JPH0529624A - Thin film transistor and manufacture thereof - Google Patents

Thin film transistor and manufacture thereof

Info

Publication number
JPH0529624A
JPH0529624A JP3182850A JP18285091A JPH0529624A JP H0529624 A JPH0529624 A JP H0529624A JP 3182850 A JP3182850 A JP 3182850A JP 18285091 A JP18285091 A JP 18285091A JP H0529624 A JPH0529624 A JP H0529624A
Authority
JP
Japan
Prior art keywords
film
insulating film
gate insulating
gate electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3182850A
Other languages
Japanese (ja)
Inventor
Shinji Obara
伸治 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3182850A priority Critical patent/JPH0529624A/en
Publication of JPH0529624A publication Critical patent/JPH0529624A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase an ON current with an OFF current kept at a low level by making a gate insulating film of a thin film transistor(TFT) thick in the vicinity of a drain, and making the film thin in the other region. CONSTITUTION:A silicon oxide film 2 is formed on a silicon substrate 1. A polycrystalline silicon film is deposited on the film 2, and boron ions are implanted. The gate electrode of a thin film transistor(TFT) is formed by selective etching. A part of the silicon oxide film is made to remain at the upper surface of the gate electrode 3 on the side of the TFT, and first gate insulating film 4 is formed. Then, a silicon oxide film is deposited on the surface containing the gate electrode 3 and the gate insulating film 4, and second gate insulating film 5 is formed. Thereafter, a polycrystalline silicon film 6 wherein phosphorus is introduced for the channel of the TFT is deposited on the gate insulating film 5. With a photoresist mask film on the gate electrode 3 as a mask, ions are implanted into the polycrystalline silicon film 6, and a source region 7 and a drain region 8 are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜トランジスタ(Th
in Film Transistor)に関し、特に
スタティックRAMの負荷素子として用いる薄膜トラン
ジスタに関する。
The present invention relates to a thin film transistor (Th
In Film Transistor), and particularly to a thin film transistor used as a load element of a static RAM.

【0002】[0002]

【従来の技術】従来の薄膜トランジスタ(以下TFTと
記す)は図3に示すように、シリコン1の上にCVD法
により厚さ50〜100nmの酸化シリコン膜2を形成
し、酸化シリコン膜2の上に厚さ100〜150nmの
ゲート電極3を選択的に形成する。次に、ゲート電極3
を含む表面にCVD法により酸化シリコン膜を25〜3
0nmの厚さに堆積してゲート絶縁膜5を形成する。次
に、ゲート絶縁膜5の上にCVD法により多結晶シリコ
ン膜6を20〜40nmの厚さに堆積し、ゲート電極3
上にパターニングして設けたフォトレジスト膜(図示せ
ず)をマスクとして多結晶シリコン膜6の所望する領域
にホウ素イオンを選択的にイオン注入し、TFTのソー
ス領域7とドレイン領域8を形成する。
2. Description of the Related Art As shown in FIG. 3, a conventional thin film transistor (hereinafter referred to as TFT) has a silicon oxide film 2 having a thickness of 50 to 100 nm formed on a silicon 1 by a CVD method, and the silicon oxide film 2 is formed on the silicon oxide film 2. Then, the gate electrode 3 having a thickness of 100 to 150 nm is selectively formed. Next, the gate electrode 3
A silicon oxide film on the surface including
The gate insulating film 5 is formed by depositing it to a thickness of 0 nm. Next, a polycrystalline silicon film 6 is deposited to a thickness of 20 to 40 nm on the gate insulating film 5 by a CVD method to form the gate electrode 3
Boron ions are selectively ion-implanted into a desired region of the polycrystalline silicon film 6 using a photoresist film (not shown) formed by patterning as a mask to form a source region 7 and a drain region 8 of the TFT. .

【0003】しかる後に、層間絶縁膜、配線用金属膜等
を形成し、TFTを構成する。
After that, an interlayer insulating film, a metal film for wiring, etc. are formed to form a TFT.

【0004】[0004]

【発明が解決しようとする課題】この従来のTFTは、
SRAMの負荷として用いる場合にオフ電流をできるだ
け減らし、且つオン電流を増加させることが要求される
が、例えば電子情報通信学会技術研究報告、第89巻、
第67号、1〜6頁(SDM89−19)に記載されて
いるように、オン電流を増大させるためにはゲート絶縁
膜を薄くすることが有効であり、一方、オフ電流を減少
させるためにはドレイン端での電界を緩和させるゲート
絶縁膜の厚膜化が有効であるものの、この相反する特性
を同時に満足させることができないという問題点があっ
た。
This conventional TFT is
When used as a load of SRAM, it is required to reduce off current and increase on current as much as possible. For example, Technical Report of IEICE, Vol. 89,
No. 67, pp. 1 to 6 (SDM89-19), it is effective to make the gate insulating film thin in order to increase the on-current, while to reduce the off-current. Although it is effective to increase the thickness of the gate insulating film for alleviating the electric field at the drain end, there is a problem that these contradictory characteristics cannot be satisfied at the same time.

【0005】[0005]

【課題を解決するための手段】本発明のTFTは、半導
体基板上に設けた絶縁膜の上に設けたゲート電極と、前
記ゲート電極を含む表面に設けたゲート絶縁膜と、前記
ゲート電極の少くとも上面を含む領域の前記ゲート絶縁
膜上に設けた半導体膜と、前記半導体膜に設けたソース
及びドレイン領域とを有する薄膜トランジスタにおい
て、前記ゲート電極上面のチャネル領域のドレイン領域
側の前記ゲート絶縁膜の厚さをソース領域側より厚く形
成して構成される。
A TFT of the present invention comprises a gate electrode provided on an insulating film provided on a semiconductor substrate, a gate insulating film provided on a surface including the gate electrode, and the gate electrode. In a thin film transistor having a semiconductor film provided on the gate insulating film in a region including at least an upper surface, and a source and drain region provided in the semiconductor film, the gate insulation on a drain region side of a channel region on the upper surface of the gate electrode It is configured by forming the film thicker than the source region side.

【0006】本発明のTFTの製造方法は、半導体基板
上に設けた絶縁膜の上に不純物を含む多結晶シリコン膜
を堆積してパターニングしゲート電極を形成する工程
と、前記ゲート電極を含む表面に第1のゲート絶縁膜を
形成してパターニングし前記ゲート電極上面の一方の端
部及びそれに隣接する側面を含む領域にのみ前記第1の
ゲート絶縁膜を残す工程と、前記第1のゲート絶縁膜及
び露出した前記ゲート電極を含む表面に第2のゲート絶
縁膜を形成する工程と、前記第2のゲート絶縁膜の上に
多結晶シリコン膜を堆積してパターニングし且前記多結
晶シリコン膜内に不純物を選択的に導入して前記第1及
び第2のゲート絶縁膜の積層領域上のドレイン領域及び
対向する第2のゲート絶縁膜のみの領域上のソース領域
を形成する工程とを含んで構成される。
A method of manufacturing a TFT according to the present invention comprises a step of depositing a polycrystalline silicon film containing impurities on an insulating film provided on a semiconductor substrate and patterning the same to form a gate electrode, and a surface including the gate electrode. Forming a first gate insulating film on the gate electrode and patterning the first gate insulating film to leave the first gate insulating film only in a region including one end of the upper surface of the gate electrode and a side surface adjacent to the one end, and the first gate insulating film. Forming a second gate insulating film on the surface including the film and the exposed gate electrode; depositing and patterning a polycrystalline silicon film on the second gate insulating film; Selectively introducing impurities into the first and second gate insulating films to form a drain region on the stacked region and an opposing source region on only the second gate insulating film. Nde constructed.

【0007】[0007]

【実施例】本発明について図面を参照して説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings.

【0008】図1(a),(b)は本発明の第1の実施
例を説明するための工程順に示した半導体チップの断面
図である。
FIGS. 1A and 1B are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the first embodiment of the present invention.

【0009】まず、図1(a)に示すように、シリコン
基板1の上にCVD法により厚さ50〜100nmの酸
化シリコン膜2を形成し、酸化シリコン膜2の上に多結
晶シリコン膜を100〜150nmの厚さに堆積してホ
ウ素をイオン注入し、選択的にエッチングしてTFTの
ゲート電極3を形成する。次に、CVD法によりゲート
電極3を含む表面に厚さ30nmの酸化シリコン膜を堆
積した後にパターニングしてTFTのドレイン側のゲー
ト電極3の上面に酸化シリコン膜の一部を残して第1の
ゲート絶縁膜4を形成する。
First, as shown in FIG. 1A, a silicon oxide film 2 having a thickness of 50 to 100 nm is formed on a silicon substrate 1 by a CVD method, and a polycrystalline silicon film is formed on the silicon oxide film 2. It is deposited to a thickness of 100 to 150 nm, boron is ion-implanted, and selectively etched to form the gate electrode 3 of the TFT. Next, a 30 nm-thickness silicon oxide film is deposited on the surface including the gate electrode 3 by the CVD method and then patterned to leave a part of the silicon oxide film on the upper surface of the gate electrode 3 on the drain side of the TFT, and the first oxide film The gate insulating film 4 is formed.

【0010】次に、図1(b)に示すように、CVD法
によりゲート電極3及びゲート絶縁膜4を含む表面に厚
さ20nmの酸化シリコン膜を堆積して第2のゲート絶
縁膜5を形成する。次に、ゲート絶縁膜5の上にTFT
のチャネル部用にリンを導入した多結晶シリコン膜6を
20〜40nmの厚さに堆積し、ゲート電極3の上にパ
ターニングして設けたフォトレジスト膜(図示せず)を
マスクとして多結晶シリコン膜6内にホウ素をイオン注
入してTFTのソース領域7とドレイン領域8を形成す
る。以後、層間絶縁膜,配線用金属膜等を形成し、TF
Tを構成する。
Next, as shown in FIG. 1B, a silicon oxide film having a thickness of 20 nm is deposited on the surface including the gate electrode 3 and the gate insulating film 4 by the CVD method to form the second gate insulating film 5. Form. Next, a TFT is formed on the gate insulating film 5.
The polycrystalline silicon film 6 into which phosphorus is introduced for the channel portion of is deposited to a thickness of 20 to 40 nm and patterned on the gate electrode 3 using a photoresist film (not shown) provided as a mask to form the polycrystalline silicon. Boron is ion-implanted into the film 6 to form a source region 7 and a drain region 8 of the TFT. After that, an interlayer insulating film, a metal film for wiring, etc. are formed and TF
Configure T.

【0011】図2(a),(b)は本発明の第2の実施
例を説明するための工程順に示した半導体チップの断面
図である。
2 (a) and 2 (b) are sectional views of the semiconductor chip in the order of steps for explaining the second embodiment of the present invention.

【0012】図2(a)に示すように、第1の実施例と
同様の工程でシリコン基板1の上に酸化シリコン膜2を
設け、酸化シリコン膜2の上にゲート電極3を形成す
る。次に、ゲート電極3を含め表面にCVD法により5
0〜60nmの厚さの酸化シリコン膜を堆積した後にウ
エットエッチング法によりゲート電極3を上面のドレイ
ン側以外の酸化シリコン膜を20〜30nmの厚さだけ
エッチング除去してゲート絶縁膜5aを形成する。この
場合CVD法によるゲート絶縁膜を一度で形成できるた
め第1の実施例に比べて工程が簡単になる。
As shown in FIG. 2A, the silicon oxide film 2 is provided on the silicon substrate 1 and the gate electrode 3 is formed on the silicon oxide film 2 in the same process as in the first embodiment. Then, the surface including the gate electrode 3 is formed by the CVD method.
After depositing a silicon oxide film having a thickness of 0 to 60 nm, the gate insulating film 5a is formed by wet etching to remove the gate electrode 3 from the silicon oxide film on the upper surface except for the drain side by a thickness of 20 to 30 nm. . In this case, the gate insulating film can be formed at once by the CVD method, so that the process is simplified as compared with the first embodiment.

【0013】次に、図2(b)に示すように、ゲート絶
縁膜5aの上に多結晶シリコン膜6を形成した後に多結
晶シリコン膜6に選択的にホウ素をイオン注入しソース
領域7およびドレイン領域8を形成する。ここで、ドレ
イン領域8の端部がゲート電極3の端部より0.2〜
0.3μm離れたオフセット構造を採用することも可能
である。この場合第1の実施例に比べてオフ電流を更に
減らすことができる。
Next, as shown in FIG. 2B, after the polycrystalline silicon film 6 is formed on the gate insulating film 5a, boron is selectively ion-implanted into the polycrystalline silicon film 6 to form the source regions 7 and The drain region 8 is formed. Here, the edge of the drain region 8 is 0.2 to 0.2 mm from the edge of the gate electrode 3.
It is also possible to employ an offset structure separated by 0.3 μm. In this case, the off current can be further reduced as compared with the first embodiment.

【0014】[0014]

【発明の効果】以上説明したように本発明は、TFTの
ゲート絶縁膜をドレイン近傍で厚くし、それ以外の領域
で薄くすることにより、オフ電流を低く保ったまま、オ
ン電流を増加させることができる。
As described above, the present invention increases the on-current while keeping the off-current low by making the gate insulating film of the TFT thick near the drain and thin in the other regions. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の断面図。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の第2の実施例を説明するための工程順
に示した半導体チップの断面図。
2A to 2D are sectional views of a semiconductor chip, which are shown in the order of steps for explaining a second embodiment of the present invention.

【図3】従来の薄膜トランジスタの一例を示す半導体チ
ップの断面図。
FIG. 3 is a sectional view of a semiconductor chip showing an example of a conventional thin film transistor.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 酸化シリコン膜 3 ゲート電極 4,5,5a ゲート絶縁膜 6 多結晶シリコン膜 7 ソース領域 8 ドレイン領域 1 Silicon substrate 2 Silicon oxide film 3 Gate electrode 4,5,5a Gate insulating film 6 Polycrystalline silicon film 7 Source area 8 drain region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に設けた絶縁膜の上に設け
たゲート電極と、前記ゲート電極を含む表面に設けたゲ
ート絶縁膜と、前記ゲート電極の少くとも上面を含む領
域の前記ゲート絶縁膜上に設けた半導体膜と、前記半導
体膜に設けたソース及びドレイン領域とを有する薄膜ト
ランジスタにおいて、前記ゲート電極上面のチャネル領
域のドレイン領域側の前記ゲート絶縁膜の厚さがソース
領域側より厚く形成されていることを特徴とする薄膜ト
ランジスタ。
1. A gate electrode provided on an insulating film provided on a semiconductor substrate, a gate insulating film provided on a surface including the gate electrode, and the gate insulating in a region including at least an upper surface of the gate electrode. In a thin film transistor having a semiconductor film provided on a film and source and drain regions provided on the semiconductor film, the thickness of the gate insulating film on the drain region side of the channel region on the upper surface of the gate electrode is thicker than that on the source region side. A thin film transistor, which is formed.
【請求項2】 半導体基板上に設けた絶縁膜の上に不純
物を含む多結晶シリコン膜を堆積してパターニングしゲ
ート電極を形成する工程と、前記ゲート電極を含む表面
に第1のゲート絶縁膜を形成してパターニングし前記ゲ
ート電極上面の一方の端部及びそれに隣接する側面を含
む領域にのみ前記第1のゲート絶縁膜を残す工程と、前
記第1のゲート絶縁膜及び露出した前記ゲート電極を含
む表面に第2のゲート絶縁膜を形成する工程と、前記第
2のゲート絶縁膜の上に多結晶シリコン膜を堆積してパ
ターニングし且前記多結晶シリコン膜内に不純物を選択
的に導入して前記第1及び第2のゲート絶縁膜の積層領
域上のドレイン領域及び対向する第2のゲート絶縁膜の
みの領域上のソース領域を形成する工程とを含むことを
特徴とする薄膜トランジスタの製造方法。
2. A step of depositing and patterning a polycrystalline silicon film containing an impurity on an insulating film provided on a semiconductor substrate to form a gate electrode, and a first gate insulating film on a surface including the gate electrode. Forming and patterning, and leaving the first gate insulating film only in a region including one end of the upper surface of the gate electrode and a side surface adjacent to the upper surface, and the first gate insulating film and the exposed gate electrode. A step of forming a second gate insulating film on the surface including, and depositing and patterning a polycrystalline silicon film on the second gate insulating film and selectively introducing impurities into the polycrystalline silicon film. And forming a drain region on the stacked region of the first and second gate insulating films and a source region on the opposite region of only the second gate insulating film. Method of manufacturing a register.
JP3182850A 1991-07-24 1991-07-24 Thin film transistor and manufacture thereof Pending JPH0529624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3182850A JPH0529624A (en) 1991-07-24 1991-07-24 Thin film transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3182850A JPH0529624A (en) 1991-07-24 1991-07-24 Thin film transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0529624A true JPH0529624A (en) 1993-02-05

Family

ID=16125553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3182850A Pending JPH0529624A (en) 1991-07-24 1991-07-24 Thin film transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0529624A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000003956A (en) * 1998-06-30 2000-01-25 김영환 Method for manufacturing thin film transistors
KR100274313B1 (en) * 1997-06-27 2000-12-15 김영환 Inverted staggered tft and manufacturing method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274313B1 (en) * 1997-06-27 2000-12-15 김영환 Inverted staggered tft and manufacturing method for the same
KR20000003956A (en) * 1998-06-30 2000-01-25 김영환 Method for manufacturing thin film transistors

Similar Documents

Publication Publication Date Title
JPS6249750B2 (en)
JPH05206451A (en) Mosfet and its manufacture
JP2780162B2 (en) Method for manufacturing semiconductor device
US5731240A (en) Manufacturing method for semiconductor depositing device
US5396099A (en) MOS type semiconductor device having a high ON current/OFF current ratio
JPH02228041A (en) Manufacture of semiconductor device
JPH07153952A (en) Semiconductor device and manufacture thereof
JPH07183528A (en) Thin film transistor
JPH0529624A (en) Thin film transistor and manufacture thereof
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPH0298939A (en) Manufacture of semiconductor device
JPS63227059A (en) Semiconductor device and manufacture thereof
JPH0349236A (en) Manufacture of mos transistor
KR19980058438A (en) Silicide Formation Method of Semiconductor Device
EP0528290B1 (en) Semiconductor device and manufacturing method thereof
JPH069245B2 (en) Field effect semiconductor device
KR100243021B1 (en) Method for manufacturing semiconductor device
JPS6235569A (en) Mis type transistor and manufacture thereof
JPH05110103A (en) Semiconductor device
JPS6395664A (en) Semiconductor device and manufacture thereof
JPH0637306A (en) Semiconductor device
JP2000040817A (en) Semiconductor device and its manufacture
JPH04338650A (en) Semiconductor device and manufacture thereof
JPH04305976A (en) Semiconductor device
JPH06275839A (en) Manufacture of vertical semiconductor element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000704