
した。即ち、PチャネルMOS型トランジスタの製造方
法において、ゲート電極を形成する工程と、P型のシリ
コン基板内に窒素または酸素のイオン打ち込みを行う工
程と、P型の不純物層を前記シリコンS板肉に作り第1
のソースおよびドレインを形成する工程と、ゲート電極
の側壁絶縁膜を形成する工程と、P型の不純物層を前記
シリコン基板内に作り第2のソースおよびドレインを形
成する工程とから成る事を特徴とする半導体装置の製造
方法である。
In order to achieve the above object, the present invention adopted the following method. That is, a method for manufacturing a P-channel MOS transistor includes a step of forming a gate electrode, a step of implanting nitrogen or oxygen ions into a P-type silicon substrate, and a step of implanting a P-type impurity layer into the silicon S plate. Making first
A step of forming a second source and a drain, a step of forming a sidewall insulating film of a gate electrode, and a step of forming a P-type impurity layer in the silicon substrate to form a second source and drain. This is a method for manufacturing a semiconductor device.

〔実施例〕〔Example〕

第1図をもとに本発明の実施例を詳細に説明する。第1
図fa)に示す様にシリコン(Si)などの半導体基板
1の上にゲート絶縁膜2を形成した後、ゲート電極3を
形成し、さらにこのゲート電極3をマスクにして自己整
合的にP型の不純物層を有するソース・ドレイン4.5
を形成する。半導体基板1はシリコンの場合はN型シリ
コンまたはP型シリコン内に形成されたNウェルである
。またゲート絶縁膜2は、シリコン酸化膜が一般的であ
るが、シリコン窒化膜やシリコン酸窒化膜やこれらの多
till!なとの他の絶縁膜でも良い、さらにゲート電
極3は多結晶シリコン膜や金属膜やポリサイド膜などで
ある。
An embodiment of the present invention will be described in detail based on FIG. 1st
As shown in Figure fa), after forming a gate insulating film 2 on a semiconductor substrate 1 such as silicon (Si), a gate electrode 3 is formed, and then using this gate electrode 3 as a mask, a P-type Source/drain with an impurity layer of 4.5
form. In the case of silicon, the semiconductor substrate 1 is an N-well formed in N-type silicon or P-type silicon. Further, the gate insulating film 2 is generally a silicon oxide film, but may also be a silicon nitride film, a silicon oxynitride film, or a variety of these films. Furthermore, the gate electrode 3 may be a polycrystalline silicon film, a metal film, a polycide film, or the like.

次に第1図(1))に示す様に窒素(N)または酸素(
0)をイオン注入する。ゲート電極3をマスクにしてイ
オン注入されるのでゲート電極3の直下のチャネルには
Nまたは0はイオン注入されない。
Next, as shown in Figure 1 (1)), nitrogen (N) or oxygen (
0) is ion-implanted. Since ions are implanted using the gate electrode 3 as a mask, N or 0 ions are not implanted into the channel directly under the gate electrode 3.

またゲート電極3にイオン注入しない時はゲート電極3
上にフォトレジスト等を残しておいても良い、さてこの
時のイオン注入の飛程(Rp)は半導体基板1の表面か
ら将来第2のソース・ドレインの空乏層が伸びる領域の
深さに相当する距離で良い、たとえば、ソース・ドレイ
ンの拡散深さが0.3μmであれば、イオン注入の飛程
は0.3μm±0.05μmが良い、もちろん、この範
囲から外れても効果は小さくなるがソースとドレインの
空乏層が接触する現象を防止する事はできる。また、N
あるいは0のイオン注入の飛程は第1のソース・ドレイ
ン4,5より下に来るようにする事が望ましい、すなわ
ち、第1のソース・ドレイン4゜5のP型(たとえばB
やB F zなと)の不純物のイオン注入の飛程が0.
1μmならばNあるいは0のイオン注入の飛程は0.1
 μmより深くなるようにする。第1のソース・ドレイ
ン4,5の不純物濃度は第2のソース・ドレインの不純
物濃度より一般に薄くなっていて、第1のソース・ドレ
イン4.5の空乏層の伸びは第2の゛ソース・ドレイン
の空乏層の伸びより一般には小さくなっている。
In addition, when ions are not implanted into the gate electrode 3, the gate electrode 3
You may leave a photoresist or the like on top.The ion implantation range (Rp) at this time corresponds to the depth of the region where the second source/drain depletion layer will extend from the surface of the semiconductor substrate 1 in the future. For example, if the source/drain diffusion depth is 0.3 μm, the ion implantation range is preferably 0.3 μm ± 0.05 μm. Of course, the effect will be smaller if it is outside this range. However, it is possible to prevent the source and drain depletion layers from coming into contact with each other. Also, N
Alternatively, it is desirable that the range of ion implantation for 0 is below the first source/drain 4, 5. In other words, it is preferable that the range of ion implantation is below the first source/drain 4,5.
The range of impurity ion implantation is 0.
If the diameter is 1 μm, the range of N or 0 ion implantation is 0.1
The depth should be deeper than μm. The impurity concentration of the first source/drain 4.5 is generally lower than the impurity concentration of the second source/drain. It is generally smaller than the extension of the drain depletion layer.

さらに、Nあるいは○のイオン注入量は多ければ多いは
ど空乏層の伸びの防止には効果があるが、イオン注入に
よるダメッジが発生する事および余りに絶縁膜に近くな
る事によりリーク電流の増大や易動度の低下を引き起こ
すので望ましくはない。
Furthermore, the larger the amount of N or ○ ions implanted, the more effective it is in preventing the extension of the depletion layer. This is not desirable because it causes a decrease in mobility.

従ってNまたはOのイオン注入量はIXIQ”/cdか
ら5XIQ1S−の範囲が良い。
Therefore, the amount of N or O ions to be implanted is preferably in the range of IXIQ''/cd to 5XIQ1S-.

次に第1図(C1に示す様にゲート絶縁膜3の側壁にス
ペーサー絶縁膜7を形成する。この形成方法は一般のL
DDトランジスタのスペーサーの形成方法と同じである
。この絶縁M7はシリコン酸化膜(SiCh膜)やシリ
コン窒化膜(S is Na膜)やシリコン酸窒化膜(
StoxNy膜〉などである。
Next, as shown in FIG. 1 (C1), a spacer insulating film 7 is formed on the side wall of the gate insulating film 3.
This method is the same as the method for forming a spacer for a DD transistor. This insulation M7 is made of silicon oxide film (SiCh film), silicon nitride film (Si is Na film), silicon oxynitride film (
StoxNy membrane), etc.

次に第1図+dlに示す様に、ゲート電極3と側壁スペ
ーサーをマスクにしてP型の不純物をシリコン基板1の
中に入れ、第2のソース・ドレイン8゜9を形成する。
Next, as shown in FIG. 1+dl, P-type impurities are introduced into the silicon substrate 1 using the gate electrode 3 and sidewall spacers as masks to form a second source/drain 8.9.

P型の不純物の導入方法として、イオン注入法あるいは
拡散法が挙げられる。イオン注入法の場合はボロン(B
゛)あるいはフン化ボロン(BF2゜)等のイオンで行
う、さらにその後の熱処理により、第2のソース・ドレ
イン層が拡散していくが、NまたはOのイオン注入層の
付近では第2のソース・ドレイン層は余り伸びていかな
い。
Examples of methods for introducing P-type impurities include ion implantation and diffusion. In the case of ion implantation, boron (B
The second source/drain layer is diffused by further heat treatment performed with ions such as ゛) or boron fluoride (BF2゜), etc., but the second source/drain layer is diffused near the N or O ion implantation layer.・The drain layer does not stretch much.

以上の様にして作成したP型トランジスタは第1図+d
lに示す様にP型不純物の第2のソースおよびドレイン
8,9の肩の付近にNあるいはOの濃度の濃い高抵抗の
層6が存在する構造となっている。
The P-type transistor created as described above is shown in Figure 1+d.
As shown in FIG. 1, a high-resistance layer 6 with a high concentration of N or O exists near the shoulders of the second source and drains 8 and 9 of P-type impurities.

〔発明の効果〕〔Effect of the invention〕

第2図に示す様に、第1および第2のソースおよびドレ
イン4,5,8.9に電圧を印加した時に空乏層10が
発生する。しかし最も空乏1i10の伸びが大きくなる
第2のソースおよびドレイン8゜9の円周部つまり肩の
部分にはNあるいは○の濃度が儂いJi!6があり高い
抵抗を有している。このN6の存在の為に空乏層の伸び
が抑制され、たとえゲート電極3の長さlが2μm以下
(もちろん1.0μm以下も含む)になってもソース側
とドレイン側の空乏層が通常の使用電界のもとでは接触
する事はなく、安定したトランジスタ特性を示す。
As shown in FIG. 2, a depletion layer 10 is generated when a voltage is applied to the first and second sources and drains 4, 5, 8.9. However, the concentration of N or ○ is low at the circumferential portion of the second source and drain 8°9, that is, at the shoulder portion, where the depletion 1i10 extends the most. 6 and has high resistance. Due to the presence of N6, the extension of the depletion layer is suppressed, and even if the length l of the gate electrode 3 becomes 2 μm or less (of course, it also includes 1.0 μm or less), the depletion layer on the source side and drain side is There is no contact under the electric field used, and it exhibits stable transistor characteristics.

また実施例においても説明した様に、第1のソース・ド
レイン4,5は薄く表面付近にあるために、実効チャネ
ル長は小さくスピードの速いトランジスタが形成され、
しかもバンチスルー耐圧の大きいトランジスタとなる。
Furthermore, as explained in the embodiment, since the first sources and drains 4 and 5 are thin and located near the surface, a transistor with a small effective channel length and high speed is formed.
Moreover, the transistor has a large bunch-through breakdown voltage.

以上の効果は通常使用している電源電圧10V以下の説
明であるが、さらにこの発明はIOV以上の高い電圧を
印加する高耐圧用デバイスにも応用できる事は言うまで
もない。
Although the above effects are explained for the normally used power supply voltage of 10V or less, it goes without saying that the present invention can also be applied to high-voltage devices to which a voltage higher than IOV is applied.

尚、本実施例では第1のソース・ドレイン4゜5を形成
した後にNあるいはOのイオン注入層6を形成する様に
説明しているが、この逆に行っても同様の効果が得られ
る。すなわち、Nあるいは○のイオン注入層6を形成し
た後に第1のソース・ドレイン4.5を形成しても良い
In this embodiment, it is explained that the N or O ion implantation layer 6 is formed after the first source/drain 4.5 is formed, but the same effect can be obtained even if the process is performed in the opposite direction. . That is, the first source/drain 4.5 may be formed after forming the N or O ion implantation layer 6.

【図面の簡単な説明】 第1図(a)〜(diは本発明の製造方法の工程順を示
す断面図、第2図は本発明の効果を示す断面図、第3図
は従来のトランジスタの構造を示す断面図である。 1.21・・・半導体基板 2.22・・・ゲート絶縁膜 3.23・・・ゲート電極 4、 5.24.25・・・第1のソース・ドレイン6
・・・・・Nまたは○のイオン打込層7.26・・・側
壁絶縁膜 8、 9.27.28・・・第2のソース・ドレイン1
0゜ 29・ ・空乏層 ・空乏層中 以 上
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1(a) to (di) are cross-sectional views showing the process order of the manufacturing method of the present invention, FIG. 2 is a cross-sectional view showing the effects of the present invention, and FIG. 3 is a conventional transistor. 1.21...Semiconductor substrate 2.22...Gate insulating film 3.23...Gate electrode 4, 5.24.25...First source/drain 6
...N or O ion implantation layer 7.26...Side wall insulating film 8, 9.27.28...Second source/drain 1
0゜29・・Depletion layer・Medium depletion layer or above

Claims (1)

【特許請求の範囲】[Claims] PチャネルMOS型トランジスタの製造方法において、
ゲート電極を形成する工程と、P型のシリコン基板内に
窒素または酸素のイオン打ち込みを行う工程と、P型の
不純物層を前記シリコン基板内に作り第1のソースおよ
びドレインを形成する工程と、ゲート電極の側壁絶縁膜
を形成する工程と、P型の不純物層を前記シリコン基板
内に作り第2のソースおよびドレインを形成する工程と
から成る事を特徴とする半導体装置の製造方法。
In a method of manufacturing a P-channel MOS transistor,
a step of forming a gate electrode; a step of implanting nitrogen or oxygen ions into a P-type silicon substrate; and a step of forming a P-type impurity layer in the silicon substrate to form a first source and a drain; A method for manufacturing a semiconductor device, comprising the steps of forming a sidewall insulating film of a gate electrode, and forming a P-type impurity layer in the silicon substrate to form a second source and drain.
JP1181862A 1989-07-13 1989-07-13 Manufacture of semiconductor device Pending JPH0346238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1181862A JPH0346238A (en) 1989-07-13 1989-07-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181862A JPH0346238A (en) 1989-07-13 1989-07-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0346238A true JPH0346238A (en) 1991-02-27

Family

ID=16108140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181862A Pending JPH0346238A (en) 1989-07-13 1989-07-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0346238A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198799A (en) * 1991-02-22 1993-08-06 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
US6300664B1 (en) 1993-09-02 2001-10-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of fabricating the same
US6475887B1 (en) * 1993-09-16 2002-11-05 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device
JP2003078136A (en) * 2001-09-05 2003-03-14 Sanyo Electric Co Ltd Method for manufacturing semiconductor device
US6838698B1 (en) 1990-12-25 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having source/channel or drain/channel boundary regions
US7253437B2 (en) 1990-12-25 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Display device having a thin film transistor
JP2011029661A (en) * 1993-09-02 2011-02-10 Renesas Electronics Corp Semiconductor device and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838698B1 (en) 1990-12-25 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having source/channel or drain/channel boundary regions
US7253437B2 (en) 1990-12-25 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Display device having a thin film transistor
US7375375B2 (en) 1990-12-25 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
JPH05198799A (en) * 1991-02-22 1993-08-06 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
US6300664B1 (en) 1993-09-02 2001-10-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of fabricating the same
US6521527B1 (en) 1993-09-02 2003-02-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of fabricating the same
JP2011029661A (en) * 1993-09-02 2011-02-10 Renesas Electronics Corp Semiconductor device and method of manufacturing the same
US6475887B1 (en) * 1993-09-16 2002-11-05 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device
JP2003078136A (en) * 2001-09-05 2003-03-14 Sanyo Electric Co Ltd Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP3489871B2 (en) MOS transistor and manufacturing method thereof
US5557129A (en) Semiconductor MOSFET device having a shallow nitrogen implanted channel region
US6051459A (en) Method of making N-channel and P-channel IGFETs using selective doping and activation for the N-channel gate
JPH0730107A (en) High voltage withstand transistor and its manufacture
US6451676B2 (en) Method for setting the threshold voltage of a MOS transistor
JPH0346238A (en) Manufacture of semiconductor device
JPH0878674A (en) Semiconductor device and its manufacture and bipolar transistor
US6153910A (en) Semiconductor device with nitrogen implanted channel region
JPH0338839A (en) Manufacture of semiconductor device
JPH0234936A (en) Semiconductor device and its manufacture
JP2860482B2 (en) Method for manufacturing semiconductor device
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
JPH0342872A (en) Manufacture of semiconductor device
JPH04251939A (en) Semiconductor device and manufacture thereof
JPH05235346A (en) Semiconductor device and manufacture thereof
JP3014138B2 (en) Semiconductor device
JPH0575045A (en) Manufacture of semiconductor device
JPH11204783A (en) Semiconductor device and manufacture therefor
JPH0346272A (en) Manufacture of semiconductor device
JPH05251697A (en) Mosfet and its manufacture
JPH02102543A (en) Manufacture of insulated gate type field-effect transistor
JPS6367778A (en) Manufacture of semiconductor device
JPH0410547A (en) Manufacture of semiconductor device
JPH06151452A (en) Manufacture of mos semiconductor device
JPH05226595A (en) Complementary mis transistor device