JPS5923476B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5923476B2
JPS5923476B2 JP53085789A JP8578978A JPS5923476B2 JP S5923476 B2 JPS5923476 B2 JP S5923476B2 JP 53085789 A JP53085789 A JP 53085789A JP 8578978 A JP8578978 A JP 8578978A JP S5923476 B2 JPS5923476 B2 JP S5923476B2
Authority
JP
Japan
Prior art keywords
layer
film
polycrystalline silicon
silicon substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53085789A
Other languages
Japanese (ja)
Other versions
JPS5512767A (en
Inventor
正宏 畑中
務 吉原
晶彦 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP53085789A priority Critical patent/JPS5923476B2/en
Publication of JPS5512767A publication Critical patent/JPS5512767A/en
Publication of JPS5923476B2 publication Critical patent/JPS5923476B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 この発明は、2層ゲート構造を有する半導体装置に関し
、特に2層ゲート間の耐圧および動作速度に優れた半導
体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device having a two-layer gate structure, and more particularly to a method for manufacturing a semiconductor device with excellent breakdown voltage and operating speed between two-layer gates.

最近、2層ゲート構造を有する半導体装置、特に半導体
記憶装置がある。
Recently, there have been semiconductor devices, particularly semiconductor memory devices, having a two-layer gate structure.

この種の半導体装置は、例えば、次のような構造をもつ
ている。第1図a−cは2層ゲート構造を有する半導体
記憶装置の代表的な例をその主要部の製造工程に従つて
示したものである。
This type of semiconductor device has, for example, the following structure. FIGS. 1a to 1c show a typical example of a semiconductor memory device having a two-layer gate structure according to the manufacturing process of its main parts.

以下これによつて従来の半導体装置を説明する。一導電
型の単結晶シリコン基板1の上に絶縁層であるSiO2
膜2を形成し、この上に第1導体層である多結晶シリコ
ン膜3を所定のパターンに成形する(第1図a)。
Hereinafter, a conventional semiconductor device will be explained based on this. An insulating layer of SiO2 is formed on a single-crystal silicon substrate 1 of one conductivity type.
A film 2 is formed, and a polycrystalline silicon film 3 serving as a first conductor layer is formed on the film into a predetermined pattern (FIG. 1a).

その後、多結晶シリコン膜3をマスクとしてSiO2膜
2の露出部分を除去すると、多結晶シリコン膜3の端部
の下に、SiO2膜2の切り込み部が形成される(第1
図b)。その後、高温、酸化性雰囲気中で多結晶シリコ
ン膜3を酸化し、SiO2膜4を形成する。次に、Si
O2膜4の上に、第2導体層となるべき多結晶シリコン
膜5を形成した後、この多結晶シリコン膜5を所望のパ
ターンに成形し、SiO2膜4の露出部分を除去して部
分的に単結晶シリコン基板1の表面6を露出させ、、こ
の部分にソースまたはドレインとなるべき不純物拡散層
Tを形成する(第1図c)。この後、単結晶シリコン基
板1、ソースおよびドレインとなる不純物拡散層T、多
結晶シリコン膜3、5にそれぞれ周知の方法で電極部を
設けて半導体装置が完成する。上記のような製造工程に
よると、多結晶シリコン膜3を酸化して形成されるSi
O2膜4の単結晶シリコン基板1上での厚さdと、多結
晶シリコン膜3上での厚さをとの比1がせいぜい1.5
〜2.0ぐらいであり、例えばd二1000λの場合、
を=1500〜2000λ程度になることが知られてい
る。
Thereafter, when the exposed portion of the SiO2 film 2 is removed using the polycrystalline silicon film 3 as a mask, a notch in the SiO2 film 2 is formed under the edge of the polycrystalline silicon film 3 (first
Figure b). Thereafter, the polycrystalline silicon film 3 is oxidized in an oxidizing atmosphere at a high temperature to form a SiO2 film 4. Next, Si
After forming a polycrystalline silicon film 5 to become a second conductor layer on the O2 film 4, the polycrystalline silicon film 5 is formed into a desired pattern, and the exposed portion of the SiO2 film 4 is removed to partially form the polycrystalline silicon film 5. The surface 6 of the single-crystal silicon substrate 1 is exposed, and an impurity diffusion layer T to become a source or drain is formed in this portion (FIG. 1c). Thereafter, electrode portions are provided on the single crystal silicon substrate 1, the impurity diffusion layers T serving as sources and drains, and the polycrystalline silicon films 3 and 5, respectively, by well-known methods to complete the semiconductor device. According to the above manufacturing process, Si formed by oxidizing the polycrystalline silicon film 3
The ratio 1 between the thickness d of the O2 film 4 on the single crystal silicon substrate 1 and the thickness on the polycrystalline silicon film 3 is at most 1.5.
~2.0, for example, in the case of d21000λ,
is known to be approximately 1500 to 2000λ.

このため、多結晶シリコン膜3,5が重なる部分の面積
が大きなICチツプになれば、2層ゲート間の浮遊容量
によつて、動作速度は大きく影響されることになる。そ
こで、動作速度を向上させるためには、第1図cにおけ
るtを大きくする必要がある。従来、このtを大きくし
ようとすると、同時に酸化されるdも大きくなり、半導
体装置の特性に悪影響がでてくるという欠点があつた。
また、第1導体層である多結晶シリコン膜3の端部にお
ける段差に、第2導体層である多結晶シリコン膜5がか
ぶさる部分において、2層ゲート間にリーク電流が発生
しやすい部分ができ、耐圧不良を起すこともよく知られ
ている。この発明は上記のような欠点を除去するために
なされたもので、従来の製造工程を大幅に変えることな
く、2層ゲート間距離、すなわち、第1導体層である多
結晶シリコン膜上のSiO2膜の厚さのみを大きくして
浮遊容量を減らし、半導体装置の動作速度を向上させる
とともに、2層ゲート間の絶縁耐圧をも向上させる方法
を提供するものである。
Therefore, if the IC chip has a large area where the polycrystalline silicon films 3 and 5 overlap, the operating speed will be greatly affected by the stray capacitance between the two-layer gates. Therefore, in order to improve the operating speed, it is necessary to increase t in FIG. 1c. Conventionally, when trying to increase t, d, which is oxidized, also increases, which has the disadvantage of adversely affecting the characteristics of the semiconductor device.
In addition, in the part where the polycrystalline silicon film 5, which is the second conductive layer, overlaps the step at the end of the polycrystalline silicon film 3, which is the first conductive layer, there is a part where leakage current is likely to occur between the two layer gates. It is also well known that this can cause breakdown voltage failure. This invention was made to eliminate the above-mentioned drawbacks, and without significantly changing the conventional manufacturing process, the distance between the two-layer gate, that is, the SiO2 on the polycrystalline silicon film that is the first conductor layer, The present invention provides a method of reducing stray capacitance by increasing only the thickness of the film, improving the operating speed of a semiconductor device, and also improving the dielectric breakdown voltage between two-layer gates.

以下この発明の一実施例を第2図a−fによつて説明す
る。単結晶シリコン基板11上に、高温、酸化性雰囲気
中でSiO2膜12を厚さ700〜1500λ成長させ
る。
An embodiment of the present invention will be described below with reference to FIGS. 2a to 2f. An SiO2 film 12 is grown to a thickness of 700 to 1500 λ on a single crystal silicon substrate 11 at a high temperature in an oxidizing atmosphere.

その上に、第1導体層となるべき多結晶シリコン膜13
を5000〜7500λ成長させる。次に、ホトレジス
ト14を用いて、多結晶シリコン膜13上に所望のパタ
ーンを形成する(第2図a)。その後、CF4等のガス
プラズマあるいはフツ酸系エツチング液中において、ホ
トシジスト14を保護膜として多結晶シリコン膜13の
露出部分をエツチングする(第2図b)。その後、窒素
をイオン化、加速してイオン注入を行う。なお、その際
の加速エネルギーは、多結晶シリコン膜13の露出部分
を除去した下の部分のSiO2膜12と単結晶シリコン
基板11の界面に最大の窒素濃度をもつような値に設定
する。そして、打込み量は1017〜1018個/Cd
程度とする。その後、1000〜1200℃の高温で処
理すれば、SiO2膜12と単結晶シリコン基板11と
の界面にはSi原子とN原子の複合体の薄い窒化シリコ
ン層15が形成される(第2図c)。次にホトレジスト
14を除去した後、950〜1000℃の酸化性雰囲気
中で酸化する。この際、複合体の窒化シリコン層15が
あるために、単結晶シリコン基板11上のSiO2膜1
2は、成長速度が抑制され、第1導体層となるべき多結
晶シリコン膜13上のSiO2膜16のみが成長する。
こうして窒化シリコン層15が酸化されてSiO2膜1
6に変わるまで酸化を続ければ、多結晶シリコン膜13
上に成長したSiO2膜16の厚みmと窒化シリコン層
15が形成された単結晶シリコン基板11上のSiO2
膜nとの比wは7〜10となつて、従来の方法に比べ上
記膜厚比は非常に大きくなる(第2図d)。この後、多
結晶シリコン膜17を形成して第2導体層となし、この
多結晶シリコン膜17を所望のパターンに成形した後、
SiO2膜16の露出部分を除去して単結晶シリコン基
板11の表面11′を露出させる(第2図e)。その後
、ソースまたはドレインとなるべき不純物拡散層18を
形成する。(第2図f)。こうした後、単結晶シリコン
基板11.ソースおよびドレインとなる不純物拡散層1
8、第1導体層となる多結晶シリコン膜13、第2導体
層となる多結晶シリコン膜17にそれぞれ周知の方法で
電極部を設けて半導体装置が完成する。以上説明したよ
うにこの発明は、2層ゲート部分の第1導体層となる多
結晶シリコン膜上に形成されるSiO2膜の厚みをこの
SiO2膜が単結晶シリコン基板上に形成される部分の
厚みより大きく形成するようにしたので、2層ゲート間
の浮遊容量が大幅に減少することにより動作速度が向上
するとともに、2層ゲート間の絶縁耐圧にもすぐれた半
導体装置が得られる利点がある。
On top of that, a polycrystalline silicon film 13 to become the first conductor layer
is grown to 5000-7500λ. Next, a desired pattern is formed on the polycrystalline silicon film 13 using a photoresist 14 (FIG. 2a). Thereafter, the exposed portion of the polycrystalline silicon film 13 is etched in a gas plasma such as CF4 or in a hydrofluoric acid etching solution, using the photocidist 14 as a protective film (FIG. 2b). Thereafter, nitrogen is ionized and accelerated to perform ion implantation. Incidentally, the acceleration energy at this time is set to a value such that the maximum nitrogen concentration is obtained at the interface between the SiO2 film 12 and the single crystal silicon substrate 11 in the lower part where the exposed part of the polycrystalline silicon film 13 has been removed. And the implantation amount is 1017~1018 pieces/Cd
degree. Thereafter, by processing at a high temperature of 1000 to 1200°C, a thin silicon nitride layer 15 made of a composite of Si atoms and N atoms is formed at the interface between the SiO2 film 12 and the single crystal silicon substrate 11 (Fig. 2c). ). Next, after removing the photoresist 14, it is oxidized in an oxidizing atmosphere at 950 to 1000°C. At this time, since the composite silicon nitride layer 15 is present, the SiO2 film 1 on the single crystal silicon substrate 11 is
In No. 2, the growth rate is suppressed, and only the SiO2 film 16 on the polycrystalline silicon film 13, which is to become the first conductor layer, grows.
In this way, the silicon nitride layer 15 is oxidized and the SiO2 film 1
If oxidation is continued until it changes to 6, the polycrystalline silicon film 13
The thickness m of the SiO2 film 16 grown thereon and the SiO2 on the single crystal silicon substrate 11 on which the silicon nitride layer 15 is formed.
The ratio w to the film n is 7 to 10, and the film thickness ratio is much larger than in the conventional method (FIG. 2d). After this, a polycrystalline silicon film 17 is formed to serve as a second conductor layer, and after forming this polycrystalline silicon film 17 into a desired pattern,
The exposed portion of the SiO2 film 16 is removed to expose the surface 11' of the single crystal silicon substrate 11 (FIG. 2e). Thereafter, an impurity diffusion layer 18 to become a source or drain is formed. (Fig. 2 f). After this, the single crystal silicon substrate 11. Impurity diffusion layer 1 that becomes source and drain
8. Electrode portions are provided on the polycrystalline silicon film 13, which will become the first conductor layer, and the polycrystalline silicon film 17, which will become the second conductor layer, respectively, by a well-known method, and the semiconductor device is completed. As explained above, in the present invention, the thickness of the SiO2 film formed on the polycrystalline silicon film which becomes the first conductor layer of the two-layer gate portion is the thickness of the portion where this SiO2 film is formed on the single crystal silicon substrate. Since it is made larger, there is an advantage that the stray capacitance between the two-layer gates is significantly reduced, thereby improving the operating speed and providing a semiconductor device with excellent dielectric strength between the two-layer gates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a−cは従来の2層ゲート構造の半導体装置の製
造工程を説明するための断面図、第2図a−fはこの発
明の一実施例を示す2層ゲート構造の半導体装置の製造
工程を説明するための断面図である。 図中、11は単結晶シリコン基板、12,16はSlO
2膜、13,17は多結晶シリコン膜、14はホトレジ
スト、15は窒化シリコン層、18は不純物拡散層であ
る。
1a-c are cross-sectional views for explaining the manufacturing process of a conventional semiconductor device with a two-layer gate structure, and FIGS. 2a-f are cross-sectional views of a semiconductor device with a two-layer gate structure showing an embodiment of the present invention. It is a sectional view for explaining a manufacturing process. In the figure, 11 is a single crystal silicon substrate, 12 and 16 are SlO
2, 13 and 17 are polycrystalline silicon films, 14 is a photoresist, 15 is a silicon nitride layer, and 18 is an impurity diffusion layer.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の単結晶シリコン基板上に絶縁層を形成し
この絶縁層に接して多結晶シリコン膜を成長させた後、
所定部分を除去して第1導体層を形成する工程と、前記
多結晶シリコン膜の除去部分に窒素イオン注入を行い、
前記絶縁層と単結晶シリコン基板の界面に薄い窒化シリ
コン層を形成する工程と、酸化性雰囲気中で酸化し、前
記単結晶シリコン基板上の絶縁膜厚に比べ前記第1導体
層上に膜厚の大きい絶縁膜を形成する工程と、前記第1
導体層上および単結晶シリコン基板上の絶縁膜上に第2
導体層を形成する工程とを含むことを特徴とする半導体
装置の製造方法。
1 After forming an insulating layer on a single conductivity type single crystal silicon substrate and growing a polycrystalline silicon film in contact with this insulating layer,
forming a first conductor layer by removing a predetermined portion; and implanting nitrogen ions into the removed portion of the polycrystalline silicon film;
forming a thin silicon nitride layer at the interface between the insulating layer and the single-crystal silicon substrate; and oxidizing in an oxidizing atmosphere to increase the thickness of the silicon nitride layer on the first conductor layer compared to the thickness of the insulating layer on the single-crystal silicon substrate. a step of forming an insulating film with a large
A second layer is formed on the conductor layer and the insulating film on the single crystal silicon substrate.
A method for manufacturing a semiconductor device, comprising the step of forming a conductor layer.
JP53085789A 1978-07-13 1978-07-13 Manufacturing method of semiconductor device Expired JPS5923476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53085789A JPS5923476B2 (en) 1978-07-13 1978-07-13 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53085789A JPS5923476B2 (en) 1978-07-13 1978-07-13 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5512767A JPS5512767A (en) 1980-01-29
JPS5923476B2 true JPS5923476B2 (en) 1984-06-02

Family

ID=13868647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53085789A Expired JPS5923476B2 (en) 1978-07-13 1978-07-13 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5923476B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160062A (en) * 1980-05-14 1981-12-09 Fujitsu Ltd Manufacture of semiconductor device
JPS57197911A (en) * 1981-05-29 1982-12-04 Sanyo Electric Co Ltd Schmitt circuit
JPS5850771A (en) * 1981-09-21 1983-03-25 Hitachi Ltd High integration rom enable of rewriting and manufacture thereof
JPS59188962A (en) * 1983-04-12 1984-10-26 Matsushita Electronics Corp Manufacture of semiconductor device
JP2503621B2 (en) * 1989-01-23 1996-06-05 日本電気株式会社 Method for manufacturing semiconductor device
JPH0613344U (en) * 1992-07-15 1994-02-18 東京電力株式会社 Adapter for drawing out the ground wire of the power cable connection

Also Published As

Publication number Publication date
JPS5512767A (en) 1980-01-29

Similar Documents

Publication Publication Date Title
JPS6072268A (en) Method of producing bipolar transistor structure
JPH04102317A (en) Manufacture of semiconductor device
US4497108A (en) Method for manufacturing semiconductor device by controlling thickness of insulating film at peripheral portion of element formation region
JPS5923476B2 (en) Manufacturing method of semiconductor device
JPS5843912B2 (en) Method for manufacturing semiconductor integrated circuit device
EP0023528A1 (en) Double diffused transistor structure and method of making same
KR910000020B1 (en) Manufacture of semiconductor device
JPS6252950B2 (en)
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPH0298939A (en) Manufacture of semiconductor device
JPH02130852A (en) Semiconductor device
JPS5828734B2 (en) hand tai souchi no seizou houhou
JPH02153534A (en) Manufacture of semiconductor device
KR100265824B1 (en) Method for fabricating transistor of ldd structure
JPH0252859B2 (en)
JPS6115372A (en) Semiconductor device and manufacture thereof
JPH11354650A (en) Semiconductor device and its manufacture
JPH0429224B2 (en)
JPH02134827A (en) Semiconductor device and its manufacture
JPS6077460A (en) Manufacture of semiconductor device
JPH06196635A (en) Semiconductor device and manufacture thereof
JPH06188259A (en) Manufacture of semiconductor device
JPS61129869A (en) Manufacture of semiconductor device
JPH0240921A (en) Manufacture of bipolar transistor
JPH07161963A (en) Manufacture of quantum wire structure