JPS63131584A - Manufacture of cut type insulated-gate electrostatic induction transistor - Google Patents

Manufacture of cut type insulated-gate electrostatic induction transistor

Info

Publication number
JPS63131584A
JPS63131584A JP27675586A JP27675586A JPS63131584A JP S63131584 A JPS63131584 A JP S63131584A JP 27675586 A JP27675586 A JP 27675586A JP 27675586 A JP27675586 A JP 27675586A JP S63131584 A JPS63131584 A JP S63131584A
Authority
JP
Japan
Prior art keywords
gate electrode
gate
static induction
induction transistor
insulated gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27675586A
Other languages
Japanese (ja)
Other versions
JPH03793B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Nobuo Takeda
宣生 竹田
Sohe Suzuki
鈴木 壮兵衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP27675586A priority Critical patent/JPS63131584A/en
Priority to EP95114168A priority patent/EP0690513B1/en
Priority to DE3752273T priority patent/DE3752273T2/en
Priority to EP87310185A priority patent/EP0268472B1/en
Priority to EP92101661A priority patent/EP0481965B1/en
Priority to DE3752255T priority patent/DE3752255T2/en
Priority to EP93101675A priority patent/EP0547030B1/en
Priority to DE87310185T priority patent/DE3789003T2/en
Priority to DE3752215T priority patent/DE3752215T2/en
Publication of JPS63131584A publication Critical patent/JPS63131584A/en
Publication of JPH03793B2 publication Critical patent/JPH03793B2/ja
Priority to US07/752,934 priority patent/US5115287A/en
Granted legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve reproducibility and reliability by leaving a gate electrode only onto the side wall of a U-shaped trench in a self-alignment manner and forming a drain region and a source region in the self-alignment manner, using the gate electrode as a mask material. CONSTITUTION:An epitaxial layer 12 as a channel is grown onto a substrate 11 and a channel impurity is introduced, and a U-shaped trench is shaped. A field oxide film 13 is formed through a selective oxidation method while a window is bored to an element region and a gate oxide film 14 is shaped. A polycrystalline semiconductor 15 as a gate electrode is deposited and the gate electrode is formed only onto the side wall of the U-shaped trench in a self- alignment manner, and a drain region 16 and a source region 17 are shaped, using the gate electrode 15 as a mask. A passivation film 18 is deposited, contact holes are bored and a drain electrode 16' and a source electrode 17' are formed. Accordingly, the gate oxide film and the gate electrode can be shaped only onto the side wall of the U-shaped trench in the self-alignment manner, thus improving reproducibility and reliability.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は高速スイッチングの行える切り込み型絶縁ゲ
ート静電誘導トランジスタ及び高速゛、低消費電力の切
り込み型絶縁ゲート静電誘導トランジスタ集積回路の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention relates to a notched insulated gate static induction transistor capable of high-speed switching and a method for manufacturing a notched insulated gate static induction transistor integrated circuit with high speed and low power consumption. Regarding.

(従来技術) 従来から高周波増幅や集積回路用に絶縁ゲート型トラン
ジスタが用いられているが、駆動能力が小さいという欠
点を有している。現在、このような絶縁ゲート型トラン
ジスタの欠点を克服し高速化を計る手段として、短チヤ
ネル化が積極的に進められており、本発明者の一人から
、絶縁ゲート静電誘導トランジスタ(例えば、特願昭5
2−1756号)や、切り込み型絶縁ゲート静電誘導ト
ランジスタ(例えば、特願昭52−13707号)が提
案されている。
(Prior Art) Insulated gate transistors have been used for high frequency amplification and integrated circuits, but they have the drawback of low driving capability. Currently, as a means of overcoming the drawbacks of such insulated gate transistors and increasing their speed, shortening the channel is being actively promoted. Gansho 5
2-1756) and a notched insulated gate static induction transistor (for example, Japanese Patent Application No. 13707/1982) have been proposed.

絶縁ゲート静電誘導トランジスタはドレイン電界の効果
がソースにまで及ぶように設計され、半導体・絶縁膜界
面のみならず基板中をも電流が流れるために、不飽和型
電流電圧特性を有し、駆動能力が大きいなどの特徴を持
つ。特に、切り込み型絶縁ゲート静電誘導トランジスタ
はチャネルが半導体基板の深さ方向に形成されるために
、チャネル長やゲート長の制御性がよく、短チヤネル化
に適している。従って、駆動能力が大きくでき。
Insulated gate static induction transistors are designed so that the effect of the drain electric field extends to the source, and because current flows not only at the semiconductor/insulating film interface but also through the substrate, it has unsaturated current-voltage characteristics, making it difficult to drive. It has characteristics such as great ability. In particular, in the notched insulated gate static induction transistor, since the channel is formed in the depth direction of the semiconductor substrate, the channel length and gate length can be easily controlled, and it is suitable for shortening the channel. Therefore, the driving capacity can be increased.

また、寄生容量も減らせるために高速トランジスタや高
速、低消費電力の集積回路として勝れた性能を発揮する
Additionally, because parasitic capacitance can be reduced, it exhibits superior performance as a high-speed transistor or a high-speed, low-power integrated circuit.

この切り込み型絶縁ゲート静電誘導トランジスタの公知
の製造工程の一例を第4−を参照して説明する。
An example of a known manufacturing process for this notched insulated gate static induction transistor will be described with reference to No. 4-.

第4図(a)   ドレインとして使用する半導体基板
41上にチャネルとなるエピタキシャル層42を成長さ
せ、熱拡散もしくはイオン注入によりチャネル不純物を
導入した後、半導体基板主表面の一部に異方性プラズマ
エツチング等によりU字型溝を形成する。
FIG. 4(a) After growing an epitaxial layer 42 to become a channel on a semiconductor substrate 41 used as a drain and introducing channel impurities by thermal diffusion or ion implantation, an anisotropic plasma is applied to a part of the main surface of the semiconductor substrate. A U-shaped groove is formed by etching or the like.

第4図(b)  通常のフォトリソグラフィ技術と選択
酸化法を用いて、フィールド酸化膜43を形成するとと
もに、半導体基板主表面の一部とU字型溝側壁の一部に
窓開けを行い、ゲート酸化膜44を形成する。
FIG. 4(b) Using ordinary photolithography technology and selective oxidation, a field oxide film 43 is formed, and a window is opened in a part of the main surface of the semiconductor substrate and a part of the side wall of the U-shaped trench. A gate oxide film 44 is formed.

第4図(c)  ゲート電極となる多結晶半導体45を
堆積させ、通常のフォトリソグラフィ技術によってU字
型溝側壁のゲート酸化膜上に残るようにエツチングした
後、熱拡散やイオン注入によりソース領域46を形成す
る。
FIG. 4(c) After depositing a polycrystalline semiconductor 45 that will become the gate electrode and etching it so that it remains on the gate oxide film on the sidewalls of the U-shaped trench using normal photolithography, the source region is formed by thermal diffusion or ion implantation. form 46.

第4図(d)  パッシベーション膜47を堆積してコ
ンタクト孔を開け、ドレイン電極41′、ゲート電極4
5′、およびソース電極46′を形成する。
FIG. 4(d) A passivation film 47 is deposited and a contact hole is opened to form a drain electrode 41' and a gate electrode 4.
5', and a source electrode 46' are formed.

上記のドレイン領域41、ソース領域46の不純物密度
はそれぞれ1018〜10”CM−’程度である。勿論
、導電型はP型でもN型でもよく、上記説明とは逆に4
1をソース領域、46をドレイン領域としてもよい。チ
ャネル領域42の不純物密度は1012〜10”am−
”程度であり、その導電型は前記ドレイン領域及びソー
ス領域と同一でも反対でもよく、多層構造であってもよ
い。しかし、少なくともその動作領域の一部において、
ドレイン領域から拡がった空乏層がソース領域に到達し
なければならず、この要求を満たすようにその不純物密
度が、U字型溝の深さとともに決定される。
The impurity density of the drain region 41 and the source region 46 is about 1018 to 10"CM-' respectively.Of course, the conductivity type may be P type or N type, and contrary to the above description, the impurity density is about 1018 to 10"CM-'.
1 may be a source region and 46 may be a drain region. The impurity density of the channel region 42 is 1012 to 10" am-
The conductivity type may be the same as or opposite to the drain region and the source region, and the conductivity type may be the same as that of the drain region and the source region, and the conductivity type may be a multilayer structure.
The depletion layer extending from the drain region must reach the source region, and the impurity density is determined together with the depth of the U-shaped trench to satisfy this requirement.

また、ゲート酸化膜44の膜厚は100〜1000八程
度に設定され、ゲート電極には普通、多結晶シリコン等
が用いられ、1000A〜1μ璽程度に設定される。こ
の図に示したような従来の切り込み型絶縁ゲート静電誘
導トランジスタは本来半導体基板に対して深さ方向に形
成されるために、成膜の制度でトランジスタの寸法を制
御でき、短チャネルの高速トランジスタには非常に適し
ている。
Further, the thickness of the gate oxide film 44 is set to about 100 to 10,000 mm, and polycrystalline silicon or the like is normally used for the gate electrode, and is set to about 1000 to 1 μm. The conventional notch-type insulated gate static induction transistor shown in this figure is originally formed in the depth direction of the semiconductor substrate, so the dimensions of the transistor can be controlled by the precision of the film formation, and short channel high-speed Very suitable for transistors.

(この発明が解決しようとする問題点)しかし、従来の
切り込み型絶縁ゲート静電誘導トランジスタの製造方法
では1通常のフォトリソグラフィ技術を用いているため
に、マスク合せのための余裕を必要とし、ゲート電極4
5をU字型溝の側壁にのみ形成することが難しかった。
(Problems to be Solved by the Invention) However, in the conventional manufacturing method of a notch type insulated gate static induction transistor, 1. Since normal photolithography technology is used, a margin for mask alignment is required. Gate electrode 4
5 was difficult to form only on the side wall of the U-shaped groove.

例えば、第5図に第4図の製造工程に対応する従来の切
り込み型絶縁ゲート静電誘導トランジスタの平面構造例
を示す、同図中の51がU字型溝側壁、52が選択酸化
による窓、53が多結晶半導体のゲート電極であり、5
4及び55がそれぞれドレイン・コンタクト孔及びゲー
ト・コンタクト孔、56及び57がそれぞれドレイン電
極及びゲート電極である。同図中のB−B’断面が第4
図(d)に示されている。同図中のlb及びlcが第4
図の工程(b)及び(C)のフォトリソグラフィに対す
るマスク合せ余裕であり、通常0.1〜2μm程度に設
定される。
For example, FIG. 5 shows an example of the planar structure of a conventional notched insulated gate static induction transistor corresponding to the manufacturing process shown in FIG. , 53 is a gate electrode of a polycrystalline semiconductor, and 5
4 and 55 are a drain contact hole and a gate contact hole, respectively, and 56 and 57 are a drain electrode and a gate electrode, respectively. The BB' cross section in the same figure is the fourth
It is shown in figure (d). lb and lc in the same figure are the fourth
This is the mask alignment margin for photolithography in steps (b) and (C) in the figure, and is usually set to about 0.1 to 2 μm.

マスク合せ余裕lcが異なるトランジスタのドレイン電
流−ドレイン電圧特性の一例を第6図(a)〜(C)に
示す、この場合は、チャネル長約0.5μm、チャネル
不純物ドーズ量約1.5×10”cm−”、ゲート酸化
膜厚約250八に設計されており、マスク合せ余裕lc
が(a)は0μm、(b)、(c)はそれぞれ1μm、
2μmである。同図(a)の場合は不飽和型電流電圧特
性を示し、駆動能力も大きく、切り込み型絶縁ゲート静
電誘導トランジスタの特性がよく現われているが、歩止
まりが悪いという欠点を生じる。一方、同図(b)(c
)の場合には、マスク合せ余裕に相当する部分が平面型
トランジスタと同様の動作をするために、実効的なチャ
ネル長が長くなり駆動能力を劣化させる。
Examples of drain current-drain voltage characteristics of transistors with different mask alignment margins lc are shown in FIGS. 6(a) to (C). In this case, the channel length is approximately 0.5 μm, and the channel impurity dose is approximately 1.5×. 10"cm-", gate oxide film thickness is approximately 250cm, and mask alignment margin lc
However, (a) is 0 μm, (b) and (c) are each 1 μm,
It is 2 μm. The case shown in FIG. 3A exhibits unsaturated current-voltage characteristics, has a large driving capability, and exhibits the characteristics of a notched insulated gate static induction transistor well, but has the drawback of poor yield. On the other hand, the same figures (b) and (c
), the portion corresponding to the mask alignment margin operates in the same way as a planar transistor, so the effective channel length becomes longer and the driving capability deteriorates.

この発明の目的は、前記の切り込み型絶縁ゲート静電誘
導トランジスタの製造方法の欠点を除き、U字型溝の側
壁にのみ自己整合的にゲート酸化膜及びゲート電極を形
成でき、再現性や信頼性を高めた切り込み型絶縁ゲート
静電誘導トランジスタの製造方法を得ようとするもので
ある。
An object of the present invention is to eliminate the drawbacks of the above-mentioned method for manufacturing a notched insulated gate static induction transistor, to form a gate oxide film and a gate electrode in a self-aligned manner only on the side walls of a U-shaped trench, and to improve reproducibility and reliability. The present invention aims to provide a method for manufacturing a notched insulated gate static induction transistor with improved properties.

(問題を解決するための手段) この発明の切り込み型絶縁ゲート静電誘導トランジスタ
およびその集積回路の製造方法においては、半導体基板
の一主表面にU字型溝を形成するための異方性エツチン
グ工程と、ゲート酸化膜を形成する工程と、前記U字型
溝の側壁にのみ自己整合的にゲート電極を残す工程と、
前記ゲート電極をマスク材として自己整合的にドレイン
領域及びソース領域を形成する工程を有することを特徴
とする。
(Means for Solving the Problem) In the notched insulated gate static induction transistor and the method for manufacturing its integrated circuit of the present invention, anisotropic etching is performed to form a U-shaped groove on one main surface of a semiconductor substrate. a step of forming a gate oxide film; and a step of leaving a gate electrode in a self-aligned manner only on the sidewalls of the U-shaped trench;
The method is characterized by comprising a step of forming a drain region and a source region in a self-aligned manner using the gate electrode as a mask material.

その結果、マスク合せ工程等のバラツキに影響されるこ
となく、ゲート酸化膜及びゲート電極、さらにはソース
領域及びドレイン領域を形成することが出来る。
As a result, the gate oxide film and the gate electrode, as well as the source region and the drain region, can be formed without being affected by variations in the mask alignment process or the like.

(実施例) 以下この発明を実施例によって詳細に説明する。(Example) The present invention will be explained in detail below with reference to Examples.

第1図は、この発明の切り込み型絶縁ゲート静電誘導の
製造工程の一例を示す。
FIG. 1 shows an example of the manufacturing process of the notched insulated gate electrostatic induction according to the present invention.

第1図(a)  半導体基板11上にチャネルとなるエ
ピタキシャル層12を成長させ、熱拡散もしくはイオン
注入によりチャネル不純物を導入した後、半導体基板主
表面の一部に異方性プラズマエツチング等によりU字型
溝を形成する。
FIG. 1(a) After growing an epitaxial layer 12 that will become a channel on a semiconductor substrate 11 and introducing channel impurities by thermal diffusion or ion implantation, a part of the main surface of the semiconductor substrate is etched with U by anisotropic plasma etching or the like. Forms a letter-shaped groove.

同図(b)  選択酸化法を用いて、フィールド酸化膜
13を形成するとともに、半導体基板主表面の素子領域
に窓開けを行い、ゲート酸化膜14を形成する。
(b) Using a selective oxidation method, a field oxide film 13 is formed, and a window is opened in the element region on the main surface of the semiconductor substrate to form a gate oxide film 14.

同図(Q)  ゲート電極となる多結晶半導体15を堆
積させ、異方性プラズマエツチング等によってU字型溝
側壁にのみ自己整合的にゲート電極を形成した後、この
ゲート電極15をマスクとして熱拡散やイオン注入によ
りドレイン領域16及びソース領域17を形成する。
Figure (Q) After depositing the polycrystalline semiconductor 15 that will become the gate electrode and forming the gate electrode in a self-aligned manner only on the side walls of the U-shaped trench by anisotropic plasma etching, etc., heat is applied using the gate electrode 15 as a mask. A drain region 16 and a source region 17 are formed by diffusion or ion implantation.

同1m (d)  パッシベーション膜18を堆積して
コンタクト孔を開け、ドレイン電極16′及びソース電
極17′を形成する。
(d) A passivation film 18 is deposited, a contact hole is opened, and a drain electrode 16' and a source electrode 17' are formed.

このとき、ドレイン領域16.ソース領域17の不純物
密度はそれぞれ101a〜10”am−”程度である。
At this time, the drain region 16. The impurity density of the source regions 17 is about 101a to 10"am-", respectively.

勿論、導電型はP型でもN型でもよく。Of course, the conductivity type may be P type or N type.

16をソース領域、17をドレイン領域としてもよい。16 may be a source region and 17 may be a drain region.

チャネル領域12の不純物密度は1012〜10”am
−’程度であり、その導電型は前記のドレイン領域16
及びソース領域17と同一でも反対でも差し支えなく、
多層構造になっていてもよい。
The impurity density of the channel region 12 is 1012 to 10"am
-', and its conductivity type is the drain region 16
and may be the same as or opposite to the source region 17,
It may have a multilayer structure.

しかし、少なくともその作動領域の一部において、ドレ
イン領域から拡がった空乏層がソース領域に到達するよ
うにその不純物密度がU字型溝の深さとともに決定され
る。また、ゲート酸化膜14の膜厚は100〜1 、0
00A程度に、ゲート電極の膜厚はl。
However, at least in a part of the active region, the impurity density is determined together with the depth of the U-shaped trench so that the depletion layer extending from the drain region reaches the source region. Further, the film thickness of the gate oxide film 14 is 100 to 1,0
The thickness of the gate electrode is about 00A, and the thickness of the gate electrode is l.

000八〜1μm程度に設定される。例えば、ゲート電
極として多結晶シリコンを用いることは非常に有効であ
り、0.03τorr−0、2Torr程度の圧力のP
Cl3プラズマエツチングによって異方性エツチングを
行うことが出来る。
The thickness is set to about 0.008 to 1 μm. For example, it is very effective to use polycrystalline silicon as the gate electrode, and P
Anisotropic etching can be performed by Cl3 plasma etching.

この製造工程によれば、素子の特性に最も影響を与える
ゲート酸化膜及びゲート電極をU字型溝側壁にのみ自己
整合的に形成できるため、再現性。
According to this manufacturing process, the gate oxide film and gate electrode, which have the most influence on the characteristics of the device, can be formed in a self-aligned manner only on the side walls of the U-shaped groove, resulting in high reproducibility.

信頼性よく、第6図(、)のような素子特性を持った切
り込み絶縁ゲート静電誘導トランジスタを得ることがで
きる。
It is possible to obtain a notched insulated gate static induction transistor with high reliability and device characteristics as shown in FIG. 6(,).

第1図の製造工程に対応する切り込み型絶縁ゲート静電
誘導トランジスタの平面構造の一例を第2図に示す。同
図中、21はU字型溝側壁、22は素子領域となる選択
酸化による窓、23は多結晶半導体のゲート酸化膜、2
4.25及び26はそれぞれドレイン・コンタクト孔、
ソース・コンタクト孔、及びゲート・コンタクト孔であ
り、24′、25′及び26′がそれぞれドレイン電極
、ソース電極及びゲート電極である。同図中のA−A’
断面が第1図(d)に示されている。素子領域が全てU
字型溝の側壁に対して自己整合的に形成されているため
に再現性よく切り込み型絶縁ゲート静電誘導トランジス
タを製造出来る。
FIG. 2 shows an example of a planar structure of a notched insulated gate static induction transistor corresponding to the manufacturing process shown in FIG. In the figure, 21 is a side wall of a U-shaped trench, 22 is a window formed by selective oxidation that becomes an element region, 23 is a polycrystalline semiconductor gate oxide film, and 2
4. 25 and 26 are drain contact holes, respectively;
They are a source contact hole and a gate contact hole, and 24', 25' and 26' are a drain electrode, a source electrode and a gate electrode, respectively. AA' in the same figure
A cross section is shown in FIG. 1(d). All element areas are U
Since the groove is formed in a self-aligned manner with respect to the sidewall of the groove, a notched insulated gate static induction transistor can be manufactured with good reproducibility.

この切り込み型絶縁ゲート静電誘導トランジスタを相補
型絶縁ゲート集積回路に応用した場合の1ゲートの断面
構造の一例を第3図に示す。同図中の30は半導体基板
であり、その主表面の一部にU字型の溝が設けられてい
る。また31はN0ドレイン領域、32はP1ドレイン
領域、33はN+ソース領域、34はP1ソース領域で
、それぞれ101a〜1021021a程度の不純物密
度を有する。
FIG. 3 shows an example of the cross-sectional structure of one gate when this notched insulated gate static induction transistor is applied to a complementary insulated gate integrated circuit. 30 in the figure is a semiconductor substrate, and a U-shaped groove is provided in a part of its main surface. Further, 31 is an N0 drain region, 32 is a P1 drain region, 33 is an N+ source region, and 34 is a P1 source region, each having an impurity density of about 101a to 1021021a.

35はPチャネル領域、36はNチャネル領域でそれぞ
れ1012〜10”an−’程度の不純物密度を有し、
少なくともその動作領域の一部において前記ドレイン領
域から拡がった空乏層が前記ソース領域に到達するよう
にその不純物密度が前記U字型溝の深さとともに決定さ
れる。37は酸化膜等のゲート絶縁膜で、100〜10
00A程度の膜厚を有し、37′はゲート電極、38は
フィールド酸化膜である。また、39はPチャネルとN
チャネルを分離するためのN型埋込層である。ゲート電
極37′が論理入力、ドレイン電極31′、32′が論
理出力であり、電源電圧はソース電極33′と34′と
の間に加えられる。
35 is a P channel region, and 36 is an N channel region, each having an impurity density of about 1012 to 10"an-',
The impurity density is determined together with the depth of the U-shaped groove so that a depletion layer extending from the drain region reaches the source region in at least a part of the active region. 37 is a gate insulating film such as an oxide film, and 100 to 10
It has a film thickness of about 00A, 37' is a gate electrode, and 38 is a field oxide film. Also, 39 is the P channel and N
This is an N-type buried layer for separating channels. Gate electrode 37' is a logic input, drain electrodes 31' and 32' are logic outputs, and a power supply voltage is applied between source electrodes 33' and 34'.

このような集積回路においても、基板側の構造を除いて
は第1図に示した製造工程とほぼ同様に製造でき、再現
性、信頼性よく高速かつ低消費電力の相補型絶縁ゲート
集積回路を提供することができる。例えば、第3図に示
した相補型絶縁ゲート集積回路のリング発振器で90p
sscの伝播遅延時間が6.8mWの消費電力のときに
得られている。
Such integrated circuits can be manufactured using almost the same manufacturing process as shown in Figure 1, except for the structure on the substrate side, and can be used to create complementary insulated gate integrated circuits that are reproducible, reliable, high speed, and have low power consumption. can be provided. For example, in the complementary insulated gate integrated circuit ring oscillator shown in FIG.
The propagation delay time of ssc was obtained when the power consumption was 6.8 mW.

(発明の効果) 上記のように、この発明によれば、従来の切り込み型絶
縁ゲート静電誘導トランジスタの製造工程の欠点を改良
し、U字型溝の側壁にのみ自己整合的にゲート酸化膜及
びゲート電極を形成することができ、したがって、高速
スイッチングの行える切り込み型絶縁ゲート静電誘導ト
ランジスタや高速・低消IQ電力の切り払み型絶縁ゲー
ト静電誘導トランジスタ集積回路を再現性、信頼性よく
製造することができ、その工業的価値は極めて大きいも
のである。
(Effects of the Invention) As described above, according to the present invention, the drawbacks of the manufacturing process of the conventional notch type insulated gate static induction transistor are improved, and the gate oxide film is formed in a self-aligned manner only on the sidewalls of the U-shaped trench. Therefore, it is possible to form notch-type insulated-gate static induction transistors that can perform high-speed switching and cut-off type insulated-gate static induction transistors that can perform high-speed switching and low IQ power consumption with high reproducibility and reliability. It can be easily produced and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の切り込み型絶縁ゲート静電誘導トラ
ンジスタの製造方法の1実施例を示す製造工程の説明図
、第2図はこの発明の切り込み型絶縁ゲート静電誘導ト
ランジスタの平面構造を示す平面図、第3図はこの発明
の切り込み型絶縁ゲート静電誘導トランジスタ集積回路
の一実施例を示す断面図、第4図は従来の切り込み型絶
縁ゲート静電誘導トランジスタの製造方法の1例を示す
製造工程の説明図、第5図はその切り込み型絶縁ゲート
静電誘導トランジスタの平面構造を示す平面図、第6図
は従来の切り込み型絶縁ゲート静電誘導トランジスタの
ドレイン電流−ドレイン電圧特性の一例を示す特性図で
ある。 11.3o、41:半導体基板 12.35.36.42:チャネル領域13.38.4
3:フィールド酸化膜 14.37.44:ゲート絶縁膜 15.23.45.53:ゲート電極 16.31.32.41ニドレイン領域16’ 、24
’ 、41’ 、56 ニドレイン電極17.33.3
4.46:ソース領域 17’ 、25’ 、46’  :ソース電極18.4
7:パッシベーション膜 21.51:U字型溝側壁 22.52:素子領域窓 39:分離層 出願人代理人 弁理士 佐藤文男 第1図 七                        
II     夕z                
             ll     2:2ご 
                         
  II      り=エ   、1   図
FIG. 1 is an explanatory diagram of a manufacturing process showing one embodiment of a method for manufacturing a notched insulated gate static induction transistor of the present invention, and FIG. 2 shows a planar structure of the notched insulated gate static induction transistor of the present invention. 3 is a plan view, FIG. 3 is a sectional view showing an embodiment of the notched insulated gate static induction transistor integrated circuit of the present invention, and FIG. 4 is an example of a method for manufacturing a conventional notched insulated gate static induction transistor. 5 is a plan view showing the planar structure of the notched insulated gate static induction transistor, and FIG. 6 is a diagram showing the drain current-drain voltage characteristics of the conventional notched insulated gate static induction transistor. FIG. 3 is a characteristic diagram showing an example. 11.3o, 41: Semiconductor substrate 12.35.36.42: Channel region 13.38.4
3: Field oxide film 14.37.44: Gate insulating film 15.23.45.53: Gate electrode 16.31.32.41 Nidrain region 16', 24
', 41', 56 Nidorain electrode 17.33.3
4.46: Source regions 17', 25', 46': Source electrodes 18.4
7: Passivation film 21. 51: U-shaped groove side wall 22. 52: Element area window 39: Separation layer Applicant's agent Patent attorney Fumio Sato Figure 1 7
II Evening
ll 2:2

II Ri=e, 1 fig.

Claims (1)

【特許請求の範囲】 1)半導体基板の一主表面にU字型溝を形成するための
異方性エッチング工程と、ゲート酸化膜を形成する工程
と、前記U字型溝の側壁にのみ自己整合的にゲート電極
を残す工程と、前記ゲート電極をマスク材として自己整
合的にドレイン領域及びソース領域を形成する工程を有
することを特徴とする切り込み型絶縁ゲート静電誘導ト
ランジスタの製造方法2)前記ゲート電極材として多結
晶シリコンを用い、該多結晶シリコンをPCl_3異方
性プラズマエッチングによって前記U字型溝の側壁に自
己整合的に形成する工程を含んだことを特徴とする特許
請求の範囲第1項記載の切り込み型絶縁ゲート静電誘導
トランジスタの製造方法 3)半導体基板上に多数の切り込み型絶縁ゲート静電誘
導トランジスタを前記の方法により集積形成することを
特徴とする特許請求の範囲第1項或いは第2項記載の切
り込み型絶縁ゲート静電誘導トランジスタの集積回路の
製造方法
[Claims] 1) An anisotropic etching step for forming a U-shaped groove on one main surface of the semiconductor substrate, a step of forming a gate oxide film, and an etching step for forming a U-shaped groove only on the side walls of the U-shaped groove. A method for manufacturing a notch type insulated gate static induction transistor 2) characterized by comprising a step of leaving a gate electrode in an aligned manner, and a step of forming a drain region and a source region in a self-aligned manner using the gate electrode as a mask material. Claims characterized in that the method includes a step of using polycrystalline silicon as the gate electrode material and forming the polycrystalline silicon on the sidewalls of the U-shaped groove in a self-aligned manner by PCl_3 anisotropic plasma etching. 3) A method for manufacturing a notched insulated gate static induction transistor according to claim 1, wherein a large number of notched insulated gate static induction transistors are integrally formed on a semiconductor substrate by the method described above. A method for manufacturing an integrated circuit of a notched insulated gate static induction transistor according to item 1 or 2.
JP27675586A 1986-11-19 1986-11-21 Manufacture of cut type insulated-gate electrostatic induction transistor Granted JPS63131584A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP27675586A JPS63131584A (en) 1986-11-21 1986-11-21 Manufacture of cut type insulated-gate electrostatic induction transistor
EP95114168A EP0690513B1 (en) 1986-11-19 1987-11-10 Step-cut insulated gate static induction transistors and method of manufacturing the same
DE3752273T DE3752273T2 (en) 1986-11-19 1987-11-10 Static induction transistors with an insulated gate in an incised stage and process for their production
DE3752255T DE3752255T2 (en) 1986-11-19 1987-11-18 Static induction transistors with an insulated gate in an incised stage and process for their production
EP92101661A EP0481965B1 (en) 1986-11-19 1987-11-18 Method of manufacturing step-cut insulated gate static induction transistors
EP87310185A EP0268472B1 (en) 1986-11-19 1987-11-18 Step-cut insulated gate static induction transistors and method of manufacturing the same
EP93101675A EP0547030B1 (en) 1986-11-19 1987-11-18 Step-cut insulated gate static induction transistors and method of manufacturing the same
DE87310185T DE3789003T2 (en) 1986-11-19 1987-11-18 Static induction transistors with an insulated gate in an incised stage and process for their production.
DE3752215T DE3752215T2 (en) 1986-11-19 1987-11-18 Process for the production of the static induction transistors with an insulated gate in a cut stage
US07/752,934 US5115287A (en) 1986-11-19 1991-08-30 Step-cut insulated gate static induction transistors and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27675586A JPS63131584A (en) 1986-11-21 1986-11-21 Manufacture of cut type insulated-gate electrostatic induction transistor

Publications (2)

Publication Number Publication Date
JPS63131584A true JPS63131584A (en) 1988-06-03
JPH03793B2 JPH03793B2 (en) 1991-01-08

Family

ID=17573890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27675586A Granted JPS63131584A (en) 1986-11-19 1986-11-21 Manufacture of cut type insulated-gate electrostatic induction transistor

Country Status (1)

Country Link
JP (1) JPS63131584A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226772A (en) * 1989-02-28 1990-09-10 Shiyoudenriyoku Kosoku Tsushin Kenkyusho:Kk Infeed type insulated gate electrostatic induction transistor and manufacture thereof
JPH02226773A (en) * 1989-02-28 1990-09-10 Shiyoudenriyoku Kosoku Tsushin Kenkyusho:Kk Infeed type insulated gate electrostatic induction transistor and manufacture thereof
JPH0492473A (en) * 1990-08-07 1992-03-25 Semiconductor Energy Lab Co Ltd Manufacture of vertical channel insulated gate type field effect semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226772A (en) * 1989-02-28 1990-09-10 Shiyoudenriyoku Kosoku Tsushin Kenkyusho:Kk Infeed type insulated gate electrostatic induction transistor and manufacture thereof
JPH02226773A (en) * 1989-02-28 1990-09-10 Shiyoudenriyoku Kosoku Tsushin Kenkyusho:Kk Infeed type insulated gate electrostatic induction transistor and manufacture thereof
JPH0492473A (en) * 1990-08-07 1992-03-25 Semiconductor Energy Lab Co Ltd Manufacture of vertical channel insulated gate type field effect semiconductor device
JPH0758792B2 (en) * 1990-08-07 1995-06-21 株式会社半導体エネルギー研究所 Method for manufacturing vertical channel insulating gate type field effect semiconductor device

Also Published As

Publication number Publication date
JPH03793B2 (en) 1991-01-08

Similar Documents

Publication Publication Date Title
JP3082671B2 (en) Transistor element and method of manufacturing the same
US6525403B2 (en) Semiconductor device having MIS field effect transistors or three-dimensional structure
JP3462301B2 (en) Semiconductor device and manufacturing method thereof
US5032529A (en) Trench gate VCMOS method of manufacture
JP3455452B2 (en) Semiconductor device and manufacturing method thereof
JP3282375B2 (en) Complementary insulated gate field effect transistor
JPH0237777A (en) Vertical type field-effect transistor
KR100518506B1 (en) Trench gate power mos device and fabricating method therefor
JPH05343686A (en) Semiconductor device and manufacture thereof
US5115287A (en) Step-cut insulated gate static induction transistors and method of manufacturing the same
JPS63131584A (en) Manufacture of cut type insulated-gate electrostatic induction transistor
JP2000068372A (en) Semiconductor device and manufacture thereof
JP3402548B2 (en) Method for manufacturing semiconductor device
JPS6159543B2 (en)
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPS63131583A (en) Manufacture of cut type insulated-gate electrostatic induction transistor
JPH04115538A (en) Semiconductor device
KR100405450B1 (en) Dmos transistor having structure of pocket type junction layer and manufacturing method thereof
JPH06181312A (en) Manufacture of semiconductor device
KR100211948B1 (en) Fabrication method of power transistor on soi wafer
KR100303356B1 (en) SOI device having double gate structure and method of manufacturing the same
JPS62286281A (en) Semiconductor device and manufacture thereof
JPH0529624A (en) Thin film transistor and manufacture thereof
JPH04359567A (en) Semiconductor device and manufacture thereof
JPH03104283A (en) Mos type semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term