JPH0298939A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0298939A
JPH0298939A JP25087388A JP25087388A JPH0298939A JP H0298939 A JPH0298939 A JP H0298939A JP 25087388 A JP25087388 A JP 25087388A JP 25087388 A JP25087388 A JP 25087388A JP H0298939 A JPH0298939 A JP H0298939A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor substrate
gate electrode
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25087388A
Other languages
Japanese (ja)
Inventor
Yasuhisa Omura
泰久 大村
Katsutoshi Izumi
泉 勝俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25087388A priority Critical patent/JPH0298939A/en
Publication of JPH0298939A publication Critical patent/JPH0298939A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation

Abstract

PURPOSE:To realize a high performance of a semiconductor device by a method wherein, when a groove used to form a gate electrode is formed, a semiconductor substrate is oxidized and an oxide is removed by using a chemical liquid. CONSTITUTION:An insulating film 2 used to electrically insulate and isolate individual semiconductor devices is formed on the mainface side of a semiconductor substrate 1. Then, a silicon nitride film 13 is removed by an etching operation; after that, polycrystalline silicon 161 is etched by making use of an oxide film 7 as a mask until a gate insulating film 3 at the lower part is exposed; a gate electrode 4 is formed. Then, an exposed part of the gate electrode 4 is oxidized; it is covered with insulating films 8a, 8b; after that, an impurity is added to a semiconductor region to be used as a source region and a drain region; the semiconductor region is activated; an n-type source region and an n-type drain region 5, 6 are formed; in addition, an insulating film is formed on the main-face side of the substrate 1. After that, a source electrode 9 and a drain electrode 10 are formed. Accordingly, a groove size L1 of the oxidation- resistant thin film 13 first formed on the semiconductor substrate becomes nearly equal to a width of the finally formed gate electrode. Thereby, a high performance of a semiconductor device is realized when the groove size L1 is made smaller.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に高速動作を
可能とする小型の半導体装置いわゆる絶縁ゲート型電界
効果トランジスタ(以下MO8FETと略称する)を製
造する技術に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, particularly a small semiconductor device that enables high-speed operation, so-called insulated gate field effect transistor (hereinafter abbreviated as MO8FET). It is related to manufacturing technology.

〔従来の技術〕[Conventional technology]

従来の半導体装置の一例を第3図を参照して説明する。 An example of a conventional semiconductor device will be explained with reference to FIG.

第3図はこの半導体装置の構造断面図であシ、1は第1
導電形例えばp形の単結晶半導体基板、2は半導体装置
を横方向に電気的に絶縁するための絶縁膜、3はゲート
絶縁膜、4は半導体薄膜を使用したゲート電穫、5は第
2導電形例えばn形のソース領域、6は第2導電形例え
ばn形のドレイン領域、18a と 18bはゲート電
極4とソース領域5またはドレイン領域6とを電気的に
絶縁するための絶縁膜である。また、9けソース電極、
10はドレイン電極、11はゲート電極4とソース電極
9及びドレイン電極10の間を相互に電気的に絶縁する
ための絶縁膜である。
FIG. 3 is a cross-sectional view of the structure of this semiconductor device, and 1 is the first
2 is an insulating film for laterally electrically insulating the semiconductor device; 3 is a gate insulating film; 4 is a gate electrode using a semiconductor thin film; 5 is a second A source region 6 is of a second conductivity type, for example n-type, and 18a and 18b are insulating films for electrically insulating gate electrode 4 and source region 5 or drain region 6. . In addition, 9 source electrodes,
10 is a drain electrode, and 11 is an insulating film for electrically insulating the gate electrode 4, source electrode 9, and drain electrode 10 from each other.

このようなMOS F ET構造の半導体装置が考案さ
れたのは、第3図に示すように1ソ一ス接合面5a及び
ドレイン接合面6aとゲート絶R膜3と半導体基板1の
界面とを同じ水平面上に揃えることによって、ソース接
合面5aとドレイン接合面6aとからゲート絶縁膜3直
下への空乏層の伸びを抑え、これによシ閾値電圧やドレ
イン耐圧に現れる。いわゆる短チヤネル効果を抑制して
半導体装置の小型化を図り、半導体装置の高性能化を押
し進めるためである。
A semiconductor device having such a MOS FET structure was devised by connecting the interface between the source junction surface 5a, the drain junction surface 6a, the gate isolation film 3, and the semiconductor substrate 1, as shown in FIG. By aligning them on the same horizontal plane, the extension of the depletion layer from the source junction surface 5a and the drain junction surface 6a to just below the gate insulating film 3 is suppressed, and this appears in the threshold voltage and drain breakdown voltage. This is to reduce the size of semiconductor devices by suppressing the so-called short channel effect, and to promote higher performance of semiconductor devices.

ここで、かかる構造を実現するための従来の製造方法の
一例を第4図に示す。この方法は、まず第4図(ii)
に示すように、半導体基板1の主面側に個別の半導体装
置間を電気的に絶縁分離するための絶縁膜2を設け、半
導体装置を製作する領域に絶縁膜21を形成する。この
後半導体基板1の主面側をレジスト22で覆い、将来ゲ
ート絶縁膜を形成する領域のレジストのみを除去して絶
縁膜21を露出させる。その後、絶縁膜21のうち露出
した部分をエツチングで除去して半導体基板1を露出さ
せ、更に半導体基板1を反応性イオンエツチングあるい
は他のイオンビームエツチング等の異方性エツチング法
によシ所定の深さまで掘る。このようにして断面が矩形
の溝23を形成する。
Here, an example of a conventional manufacturing method for realizing such a structure is shown in FIG. This method is first shown in Figure 4 (ii).
As shown in FIG. 1, an insulating film 2 for electrically insulating and separating individual semiconductor devices is provided on the main surface side of a semiconductor substrate 1, and an insulating film 21 is formed in a region where semiconductor devices are to be manufactured. Thereafter, the main surface side of the semiconductor substrate 1 is covered with a resist 22, and only the resist in a region where a gate insulating film will be formed in the future is removed to expose the insulating film 21. Thereafter, the exposed portion of the insulating film 21 is removed by etching to expose the semiconductor substrate 1, and the semiconductor substrate 1 is further etched in a predetermined manner by an anisotropic etching method such as reactive ion etching or other ion beam etching. Dig deep. In this way, a groove 23 having a rectangular cross section is formed.

次に第4図(b)に示すように、溝23の底を含む側壁
23a  を酸化処理してゲート絶縁膜3を形成し、そ
の後半導体基板1の主面側にゲート電極用半導体膜例え
ば多結晶シリコン膜を形成し、所定の寸法を有するレジ
スト等のマスクを形成した後に前記多結晶シリコン膜を
加工してゲート電極4を形成する。次にソース及びドレ
イン領域と力る半導体領域に不純物を添加してソース及
びドレイン領域5.6を形成する。この後は通常の製造
工程に従って、配線用電極を形成すれば第3図に示すよ
うなMO8FfT構造の半導体装置を形成することがで
きる。
Next, as shown in FIG. 4(b), the sidewall 23a including the bottom of the groove 23 is oxidized to form a gate insulating film 3, and then a semiconductor film for gate electrode, for example, a multilayer film is formed on the main surface side of the semiconductor substrate 1. After forming a crystalline silicon film and forming a mask such as a resist having predetermined dimensions, the polycrystalline silicon film is processed to form a gate electrode 4. Next, impurities are added to the semiconductor region that will be used as the source and drain regions to form source and drain regions 5.6. Thereafter, wiring electrodes are formed according to the usual manufacturing process, thereby making it possible to form a semiconductor device having an MO8FfT structure as shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述した従来の技術においては次のような問題
点があった。すなわち、第1に、上記の工程において述
べたように、ゲート絶縁膜3を形成する領域はイオン・
ビーム等のドライ・エツチング法によp掘られてきた。
However, the above-mentioned conventional technology has the following problems. That is, first, as described in the above steps, the region where the gate insulating film 3 is formed is exposed to ions.
P holes have been dug using dry etching methods such as beam etching.

ドライ・エツチング法は一般的にエツチングされて露出
した半導体面2311近傍に高い密度の結晶欠陥を誘発
することが知られている。これらの結晶欠陥はソース・
ドレイン間の漏れ電流を著しく増大させる。また、ゲー
ト絶縁!A3と半導体基板1との界面状態が結晶欠陥の
ために悪化し、これKよって電子または正孔の移動度が
劣化する。しかし、第3図の構造を実現するにはドライ
・エツチング法以外になく、従って、とのような構造と
製造方法では、動作特性の優れた半導体装置を実現する
ことはきわめて困難である。
It is known that the dry etching method generally induces a high density of crystal defects in the vicinity of the etched exposed semiconductor surface 2311. These crystal defects are the source
Significantly increases drain-to-drain leakage current. Also, gate insulation! The state of the interface between A3 and the semiconductor substrate 1 deteriorates due to crystal defects, and the mobility of electrons or holes deteriorates due to this K. However, the only way to realize the structure shown in FIG. 3 is by dry etching, and therefore, it is extremely difficult to realize a semiconductor device with excellent operating characteristics using the structure and manufacturing method shown in FIG.

第2に、第4図缶)に示したように、ゲート電極4とソ
ース領域5及びドレイン領域6とを隔てている絶縁膜1
8aと18bは事実上ゲート絶縁膜3な形成するときに
同時に形成される。半導体装置の性能を向上させるKは
ゲート電極寸法の小型化と共にゲート絶縁膜の薄層化が
必須であって、この観点から絶縁!A 18 aと18
bとを厚くすることが困難であシ、半導体装置のゲート
電極寸法の/J%型化に伴ってゲート・ソース間及びゲ
ート・ドレイン間の重な多容量の占める割合が大きくな
るため、半導体装置の高速動作の妨げになるという欠点
があった。
Second, as shown in FIG.
8a and 18b are formed simultaneously when the gate insulating film 3 is actually formed. In order to improve the performance of semiconductor devices, it is essential to reduce the size of the gate electrode and thin the gate insulating film. A 18 a and 18
It is difficult to increase the thickness of b and b, and as the gate electrode dimensions of semiconductor devices become /J% type, the proportion of overlapping large capacitances between the gate and source and between the gate and drain increases. This has the disadvantage that it hinders the high-speed operation of the device.

本発明は以上のような点に鑑みて力されたもので、その
目的は、ゲート絶縁膜を形成する半導体領域に発生する
結晶欠陥を最小限に抑えて、小型でかつ動作の高速な半
導体装置を安定に製造する方法を提供することKある。
The present invention has been developed in view of the above points, and its purpose is to minimize crystal defects occurring in the semiconductor region forming the gate insulating film, and to provide a compact and high-speed semiconductor device. An object of the present invention is to provide a method for stably producing .

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明に係る半導体装置の
製造方法は、単結晶のみから成る半導体基板の主面に耐
酸化性薄膜を形成する工程と、該半導体基板上の前記耐
酸化性薄膜のうちゲート電極を配置する平面領域をエツ
チングして除去する工程と、前記耐酸化性薄膜の一部を
除去した該半導体基板を酸化性の雰囲気に晒してゲート
電極を配置するために該耐酸化性薄膜を除去した領域に
所定の厚さの選択酸化膜を形成する工程と、前記の工程
によシ形成されたゲート電極を配置すべき領域の前記選
択酸化膜のみを除去して半導体基板のうち該選択酸化膜
下の半導体基板を露出する工程と、該半導体基板を酸化
性雰囲気に晒して該半導体基板の露出部分を酸化してゲ
ート絶縁膜を形成する工程と、該半導体基板の少なくと
も主面側にゲート電極材料として使用する半導体薄膜を
堆積する工程と、該半導体基板の主面側において前記耐
酸化性薄膜が露出するまで前記半導体薄膜をエツチング
する工程と、該半導体基板を酸化性雰囲気に晒すことに
よシ、露出した前記半導体薄膜の表面近傍のみを酸化す
る工程と、該半導体基板上の前記耐酸化性薄膜を除去す
る工程と、該半導体基板の少なくとも主面側に残存する
前記ゲート電極用半導体薄膜のうち露出領域のみを選択
的にエツチングして除去する工程とを含むものである。
In order to achieve the above object, a method for manufacturing a semiconductor device according to the present invention includes a step of forming an oxidation-resistant thin film on the main surface of a semiconductor substrate made of only a single crystal, and a step of forming the oxidation-resistant thin film on the semiconductor substrate. There is a step of etching and removing the planar region where the gate electrode is to be placed, and a step of etching the semiconductor substrate from which a portion of the oxidation-resistant thin film has been removed to expose the semiconductor substrate to an oxidizing atmosphere to place the gate electrode. a step of forming a selective oxide film of a predetermined thickness in the region from which the conductive thin film has been removed; and a step of forming a selective oxide film of a predetermined thickness in the region where the gate electrode formed in the above step is to be disposed. A step of exposing the semiconductor substrate under the selective oxide film, a step of exposing the semiconductor substrate to an oxidizing atmosphere to oxidize the exposed portion of the semiconductor substrate to form a gate insulating film, and a step of exposing at least the main portion of the semiconductor substrate. A step of depositing a semiconductor thin film to be used as a gate electrode material on the surface side, a step of etching the semiconductor thin film until the oxidation-resistant thin film is exposed on the main surface side of the semiconductor substrate, and a step of placing the semiconductor substrate in an oxidizing atmosphere. a step of oxidizing only the exposed surface vicinity of the semiconductor thin film by exposing it to the semiconductor substrate; a step of removing the oxidation-resistant thin film on the semiconductor substrate; and a step of removing the oxidation-resistant thin film remaining on at least the main surface side of the semiconductor substrate. This method includes a step of selectively etching and removing only the exposed region of the semiconductor thin film for the gate electrode.

〔作用〕[Effect]

したがって、本発明においては、ゲート絶縁膜と半導体
能動領域の界面の位置をソース接合界面及びドレイン接
合界面と#1ぼ同じ水平面上に配置するために、ゲート
電極を形成する溝を形成するに当シ、半導体基板の酸化
と薬液による酸化物の除去を用いることにより、ゲート
絶縁膜直下の半導体界面に半導体装置の動作特性を劣化
させる結晶欠陥を発生させることはない。また、ゲート
絶縁物上にゲート電極を設けるに当たって、ゲート電極
形成用のマスクを用いないでゲート電極を自己整合的に
形成できるとともに、ゲート電極とソース領域及びドレ
イン領域の間に厚い絶縁膜を設ける間隙をゲート電極を
加工する際に同時に形成できる。
Therefore, in the present invention, in order to arrange the interface between the gate insulating film and the semiconductor active region on the same horizontal plane as the source junction interface and the drain junction interface, when forming the groove for forming the gate electrode, By oxidizing the semiconductor substrate and removing the oxide using a chemical solution, crystal defects that degrade the operating characteristics of the semiconductor device are not generated at the semiconductor interface directly under the gate insulating film. In addition, when providing a gate electrode on the gate insulator, the gate electrode can be formed in a self-aligned manner without using a mask for gate electrode formation, and a thick insulating film can be provided between the gate electrode and the source and drain regions. The gap can be formed simultaneously when processing the gate electrode.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図と第2図を用いて詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 and 2.

第1図は本発明の方法によシ実現できる半導体装置の一
例を示す構造断面図である。同図において、1は第1導
電形例えばp形の単結晶半導体基板、2は半導体装置を
横方向に電気的に絶縁するだめの絶縁膜、3はゲート絶
縁膜、4は半導体薄膜を使用したゲート電極である。ま
た、5は第2導電形例えばn形のソース領域、6は同じ
くn形のドレイン領域、7はゲート電極4上の絶縁膜、
8aと8bはゲート電極4の側壁に設けた絶縁膜、9は
ソース電極、10はドレイン電極、11はゲート電極4
とソース電極9及びドレイン電極10の間を相互に電気
的に絶縁するための絶縁膜である。
FIG. 1 is a structural sectional view showing an example of a semiconductor device that can be realized by the method of the present invention. In the figure, 1 is a single crystal semiconductor substrate of a first conductivity type, for example, p-type, 2 is an insulating film for laterally electrically insulating the semiconductor device, 3 is a gate insulating film, and 4 is a semiconductor thin film. This is the gate electrode. Further, 5 is a source region of a second conductivity type, for example, n-type, 6 is a drain region of n-type as well, 7 is an insulating film on gate electrode 4,
8a and 8b are insulating films provided on the side walls of the gate electrode 4, 9 is a source electrode, 10 is a drain electrode, and 11 is a gate electrode 4.
This is an insulating film for electrically insulating the source electrode 9 and the drain electrode 10 from each other.

次に、かかるMO8FE’l’構造を実現するための本
発明の製造方法の一例を第2図に示す。ここで、まず第
2図(a) K示すように、単結晶シリコンのような半
導体基板1の主面側に個別の半導体装置間を電気的に絶
縁分離するための絶縁膜2を例えば選択酸化法によシ設
け、半導体装置を製作する領域に半導体酸化膜12を形
成する。この後半導体基板1の主面側に耐酸化性を有す
る膜例えばシリコン窒化膜13を形成し、更にその上を
レジスト14で覆う。次に、将来ゲート電極を形成する
所定のl1g1(図中:L、)の領域のレジストのみを
除去してシリコン窒化膜13を露出させる。その後シリ
コン窒化膜13のうち露出した部分を例えば薬液による
エツチングで除去して半導体酸化膜12を露出させる。
Next, an example of the manufacturing method of the present invention for realizing such MO8FE'l' structure is shown in FIG. First, as shown in FIG. 2(a) K, an insulating film 2 for electrically insulating and separating individual semiconductor devices is, for example, selectively oxidized on the main surface side of a semiconductor substrate 1 made of single crystal silicon. A semiconductor oxide film 12 is formed in a region where a semiconductor device is to be manufactured. Thereafter, an oxidation-resistant film, for example, a silicon nitride film 13, is formed on the main surface side of the semiconductor substrate 1, and the top thereof is further covered with a resist 14. Next, only the resist in a predetermined region l1g1 (L in the figure) where a gate electrode will be formed in the future is removed to expose the silicon nitride film 13. Thereafter, the exposed portion of the silicon nitride film 13 is removed by, for example, chemical etching to expose the semiconductor oxide film 12.

次いで第2図伽)に示すように、半導体基板1上のレジ
スト14を除去した後、この半導体基板1を酸化性雰囲
気に晒してシリコン窒化膜13が除去された部分のみを
選択的に所定の時間酸化する。
Next, as shown in FIG. 2), after removing the resist 14 on the semiconductor substrate 1, the semiconductor substrate 1 is exposed to an oxidizing atmosphere to selectively coat only the portion where the silicon nitride film 13 has been removed. Oxidize for hours.

このようにして選択酸化膜15を形成する。この時選択
酸化法の特徴として、シリコン窒化膜13の下部に距離
L2だけ酸化膜が横方向に成長する。
In this way, selective oxide film 15 is formed. At this time, as a feature of the selective oxidation method, an oxide film grows laterally under the silicon nitride film 13 by a distance L2.

次に第2図(C)に示すように、選択酸化膜15を例え
ばフッ化水素酸を含む薬液によるエツチングにより除去
し、この露出した半導体基板1の表面を酸化してゲート
絶縁膜3を形成し、その後半導体基板の主面側にゲート
電極用の半導体膜例えば多結晶シリコン膜16を選択酸
化膜15が存在していた領域が埋まるように堆積する。
Next, as shown in FIG. 2C, the selective oxide film 15 is removed by etching with a chemical solution containing hydrofluoric acid, for example, and the exposed surface of the semiconductor substrate 1 is oxidized to form the gate insulating film 3. Then, a semiconductor film for a gate electrode, such as a polycrystalline silicon film 16, is deposited on the main surface side of the semiconductor substrate so as to fill the region where the selective oxide film 15 was present.

次いで第2図(d)に示すように、半導体基板1の主面
側の多結晶シリコン膜16を例えば異方性ドライエツチ
ング法によム選択酸化#ISが存在した領域にのみに残
るようにエツチングする。その後、半導体基板1を酸化
性雰囲気に晒して、前記工程で残された多結晶シリ;ン
膜161のうち露出している部分のみに絶縁膜つまり酸
化j117を形成する。
Next, as shown in FIG. 2(d), the polycrystalline silicon film 16 on the main surface side of the semiconductor substrate 1 is etched by, for example, an anisotropic dry etching method so that selective oxidation #IS remains only in the region where it existed. etching. Thereafter, the semiconductor substrate 1 is exposed to an oxidizing atmosphere to form an insulating film, that is, an oxide layer 117, only on the exposed portion of the polycrystalline silicon film 161 left in the above step.

次に第2図(e)に示すように、シリコン窒化膜13を
例えば加熱したリン酸を含む薬液によるエツチングによ
ル除去した後、例えば異方性ドライエツチング法によシ
、酸化膜7をマスクとして下部のゲート絶縁膜3が露出
するまで多結晶シリコン161をエツチングしてゲート
電極4を形成する。
Next, as shown in FIG. 2(e), after the silicon nitride film 13 is removed by etching with a chemical solution containing heated phosphoric acid, the oxide film 7 is removed by, for example, an anisotropic dry etching method. Gate electrode 4 is formed by etching polycrystalline silicon 161 using a mask until lower gate insulating film 3 is exposed.

次に第2図α)に示すように、ゲート電極4の露出した
部分を酸化して絶縁膜8m、 8bで覆い、この後ソー
ス及びドレイン領域となる半導体領域に不純物をイオン
注入法によシ添加しかつ活性化してn形のソース及びド
レイ/領域5.6を形成し、更に半導体基板1の主面側
に絶縁膜1を形成する。
Next, as shown in FIG. 2 α), the exposed portion of the gate electrode 4 is oxidized and covered with insulating films 8m and 8b, and impurities are then ion-implanted into the semiconductor region that will become the source and drain regions. It is added and activated to form n-type source and drain/regions 5.6, and furthermore, an insulating film 1 is formed on the main surface side of the semiconductor substrate 1.

その後は通常の半導体装置の製造方法に従ってソース電
極9及びドレイン電極10を形成することにより、第1
図に示すようなMOS F g’r構造の半導体装置を
作ることができる。
Thereafter, a source electrode 9 and a drain electrode 10 are formed according to a normal semiconductor device manufacturing method.
A semiconductor device having a MOS F g'r structure as shown in the figure can be manufactured.

上記実施例の製造方法によると、一番はじめに半導体基
板上に形成された耐酸化性薄膜の溝寸法L1が最終的に
形成されるゲート電極幅とほぼ等しくなる。従って、該
溝寸法L1を小さくすればするほど半導体装置の高性能
化が可能となる。このLlは現状のリングラフィ技術の
限界まで設定可能であ)、今後のリングラフィ技術の発
展を考慮すれば、本発明の製造方法による半導体装置の
ゲート電極寸法の小型化に限界1力い。
According to the manufacturing method of the above embodiment, the trench dimension L1 of the oxidation-resistant thin film first formed on the semiconductor substrate is approximately equal to the width of the gate electrode finally formed. Therefore, the smaller the trench dimension L1 is, the higher the performance of the semiconductor device becomes. This Ll can be set up to the limit of current phosphorography technology), and if future development of phosphorography technology is taken into account, there is a limit to the miniaturization of the gate electrode size of a semiconductor device by the manufacturing method of the present invention.

なお、本発明は上述の実施例にのみ限定されるものでは
なく、例えば半導体基板上の主面に他の薄膜を介在させ
ず耐酸化性薄膜を形成したシ、あるいはゲート電極材料
に多結晶シリコン以外の非晶質シリコン等の半導体薄膜
を用い九りするととなど、特許請求の範囲に記載された
範囲内において種々変更し得るものである。
Note that the present invention is not limited to the above-mentioned embodiments; for example, an oxidation-resistant thin film is formed on the main surface of a semiconductor substrate without any other thin film, or polycrystalline silicon is used as the gate electrode material. Various modifications may be made within the scope of the claims, such as using a semiconductor thin film made of other amorphous silicon or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ゲート絶縁膜と半
導体能動領域の界面の位置をソース接合界面及びドレイ
ン接合界面とtすぼ同じ水平面上に配置する構造を有す
る半導体装置の製造方法において、ゲート電極を形成す
る溝を形成するに描シ、半導体基板の酸化と薬液による
酸化物の除去を利用することにより、次のような効果が
得られる。
As explained above, according to the present invention, in the method of manufacturing a semiconductor device having a structure in which the interface between the gate insulating film and the semiconductor active region is located on approximately the same horizontal plane as the source junction interface and the drain junction interface, The following effects can be obtained by using oxidation of the semiconductor substrate and removal of the oxide using a chemical solution to form the groove for forming the gate electrode.

(1)ゲート絶縁膜を形成する領域に結晶欠陥が訪発さ
れない。そのため、ソース・ドレイン間の漏れ電流が増
大しない。また、ゲート絶縁膜と半導体基板との界面状
態が良好でおるため、電子または正孔の移動度が劣化す
ることもない。
(1) Crystal defects are not generated in the region where the gate insulating film is formed. Therefore, leakage current between the source and drain does not increase. Furthermore, since the interface between the gate insulating film and the semiconductor substrate is in good condition, the mobility of electrons or holes does not deteriorate.

Q)耐酸化性薄膜の溝を形成するためのマスクだけでゲ
ート電極の位置と寸法を一義的に決定できるため、半導
体装置のゲート電極の小部化に基本的に限界は危く、半
導体装置の高性能化にきわめて有利である。
Q) Since the position and dimensions of the gate electrode can be uniquely determined using only a mask for forming grooves in the oxidation-resistant thin film, there is basically a limit to the miniaturization of gate electrodes in semiconductor devices. This is extremely advantageous for improving performance.

(3)ゲート電極とソース領域及びドレイン領域とを隔
てている絶縁膜を厚くすることが容易であシ、ゲート・
ソース間及びゲート−ドレイン間の重な多容量の占める
割合を低減できるので、半導体装置の高速動作に有利で
ある。
(3) It is easy to thicken the insulating film that separates the gate electrode from the source and drain regions;
This is advantageous for high-speed operation of the semiconductor device because the ratio of overlapping large capacitances between sources and between gates and drains can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の製造方法の一実施例を説
明するための半導体装置の構造断面図およびその工程断
面図、第3図および84図は従来の一例を示す半導体装
置の構造断面図およびその一部工程断面図である。 1・・・・単結晶半導体基板、2・・・・絶縁膜、3・
・・・ゲート絶縁膜、4・・・・ゲート電極、5・・・
・ソース領域、6・・・・ドレイン領域、7 、8a 
、 8b ・・・・絶縁膜、9・・・・ソース電極、1
0・・・・ドレイン電極、・絶縁膜、12・・・・半導
体酸化膜、・シリコン窒化膜(耐酸化性薄膜)、 嗜レジスト、15・−・−選択酸化膜、ψ多結晶シリコ
ン膜。
1 and 2 are structural cross-sectional views of a semiconductor device and its process cross-sectional views for explaining one embodiment of the manufacturing method of the present invention, and FIGS. 3 and 84 are structure of a semiconductor device showing an example of the conventional method. FIG. 2 is a cross-sectional view and a partial process cross-sectional view thereof. 1... Single crystal semiconductor substrate, 2... Insulating film, 3...
...Gate insulating film, 4...Gate electrode, 5...
- Source region, 6...Drain region, 7, 8a
, 8b... Insulating film, 9... Source electrode, 1
0...Drain electrode, -Insulating film, 12...Semiconductor oxide film, -Silicon nitride film (oxidation-resistant thin film), resist, 15...-Selective oxide film, ψ polycrystalline silicon film.

Claims (1)

【特許請求の範囲】[Claims] 単結晶のみから成る半導体基板の主面に耐酸化性薄膜を
形成する工程と、該半導体基板上の前記耐酸化性薄膜の
うちゲート電極を配置する平面領域をエッチングして除
去する工程と、前記耐酸化性薄膜の一部を除去した該半
導体基板を酸化性の雰囲気に晒してゲート電極を配置す
るために該耐酸化性薄膜を除去した領域に所定の厚さの
選択酸化膜を形成する工程と、前記の工程により形成さ
れたゲート電極を配置すベき領域の前記選択酸化膜のみ
を除去して半導体基板のうち該選択酸化膜下の半導体基
板を露出する工程と、該半導体基板を酸化性雰囲気に晒
して該半導体基板の露出部分を酸化してゲート絶縁膜を
形成する工程と、該半導体基板の少なくとも主面側にゲ
ート電極材料として使用する半導体薄膜を堆積する工程
と、該半導体基板の主面側において前記耐酸化性薄膜が
露出するまで前記半導体薄膜をエッチングする工程と、
該半導体基板を酸化性雰囲気に晒すことにより、露出し
た前記半導体薄膜の表面近傍のみを酸化する工程と、該
半導体基板上の前記耐酸化性薄膜を除去する工程と、該
半導体基板の少なくとも主面側に残存する前記ゲート電
極用半導体薄膜のうち露出領域のみを選択的にエッチン
グして除去する工程とを含むことを特徴とする半導体装
置の製造方法。
a step of forming an oxidation-resistant thin film on the main surface of a semiconductor substrate made of only a single crystal; a step of etching and removing a planar region of the oxidation-resistant thin film on the semiconductor substrate where a gate electrode is arranged; A step of exposing the semiconductor substrate from which a portion of the oxidation-resistant thin film has been removed to an oxidizing atmosphere and forming a selective oxide film of a predetermined thickness in the region from which the oxidation-resistant thin film has been removed in order to arrange a gate electrode. a step of removing only the selective oxide film in the area where the gate electrode formed in the above step is to be placed to expose the semiconductor substrate under the selective oxide film; and oxidizing the semiconductor substrate. a step of oxidizing the exposed portion of the semiconductor substrate to form a gate insulating film by exposing it to a chemical atmosphere, a step of depositing a semiconductor thin film to be used as a gate electrode material on at least the main surface side of the semiconductor substrate, and a step of depositing a semiconductor thin film to be used as a gate electrode material; etching the semiconductor thin film until the oxidation-resistant thin film is exposed on the main surface side;
oxidizing only the exposed surface vicinity of the semiconductor thin film by exposing the semiconductor substrate to an oxidizing atmosphere; removing the oxidation-resistant thin film on the semiconductor substrate; and at least the main surface of the semiconductor substrate. A method of manufacturing a semiconductor device, comprising the step of selectively etching and removing only the exposed region of the semiconductor thin film for gate electrode remaining on the side.
JP25087388A 1988-10-06 1988-10-06 Manufacture of semiconductor device Pending JPH0298939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25087388A JPH0298939A (en) 1988-10-06 1988-10-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25087388A JPH0298939A (en) 1988-10-06 1988-10-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0298939A true JPH0298939A (en) 1990-04-11

Family

ID=17214279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25087388A Pending JPH0298939A (en) 1988-10-06 1988-10-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0298939A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350971A (en) * 1991-05-28 1992-12-04 Sharp Corp Manufacture of semiconductor device
US5342796A (en) * 1991-05-28 1994-08-30 Sharp Kabushiki Kaisha Method for controlling gate size for semiconduction process
US5672524A (en) * 1995-08-01 1997-09-30 Advanced Micro Devices, Inc. Three-dimensional complementary field effect transistor process
US5814544A (en) * 1994-07-14 1998-09-29 Vlsi Technology, Inc. Forming a MOS transistor with a recessed channel
US6465842B2 (en) 1998-06-25 2002-10-15 Kabushiki Kaisha Toshiba MIS semiconductor device and method of fabricating the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350971A (en) * 1991-05-28 1992-12-04 Sharp Corp Manufacture of semiconductor device
US5342796A (en) * 1991-05-28 1994-08-30 Sharp Kabushiki Kaisha Method for controlling gate size for semiconduction process
US5814544A (en) * 1994-07-14 1998-09-29 Vlsi Technology, Inc. Forming a MOS transistor with a recessed channel
US5672524A (en) * 1995-08-01 1997-09-30 Advanced Micro Devices, Inc. Three-dimensional complementary field effect transistor process
US6465842B2 (en) 1998-06-25 2002-10-15 Kabushiki Kaisha Toshiba MIS semiconductor device and method of fabricating the same
US6812104B2 (en) 1998-06-25 2004-11-02 Kabushiki Kaisha Toshiba MIS semiconductor device and method of fabricating the same

Similar Documents

Publication Publication Date Title
US4803176A (en) Integrated circuit structure with active device in merged slot and method of making same
JPH04102317A (en) Manufacture of semiconductor device
US5969393A (en) Semiconductor device and method of manufacture of the same
KR980006510A (en) Manufacturing Method of Semiconductor Device
JPH05206451A (en) Mosfet and its manufacture
US20010000074A1 (en) Thin film transistor and method of manufacturing the same
US6297093B1 (en) Method of making an electrically programmable memory cell
JPH0298939A (en) Manufacture of semiconductor device
JPS5923476B2 (en) Manufacturing method of semiconductor device
KR950004842B1 (en) Manufacturing method of semiconductor device
JPH0575114A (en) Soi type semiconductor device and manufacture thereof
JPS6347335B2 (en)
US6239478B1 (en) Semiconductor structure for a MOS transistor
JPS6020582A (en) Mis transistor and manufacture thereof
JP2663371B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPH0695573B2 (en) Method for manufacturing semiconductor device
JP2531688B2 (en) Method for manufacturing semiconductor device
JPH02153534A (en) Manufacture of semiconductor device
KR100649813B1 (en) Manufacturing method of semiconductor device
KR100252767B1 (en) A semiconductor device and method for fabricating the same
JP2000021970A (en) Manufacture of semiconductor device
JPH0252859B2 (en)
JPS61134058A (en) Manufacture of semiconductor device
JPH06151842A (en) Semiconductor device and its manufacture
KR100291517B1 (en) SIO structure semiconductor integrated circuit and its manufacturing method