JPH04251939A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH04251939A
JPH04251939A JP1395791A JP1395791A JPH04251939A JP H04251939 A JPH04251939 A JP H04251939A JP 1395791 A JP1395791 A JP 1395791A JP 1395791 A JP1395791 A JP 1395791A JP H04251939 A JPH04251939 A JP H04251939A
Authority
JP
Japan
Prior art keywords
source
gate electrode
region
diffusion layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1395791A
Other languages
Japanese (ja)
Inventor
Masayoshi Shirahata
正芳 白畑
Atsushi Maeda
敦 前田
Junko Komori
小守 純子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1395791A priority Critical patent/JPH04251939A/en
Publication of JPH04251939A publication Critical patent/JPH04251939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent punch-through in a MOSFET by keeping the drain depletion layer from extending toward the source even in the case of a lightly doped substrate. CONSTITUTION:After a gate electrode 4 is formed, an insulating film 5 is deposited on an area away from the gate electrode. The insulating film 5 and gate electrode 4 are used as a mask, and oxygen ions are obliquely implanted to form a buried insulating layer 7 in a channel region.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は半導体装置、特にMO
S電界効果型半導体装置及びその製造方法に関するもの
である。
[Industrial Application Field] This invention relates to semiconductor devices, especially MO
The present invention relates to an S field effect semiconductor device and a method for manufacturing the same.

【0002】0002

【従来の技術】図2は従来のこの種の半導体装置の製造
方法を示す断面図であり、図において1はP型シリコン
基板、2はP型シリコン基板1上に形成された絶縁膜、
3はP型シリコン基板1上の所定の場所に設けられた素
子分離のためのLOCOS酸化膜(フィールド酸化膜)
、4はゲート電極、9,10はそれぞれN型不純物を注
入してできたN型ソース及びドレイン拡散層領域である
2. Description of the Related Art FIG. 2 is a cross-sectional view showing a conventional method for manufacturing a semiconductor device of this type. In the figure, 1 is a P-type silicon substrate, 2 is an insulating film formed on the P-type silicon substrate 1,
3 is a LOCOS oxide film (field oxide film) for element isolation provided at a predetermined location on the P-type silicon substrate 1;
, 4 are gate electrodes, and 9 and 10 are N-type source and drain diffusion layer regions formed by implanting N-type impurities, respectively.

【0003】次に製造方法について説明する。まず、図
2(a)に示すように、P型シリコン基板1の上にゲー
ト酸化膜2と、素子分離のためのLOCOS酸化膜3を
形成する。そしてゲート酸化膜2上にゲート電極4を形
成した後、これをマスクとして、砒素等のN型不純物を
矢印8で示される方向からイオン注入する。これによっ
て図2(b)に示すように、ソース拡散層領域9および
ドレイン拡散層領域10を形成する。
Next, the manufacturing method will be explained. First, as shown in FIG. 2A, a gate oxide film 2 and a LOCOS oxide film 3 for element isolation are formed on a P-type silicon substrate 1. After forming a gate electrode 4 on the gate oxide film 2, using this as a mask, ions of an N-type impurity such as arsenic are implanted from the direction shown by the arrow 8. As a result, a source diffusion layer region 9 and a drain diffusion layer region 10 are formed as shown in FIG. 2(b).

【0004】次に動作について説明する。ソース拡散層
領域9の電位を基準として、ドレイン拡散層領域10に
正の電位を与える。そしてゲート電極4の電位がソース
拡散層領域9の電位と等しいならば、ソース・ドレイン
間に電流は流れないが、ゲート電極4が正の電位で、ソ
ース・ドレイン間にn型反転層のチャネルが形成される
と、ソース・ドレイン間に電流が流れる。このようにゲ
ート電極4の電位によって、ソース・ドレイン間に流れ
る電流が制御される。
Next, the operation will be explained. A positive potential is applied to the drain diffusion layer region 10 with reference to the potential of the source diffusion layer region 9 . If the potential of the gate electrode 4 is equal to the potential of the source diffusion layer region 9, no current will flow between the source and drain, but if the gate electrode 4 is at a positive potential and the channel of the n-type inversion layer is formed between the source and drain. When is formed, current flows between the source and drain. In this way, the electric potential of the gate electrode 4 controls the current flowing between the source and drain.

【0005】[0005]

【発明が解決しようとする課題】従来の製造方法により
製造された半導体装置は以上のように構成されているの
で、ゲート長が短くなると、ドレイン側の空乏層がソー
ス拡散層領域に達し、ゲート電極4で制御できない電流
がソース・ドレイン間に流れるパンチスルーという現象
が生じるという問題点があった。またこれを防ぐために
空乏層の伸びを抑えるように基板濃度を高くすることが
必要になり、その基板濃度に対して、チャネルを形成さ
せるのに必要なゲート電圧、すなわちしきい値電圧を一
定値に調整するために薄い酸化膜を精度よく形成する必
要が生じるなどの問題点があった。
[Problems to be Solved by the Invention] Since the semiconductor device manufactured by the conventional manufacturing method is constructed as described above, when the gate length becomes short, the depletion layer on the drain side reaches the source diffusion layer region, and the gate There is a problem in that a phenomenon called punch-through occurs in which a current that cannot be controlled by the electrode 4 flows between the source and the drain. In addition, to prevent this, it is necessary to increase the substrate concentration to suppress the expansion of the depletion layer, and for that substrate concentration, the gate voltage, that is, the threshold voltage necessary to form a channel, must be set to a constant value. There were problems such as the need to form a thin oxide film with high precision in order to adjust the temperature.

【0006】この発明は上記のような問題点を解消する
ためになされたもので、低い基板濃度でも空乏層の伸び
を抑えパンチスルーを防ぐことができる半導体装置及び
その製造方法を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and aims to provide a semiconductor device and a method for manufacturing the same that can suppress the expansion of the depletion layer and prevent punch-through even at low substrate concentrations. shall be.

【0007】[0007]

【課題を解決するための手段】この発明に係る半導体装
置は、ソース拡散層領域近傍のチャネル領域内に絶縁領
域を設けたものである。
SUMMARY OF THE INVENTION In a semiconductor device according to the present invention, an insulating region is provided in a channel region near a source diffusion layer region.

【0008】また、この発明に係る半導体装置の製造方
法は、通常のMOSFETの製造工程において、ゲート
電極形成後、ゲート電極及び絶縁膜をマスクとして、酸
素イオンを半導体基板の主表面に対して斜めにウエハを
回転しながら注入する工程を含み、ソース拡散層領域近
傍のチャネル領域内に絶縁領域を形成するようにしたも
のである。
[0008] Furthermore, in the method of manufacturing a semiconductor device according to the present invention, in the normal MOSFET manufacturing process, after forming the gate electrode, oxygen ions are irradiated diagonally with respect to the main surface of the semiconductor substrate using the gate electrode and the insulating film as a mask. The method includes a step of implanting while rotating the wafer, and an insulating region is formed in the channel region near the source diffusion layer region.

【0009】[0009]

【作用】この発明においては、ソース拡散層領域近傍の
チャネル領域内に絶縁領域を設けたから、パンチスルー
の原因であるドレイン空乏層のソース側への伸びを防ぐ
ことができる。
In the present invention, since the insulating region is provided in the channel region near the source diffusion layer region, it is possible to prevent the drain depletion layer from extending toward the source side, which is a cause of punch-through.

【0010】また、この発明における酸素をイオン注入
する工程は、ゲート電極を形成した後に、斜めにイオン
注入するため、チャネル領域内に絶縁領域を形成するこ
とができる。
Further, in the step of ion-implanting oxygen in the present invention, the ions are implanted obliquely after forming the gate electrode, so that an insulating region can be formed within the channel region.

【0011】[0011]

【実施例】図1は本発明の一実施例による半導体装置の
製造方法を示す工程断面図であり、図2と同一符号は同
一または相当部分を示し、7はソース・ドレイン拡散領
域間のP型半導体基板(チャネル領域)内に埋め込まれ
た絶縁埋込層(絶縁領域)である。
[Embodiment] FIG. 1 is a process cross-sectional view showing a method of manufacturing a semiconductor device according to an embodiment of the present invention. The same reference numerals as in FIG. It is an insulating buried layer (insulating region) embedded in a type semiconductor substrate (channel region).

【0012】次に製造方法について説明する。図1(a
)において、まず従来と同様にしてP型シリコン基板1
上にゲート酸化膜2と素子分離のためのLOCOS酸化
膜3を形成する。その後ゲート電極4を形成し、CVD
法により堆積した酸化膜のような絶縁膜5をゲート電極
4上、及びゲート電極4からある距離を隔てるようにし
て形成する。次に図1(b)に示すように絶縁膜5及び
ゲート電極4をマスクとして、シリコン基板1の主表面
に対し、矢印6で示すように45°の傾きを持つ方向か
ら、シリコン基板1を回転させながら酸素イオンを例え
ば1017cm−2のドーズ量、100KeVのドーズ
エネルギーで注入する。次に電気炉中で1350℃,N
2 雰囲気中で6時間の熱処理を行い、酸素をシリコン
と化合させて、シリコン基板1の内部に絶縁埋込層7(
酸化膜)を形成する。次に図1(c)に示すように、絶
縁膜5を除去し、ゲート電極4をマスクとして矢印8の
方向から砒素等のN型不純物を注入し、N+ ソース拡
散層領域9とN+ ドレイン拡散層領域10を形成する
Next, the manufacturing method will be explained. Figure 1 (a
), first, a P-type silicon substrate 1 is prepared in the same way as in the conventional method.
A gate oxide film 2 and a LOCOS oxide film 3 for element isolation are formed thereon. After that, a gate electrode 4 is formed and CVD
An insulating film 5 such as an oxide film deposited by a method is formed on the gate electrode 4 and separated from the gate electrode 4 by a certain distance. Next, as shown in FIG. 1(b), using the insulating film 5 and the gate electrode 4 as a mask, the silicon substrate 1 is tilted at an angle of 45 degrees as shown by the arrow 6 with respect to the main surface of the silicon substrate 1. While rotating, oxygen ions are implanted at a dose of, for example, 10<17 >cm<-2> and a dose energy of 100 KeV. Next, in an electric furnace at 1350℃, N
2 Heat treatment is performed in an atmosphere for 6 hours to combine oxygen with silicon, forming an insulating buried layer 7 (
oxide film). Next, as shown in FIG. 1(c), the insulating film 5 is removed, and an N-type impurity such as arsenic is implanted from the direction of the arrow 8 using the gate electrode 4 as a mask to form the N+ source diffusion layer region 9 and the N+ drain diffusion. A layer region 10 is formed.

【0013】次に動作について説明する。ソース拡散層
領域9の電位を基準として、ドレイン拡散層領域10に
正の電位を与える。そして、ゲート電極4の電位がソー
ス拡散層領域9の電位と等しいならば、ソース・ドレイ
ン間に電流は流れないが、ゲート電極4が正の電位でソ
ース・ドレイン間にn型反転層のチャネルが形成される
と電流が流れる。このとき、ドレイン側の空乏層の伸び
は絶縁膜層7で止まり、ソース拡散層側には伸びてゆか
ない。したがって、ソース・ドレイン間が空乏層でつな
がってゲート電極4の電位によらず電流が流れてしまう
パンチスルー現象を抑えることができる。
Next, the operation will be explained. A positive potential is applied to the drain diffusion layer region 10 with reference to the potential of the source diffusion layer region 9 . If the potential of the gate electrode 4 is equal to the potential of the source diffusion layer region 9, no current will flow between the source and drain, but if the gate electrode 4 has a positive potential and the channel of the n-type inversion layer is formed between the source and drain. When is formed, current flows. At this time, the expansion of the depletion layer on the drain side stops at the insulating film layer 7 and does not extend toward the source diffusion layer side. Therefore, the punch-through phenomenon in which the source and drain are connected by a depletion layer and current flows regardless of the potential of the gate electrode 4 can be suppressed.

【0014】このように本実施例によれば、ゲート電極
4形成後、ゲート電極4近傍を除いて絶縁膜5を堆積し
、この絶縁膜5及びゲート電極4をマスクとして酸素イ
オンを斜め注入してチャネル領域内に絶縁埋込層7を設
けたから、ドレイン空乏層の伸びは絶縁埋込層7で抑制
されることとなり、ゲート長が短くても低い濃度の基板
でパンチスルーを抑えることができる。
According to this embodiment, after the gate electrode 4 is formed, the insulating film 5 is deposited except in the vicinity of the gate electrode 4, and oxygen ions are obliquely implanted using the insulating film 5 and the gate electrode 4 as a mask. Since the insulating buried layer 7 is provided in the channel region, the extension of the drain depletion layer is suppressed by the insulating buried layer 7, and punch-through can be suppressed even with a low concentration substrate even if the gate length is short. .

【0015】なお上記実施例ではソース・ドレインが単
一の濃度を持つ構造を示したが、ショートチャネル効果
を防止するために、ゲート下のチャネル領域とソース,
ゲート領域との間にそれらの濃度の中間濃度層を設けた
LDD(Lightly Doped Drain )
構造のものであっても同様の効果を奏する。
Although the above embodiment shows a structure in which the source and drain have a single concentration, in order to prevent the short channel effect, the channel region under the gate, the source, and
LDD (Lightly Doped Drain) in which an intermediate concentration layer of these concentrations is provided between the gate region and the gate region.
Similar effects can be achieved even if the structure is different.

【0016】また、P型シリコン基板1中に酸素イオン
を注入して絶縁埋込層を形成したが、絶縁埋込層を形成
する材料はこれに限らず、例えば窒素(N)など絶縁物
を形成し得る物質であればかまわない。
Furthermore, although oxygen ions were implanted into the P-type silicon substrate 1 to form the insulating buried layer, the material for forming the insulating buried layer is not limited to this. Any substance that can be formed may be used.

【0017】また、上記実施例ではソース,ドレインの
両近傍に絶縁埋込層7を形成したが、絶縁埋込層を形成
するのはソース近傍のみでもよい。
Further, in the above embodiment, the insulating buried layer 7 is formed near both the source and the drain, but the insulating buried layer 7 may be formed only near the source.

【0018】また、上記実施例ではN−chMOSFE
Tの例を示したが、P−chMOSFETの場合でも同
様の効果を奏するのは言うまでもない。
[0018] Furthermore, in the above embodiment, the N-ch MOSFE
Although the example of T is shown, it goes without saying that the same effect can be achieved in the case of P-ch MOSFET.

【0019】[0019]

【発明の効果】以上のようにこの発明によれば、シリコ
ン基板を回転させながら斜め方向にイオン注入を行ない
チャネル領域内に絶縁領域を形成したから、ゲート長が
短くてもドレイン空乏層の拡がりは、この絶縁埋込層で
止められパンチスルー現象が起こらず、その結果基板濃
度を従来構造ほど高くする必要がなくなり、スレッシュ
ホルド電圧を一定値に調整するために薄い酸化膜を形成
する等の複雑な製造工程を不要とすることができるとい
う効果がある。
[Effects of the Invention] As described above, according to the present invention, since an insulating region is formed in the channel region by performing ion implantation in an oblique direction while rotating the silicon substrate, the drain depletion layer can be expanded even if the gate length is short. is stopped by this insulating buried layer, and the punch-through phenomenon does not occur. As a result, the substrate concentration does not need to be as high as in the conventional structure, and it is necessary to form a thin oxide film to adjust the threshold voltage to a constant value. This has the effect of eliminating the need for a complicated manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例による半導体装置およびそ
の製造方法を示す断面図である。
FIG. 1 is a sectional view showing a semiconductor device and a method for manufacturing the same according to an embodiment of the present invention.

【図2】従来の半導体装置およびその製造方法を示す断
面図である。
FIG. 2 is a cross-sectional view showing a conventional semiconductor device and its manufacturing method.

【符号の説明】[Explanation of symbols]

1    p型基板 2    ゲート酸化膜 3    素子分離のためのフィールド酸化膜4   
 ゲート電極 5    絶縁膜 7    絶縁埋込層(絶縁領域) 9    N+ ソース領域 10  N+ ドレイン領域
1 P-type substrate 2 Gate oxide film 3 Field oxide film 4 for element isolation
Gate electrode 5 Insulating film 7 Insulating buried layer (insulating region) 9 N+ source region 10 N+ drain region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  基板上にソース・ドレイン拡散層領域
が形成され、該ソース・ドレイン拡散層領域間に絶縁膜
を介してゲート電極が形成されたMOS型半導体装置に
おいて、上記ソース拡散層領域近傍のチャネル領域内に
絶縁領域を備えたことを特徴とする半導体装置。
1. In a MOS type semiconductor device in which a source/drain diffusion layer region is formed on a substrate, and a gate electrode is formed between the source/drain diffusion layer region with an insulating film interposed therebetween, the source/drain diffusion layer region is 1. A semiconductor device comprising an insulating region within a channel region of the semiconductor device.
【請求項2】  基板上にソース・ドレイン拡散層領域
を形成し、該ソース・ドレイン拡散層領域間に絶縁膜を
介してゲート電極を形成してなるMOS型半導体装置の
製造方法において、半導体基板の主表面上方にゲート電
極及びソース・ドレイン拡散層領域を形成した後、ゲー
ト電極近傍を除き選択的に半導体基板上に絶縁膜を形成
する工程と、上記絶縁膜及びゲート電極をマスクとして
半導体基板主表面に対して斜め方向から、半導体基板を
回転させながらイオン注入を行ない、上記ソース拡散層
領域近傍のチャネル領域内に絶縁領域を形成する工程を
有することを特徴とする半導体装置の製造方法。
2. A method for manufacturing a MOS type semiconductor device comprising forming source/drain diffusion layer regions on a substrate and forming a gate electrode between the source/drain diffusion layer regions with an insulating film interposed therebetween. After forming a gate electrode and source/drain diffusion layer regions above the main surface of the semiconductor substrate, forming an insulating film selectively on the semiconductor substrate except in the vicinity of the gate electrode; 1. A method of manufacturing a semiconductor device, comprising the step of performing ion implantation while rotating the semiconductor substrate from a direction oblique to the main surface to form an insulating region in a channel region near the source diffusion layer region.
JP1395791A 1991-01-09 1991-01-09 Semiconductor device and manufacture thereof Pending JPH04251939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1395791A JPH04251939A (en) 1991-01-09 1991-01-09 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1395791A JPH04251939A (en) 1991-01-09 1991-01-09 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04251939A true JPH04251939A (en) 1992-09-08

Family

ID=11847694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1395791A Pending JPH04251939A (en) 1991-01-09 1991-01-09 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04251939A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360749A (en) * 1993-12-10 1994-11-01 Advanced Micro Devices, Inc. Method of making semiconductor structure with germanium implant for reducing short channel effects and subthreshold current near the substrate surface
FR2791179A1 (en) * 1999-03-19 2000-09-22 France Telecom SEMICONDUCTOR DEVICE WITH JUNCTIONS WITH DIELECTRIC POCKETS AND MANUFACTURING METHOD THEREOF
EP1039546A1 (en) * 1999-03-19 2000-09-27 France Telecom Semiconductor device with reduced leakage current and method of manufacturing it
KR20040006772A (en) * 2002-07-15 2004-01-24 주식회사 하이닉스반도체 Method for fabricating semiconductor device
JP2011109124A (en) * 2011-01-12 2011-06-02 Semiconductor Energy Lab Co Ltd Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360749A (en) * 1993-12-10 1994-11-01 Advanced Micro Devices, Inc. Method of making semiconductor structure with germanium implant for reducing short channel effects and subthreshold current near the substrate surface
FR2791179A1 (en) * 1999-03-19 2000-09-22 France Telecom SEMICONDUCTOR DEVICE WITH JUNCTIONS WITH DIELECTRIC POCKETS AND MANUFACTURING METHOD THEREOF
EP1039546A1 (en) * 1999-03-19 2000-09-27 France Telecom Semiconductor device with reduced leakage current and method of manufacturing it
WO2000057479A1 (en) * 1999-03-19 2000-09-28 France Telecom Semiconductor device with junctions having dielectric pockets and method for making same
KR20040006772A (en) * 2002-07-15 2004-01-24 주식회사 하이닉스반도체 Method for fabricating semiconductor device
JP2011109124A (en) * 2011-01-12 2011-06-02 Semiconductor Energy Lab Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US7696049B2 (en) Method to manufacture LDMOS transistors with improved threshold voltage control
EP0495650B1 (en) Method of fabricating field-effect transistor
JPH06275636A (en) Manufacture of semiconductor device
US20040110351A1 (en) Method and structure for reduction of junction capacitance in a semiconductor device and formation of a uniformly lowered threshold voltage device
JPH0536917A (en) Manufacture of complementary semiconductor device
JPH03119732A (en) Neutral impurity for increasing opera- tional life of semiconductor device
JPH04251939A (en) Semiconductor device and manufacture thereof
JPH0346238A (en) Manufacture of semiconductor device
JPH1032330A (en) Manufacture of lateral mos transistor
JPH0366165A (en) Diffusion of impurities to semiconductor substrate
JPH0338839A (en) Manufacture of semiconductor device
JPH0342872A (en) Manufacture of semiconductor device
JPH05267338A (en) Manufacture of semiconductor device
JPH0344075A (en) Manufacture of semiconductor device
JPH05251697A (en) Mosfet and its manufacture
JPH03138951A (en) Manufacture of mos-type transistor
JPH01214169A (en) Semiconductor device
JPS6367778A (en) Manufacture of semiconductor device
JPH02102543A (en) Manufacture of insulated gate type field-effect transistor
JPH06151452A (en) Manufacture of mos semiconductor device
JPH02162739A (en) Manufacture of semiconductor device
JP2000164860A (en) Semiconductor device and manufacture thereof
JPH0590574A (en) Semiconductor device
JPH0444270A (en) Manufacture of dmosfet
JPH03270137A (en) Manufacture of semiconductor device