JPS5850771A - High integration rom enable of rewriting and manufacture thereof - Google Patents

High integration rom enable of rewriting and manufacture thereof

Info

Publication number
JPS5850771A
JPS5850771A JP56147910A JP14791081A JPS5850771A JP S5850771 A JPS5850771 A JP S5850771A JP 56147910 A JP56147910 A JP 56147910A JP 14791081 A JP14791081 A JP 14791081A JP S5850771 A JPS5850771 A JP S5850771A
Authority
JP
Japan
Prior art keywords
gate
film
oxide film
floating gate
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56147910A
Other languages
Japanese (ja)
Inventor
Kazuhiro Komori
小森 和宏
Jun Sugiura
杉浦 順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56147910A priority Critical patent/JPS5850771A/en
Publication of JPS5850771A publication Critical patent/JPS5850771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To manufacture an EPROM which can erase by ultraviolet rays with less leak of accumulated charges even when formed in high integration with a good reprducibility, by forming the film thickness of oxide films formed from the surface of a gate to the both sides equivalent to the gate oxide film one or over that particularly in the periphery of a floating gate. CONSTITUTION:Of the SiO2 film 14 formed from the surface of each gate to source and drain regions, the film thickness of the periphery 14a of the floating gate FG in particular is formed equivalent to the film thickness (500Angstrom or less) of the gate oxide film 1 or larger, e.g. 800-1,000Angstrom . This oxide film 14 is adhered approximately in evenness and has a very good film quality. The growth of the SiO2 film 14 on the surface of each gate is performed by applying an oxidation treatmet, e.g. at 1,000 deg.C for 30min in dry O2. Thereat, simultaneously, the film thickness of the SiO2 film 14a in the periphery of the floating gate FG becomes much larger than that of the gate oxide film 1. Therefore, even when contriving to the high integration of an EPROM by forming a gate length or channel length and a gate oxide film thickness respectively to small sizes, leak decrease resulting in the good retention of charges.

Description

【発明の詳細な説明】 本発明は再書込み可能な高集$lJt OM (R@a
dOnly Marnory )、特に紫外線消去が可
能なipROM (j[1ralable and P
rogrammable Jio M )及びその製造
方法に関するものでるる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a rewritable collection $lJt OM (R@a
dOnly Malnory), especially ipROM that can be erased by ultraviolet rays (j[1rable and P
rogrammable Jio M) and its manufacturing method.

gpRoMの高集積化に伴ない、特にメモリセルを構成
する絶酪ゲート型電界効果半導体累子のチャネル長か短
かくなり、かつゲート酸化膜も薄くなる傾向がめる。こ
のlPROMでは、コントロールゲートへの書込み電圧
によって基板側からフローティングゲートへ電荷を注入
し、この注入の肩#[よって情報が書込まれているか否
かを区別している。この注入電荷に関しては、(1)注
入電荷量はフローティングゲートの面積に依存すること
。(2)注入電荷は時間1過につれてゲート酸化膜を通
してリークすること。(3)そのリーク量はゲート酸化
膜厚に依存し、単位面積当9の童は一定であること等か
!ill!ちれている。
As gpRoM becomes more highly integrated, there is a tendency for the channel length of the gate-type field effect semiconductor transistor constituting the memory cell to become shorter and the gate oxide film to become thinner. In this IPROM, charge is injected from the substrate side to the floating gate by a write voltage to the control gate, and the shoulder # of this injection is used to distinguish whether information has been written or not. Regarding this injected charge, (1) the amount of injected charge depends on the area of the floating gate. (2) The injected charge leaks through the gate oxide film over time. (3) The amount of leakage depends on the thickness of the gate oxide film, and the number of square meters per unit area is constant! ill! It's cold.

本発明者は、こうした2層ゲート構iのllPROMに
つ偽て検討を加えた結果、注入電荷の保持特性を改善す
るためにポリシリコンの各ゲートの表面1−軽<酸化し
て810*gで覆う場合に、次の如き問題点があること
を突き止めた。即ち、チャネル長か例えば5μ偽と比較
的大きbデバイスでは、蓄積電荷量が大きくて注入電荷
のリークの大部分は第1図のようにゲート酸化1111
を通して垂直方向2に生じるために1 フローティング
ゲートIFGの周辺5でのリーク30割合か無視できる
か、チャネル長が例えば3μ惧以下の微小化石れた高集
積デバイスでは蓄積電荷量に対する上記周辺5からのリ
ーク量か相対的に増え、もはや無視できなくなる。この
傾向はゲート酸化膜1の膜厚か小名(なるに従って更に
顕著となる。この場合、上記の表1111m化か、2層
ポリシリコン編及び下地のゲート酸化膜を同一形状にエ
ツチングした後に行なわれると、成長したaiol膜4
かフローテイングゲー)PGの周辺5、においていびつ
となって非常に薄くなる仁とか判明した。この結果、ポ
リシリコンのコントロールゲートoatic書込み電圧
t−印加してフローテイングゲー)PC)へ注入した電
荷か、膜厚の小名い上記周辺5の810雪を通してリー
クする量か更に増えてしまい、記憶保持機能か更に劣化
することになる。
As a result of conducting a study on IIPROM with such a two-layer gate structure, the present inventor discovered that in order to improve the retention characteristics of the injected charge, the surface of each polysilicon gate was oxidized to 810*g The following problems were found when covering with That is, in a B device with a relatively large channel length, for example, 5μ, the amount of stored charge is large and most of the leakage of the injected charge is caused by the gate oxidation 1111 as shown in FIG.
Since the leakage occurs in the vertical direction 2 through the floating gate IFG, the leakage from the periphery 5 of the floating gate IFG is negligible or negligible. The amount of leakage has increased relatively and can no longer be ignored. This tendency becomes more pronounced as the thickness of the gate oxide film 1 increases.In this case, either the above table 1111m or etching is performed after the two-layer polysilicon layer and the underlying gate oxide film are etched into the same shape. The grown aiol film 4
(Floating Game) It was found that the ridges around the PG became distorted and became very thin. As a result, the amount of charge injected into the floating gate (PC) by applying the oatic write voltage t to the polysilicon control gate, or the amount of leakage through the 810 snow in the periphery 5, which has a small film thickness, further increases. The memory retention function will further deteriorate.

従って、本発明は、高集積化によって一蓄槙電荷のリー
クの少ないlPROMを提供し、かつ七のIa P R
,OM i再現性良く作成できる擬造方法を提供するこ
とを目的とするものでるる。
Therefore, the present invention provides an IPROM with less leakage of accumulated charges due to high integration, and with
The purpose of this paper is to provide a method for fabricating OMi with good reproducibility.

この目的を達成するために、本発明によれば、ゲートの
表面から七の両側にかけて形成された酸化膜のmlll
i%にフローティングゲートの周辺においてゲート酸化
膜と同等若しくはそれ以上としている。即ち、本発明者
は、上述した如き電荷のリークはフローティングゲート
の周縁ではチャネル長に関係なくほぼ一定でToo1上
述のようにいびつな酸化膜の場合にはむしろゲート酸化
膜よりも多くなることをはじめて見出し、これを防止す
る几めにフローティングゲートの周辺の酸化膜厚を積極
的に大きくしたのである。
To achieve this objective, according to the present invention, an oxide film is formed from the surface of the gate to both sides of the gate.
i% is equal to or higher than that of the gate oxide film around the floating gate. In other words, the inventors have found that the charge leakage as described above is almost constant at the periphery of the floating gate regardless of the channel length, but in the case of a distorted oxide film as described above, the leakage of charge becomes larger than that of the gate oxide film. This was discovered for the first time, and in order to prevent this, the thickness of the oxide film around the floating gate was actively increased.

このような酸化膜構造は、これまで行なわれてきた製造
プロセスでは実現不可能であり、本発明の方法に基いて
はじめて可能となったのである。
Such an oxide film structure cannot be achieved using conventional manufacturing processes, and has only become possible based on the method of the present invention.

即ち、本発明の方法によれば、ゲート酸化膜上に一様に
積層した第1及び第2の半導体膜をほぼ同一形状にパタ
ーニングする際にゲート酸化膜は全くエッチングゼず、
この状態で表面酸化を施して各ゲート表面にこの両側位
置にあるゲート酸化膜とほぼ一様に!続した新たな酸化
NI4を成長さゼるCとKより、フローティングゲート
の周辺ではその新友な酸化膜とゲート酸化膜とによる片
較的厚い酸化膜か残るようにしている。
That is, according to the method of the present invention, when patterning the first and second semiconductor films uniformly stacked on the gate oxide film into substantially the same shape, the gate oxide film is not etched at all;
In this state, surface oxidation is applied so that the surface of each gate is almost uniform with the gate oxide film on both sides! Since C and K continue to grow new oxide NI4, a relatively thick oxide film is left in the vicinity of the floating gate due to the new oxide film and the gate oxide film.

以下、本発明の実施例を図面について詳細に般明する。Hereinafter, embodiments of the invention will be explained in detail with reference to the drawings.

本実施例によるIIIFROMは紫外巌消去型であって
、七のメモリセルは、第2図〜第4図に示すよ化、゛通
常の構造と同様にPfJ半導体基板3の−i面上にポリ
シリコンのフローティングゲートIFG及びコントロー
ルゲー)OGを肩し、この21−ゲートの両側にソース
又はト°レイン領域となる+ N  !Jl領域6.7.8.9・・・・・・が選択的
に形成され友ものである。しかし注目丁ぺ愈ことは、各
ゲートのe面からソース及びドレイン領堵上にかけて形
成されたaiQs膜14のうち、特にフローテイングゲ
ー)FGの鵬囲部分14&の腺厚かゲートは化膜1の嗅
1ll(SOON以下)より4ずつと大きく;例見げ8
00〜1ooo;に形Mt嘔れていることでめる。しか
もこの酸化[14は第1図で示したようないびつな形状
ではなく、はぼ一様に禎着逼れており、かつまた膜質の
非常に良いものである。
The IIIFROM according to this embodiment is of the ultraviolet erasing type, and the seventh memory cell has a polygon film on the −i plane of the PfJ semiconductor substrate 3, as shown in FIGS. The silicon floating gate (IFG and control gate) OG is shouldered, and on both sides of this 21-gate are source or train regions +N! Jl regions 6.7.8.9... are selectively formed and are companions. However, it is important to note that among the aiQs films 14 formed from the e-plane of each gate to the source and drain regions, the thickness of the aiQs film 14, especially the surrounding area 14 of the floating gate (FG), is 4 times larger than the 1ll of smell (below SOON); example 8
00~1ooo; Moreover, this oxidized film [14] does not have a distorted shape as shown in FIG. 1, but is more or less uniformly deposited and has a very good film quality.

このように、特にコントロールゲー)PGの周辺の81
0!瞑14aをゲート酸化WX1よりも厚くするCとに
よって、書込みによるゲー)PGへの注入(蓄槽)電荷
のリーク3t−ゲート酸化膜IKシけるよりも小なくす
ることかできる。つtり、周辺での醸化膜厚が大きくし
かも膜質も良好である几めに、そこでの絶縁分離作用を
同上させ、電荷保持機能を飛躍的に改善することができ
るのである。従って、ゲート長又はチャネル長及びゲー
ト酸化膜厚を夫々微小化してlPROMの高集積化を図
る場合にも、リークか減少して電荷保持を良好に行なえ
るから、高集積化の要求を充分に満足し九IFROMt
提供できる。
In this way, especially control games) 81 around PG
0! By making the gate oxide film 14a thicker than the gate oxide film WX1, the leakage of charges injected (storage tank) into the gate oxide film PG due to writing can be made smaller than the leakage (3t-gate oxide film IK). In other words, by making the film thicker and of better quality in the periphery, the insulation isolation effect there can be improved dramatically, and the charge retention function can be dramatically improved. Therefore, even if the gate length or channel length and gate oxide film thickness are miniaturized to achieve high integration of the 1PROM, leakage can be reduced and charge retention can be performed well, so that the requirements for high integration can be satisfactorily met. Satisfied Nine IFROMt
Can be provided.

なお、第2図には、周辺回路部として例えば書込み回路
も示嘔れている。図中、1G、11はソース又はト°レ
イン領域とシてのt型領域、12はポリシリコンゲート
でおる。また、15はフィールド5iol膜、16#N
+型チヤネルストツパ、17はリンシリケートガラス膜
、18はデータ(ビットli)、19はソース電極、2
0はト°レイン電極である。
Note that, for example, a write circuit is also not shown in FIG. 2 as a peripheral circuit section. In the figure, 1G and 11 are T-type regions that are the source or train regions, and 12 is a polysilicon gate. In addition, 15 is a field 5iol film, 16#N
+ type channel stopper, 17 is a phosphosilicate glass film, 18 is data (bit li), 19 is a source electrode, 2
0 is a train electrode.

次に1第2図に示した構造の製造プロセスを第5図で説
明する。
Next, the manufacturing process of the structure shown in FIG. 1 and FIG. 2 will be explained with reference to FIG.

まず第5A図のように、シリコン基板3の一生面に、公
知のイオン打込み技術、選択酸化技術、ゲート酸化技術
によってP 型チャネルストッパ16、フィールド°8
1011[15、ゲート酸化Il!1を夫々形成する〇 次いで公知の化学的気相成長技@(OVD)で全面にポ
リシリコンを析tB名ゼ、くれに公知のリン処3!lt
施した後、公知のフォトエツチングでパターニングして
第5B図のように所定形状のポリシリコン膜12.21
を残丁。
First, as shown in FIG. 5A, a P-type channel stopper 16 is formed on the entire surface of the silicon substrate 3 using known ion implantation technology, selective oxidation technology, and gate oxidation technology.
1011[15, Gate oxidation Il! 1) Then, polysilicon is deposited on the entire surface using a known chemical vapor deposition technique (OVD), followed by a known phosphorus treatment 3! lt
After this, the polysilicon film 12, 21 is patterned by a known photoetching method to form a polysilicon film 12, 21 in a predetermined shape as shown in FIG. 5B.
The remaining knife.

次いで第50図のように、ポリシリコンPs12.21
に酸化性雰囲気中での熱処理で薄い表面sio。
Next, as shown in FIG. 50, polysilicon Ps12.21
The thin surface is heat treated in an oxidizing atmosphere.

g22を成長名ゼ、更にOVDで全面に2層目のポリシ
リコンm23tX長嘔ゼる。
G22 was grown, and then a second layer of polysilicon M23TX was applied over the entire surface using OVD.

次いで第5D図のよらに、全面に塗布したフォトレジス
ト24を公知の露光、現曹処理でパターニングし、これ
fニーtスクとしてメモリ七ル部のポリシリコン膜23
.81(h[22、ポリシリコン膜21’iはぼ同一形
状にエツチングして各コントロールゲートOG1 フロ
ーテイングゲー)IFGt−夫々形成する。このエツチ
ングは特にプラズマエツチング(反広ガスは例えば0I
F4+O1)で行ない、tたゲート酸化膜1は全くエツ
チングしないでそのtま残丁ようになる。
Next, as shown in FIG. 5D, the photoresist 24 coated on the entire surface is patterned by known exposure and drying processes, and this is used as a neat mask to form the polysilicon film 23 in the memory area.
.. 81 (h[22, the polysilicon film 21'i is etched into substantially the same shape to form each control gate OG1 floating gate) IFGt-, respectively. This etching is particularly suitable for plasma etching (anti-broad gas is e.g. 0I
The etched gate oxide film 1 is not etched at all, leaving only a portion of the gate oxide film 1 remaining.

次いで第511c図のように、上記と同様にして新たな
フォトレジスト25′f、[ゼ、周辺回路部のポリシリ
コンM23及び下地のEliO3膜をエツチングする。
Next, as shown in FIG. 511c, the new photoresist 25'f, the polysilicon M23 in the peripheral circuit area, and the underlying EliO3 film are etched in the same manner as above.

次いで第51F図のように、フォトレジストを除去して
砒素又はリンのイオンビーム26を全面に照射し、各ポ
リシリコンゲートの両側に選択的にイオン打込み層6.
7.8.9.10.11f:夫々形成する。これらのイ
オン打込み層は各ポリシリコンゲートかマスクとして作
用する几めに、自己整合的K(セルファラインで)形成
される。
Next, as shown in FIG. 51F, the photoresist is removed and the entire surface is irradiated with an ion beam 26 of arsenic or phosphorous, and an ion implantation layer 6. is selectively formed on both sides of each polysilicon gate.
7.8.9.10.11f: Form respectively. These ion implantation layers are formed in a self-aligned manner so that each polysilicon gate acts as a mask.

次いで第5G図のように1例えば1000℃、30分、
乾燥Os中で酸化処理(ライト酸化)を施丁こと罠よっ
て、各ゲートの贋面にgill膜14tP成長烙ゼる。
Then, as shown in Fig. 5G, for example, at 1000°C for 30 minutes,
By applying oxidation treatment (light oxidation) in dry Os, a 14tP gill film is grown on the false surface of each gate.

この際、同時にゲー)FG及びOGの存在しない領域に
おけるゲート酸化膜の箇所にも8103が成長し、仁こ
での5illの膜厚か800〜IGOOAと充分に大き
くなる。つまり、フローティングゲートIPGの周辺の
aiosl[141Lの膜厚がゲート酸化膜1よりずっ
と大きくなり、しかも上記酸化条件によって形状的に均
一で膜質の良いものとなる。
At this time, 8103 also grows on the gate oxide film in the region where FG and OG are not present, and the film thickness becomes 5ill or 800 to IGOOA, which is sufficiently large. In other words, the film thickness of aiosl[141L around the floating gate IPG is much larger than that of the gate oxide film 1, and the above oxidation conditions make it uniform in shape and of good quality.

盗いて第5H図のように、OVDで全面にリンシリケー
トガラスJ[17を1着し、更にこのガラスJl[17
及び下地のJiiOsMl[e公知のフォトエツチング
でパターニングして各コンタクトホールを形成する。セ
して、公知の真空蒸着技術でアルミニウムを全面に付着
し、フォトエツチングにより第2図の各了ルミニウム電
極又は配線18〜20尋を夫々形成する〇 上記した方法によって、フローティングゲートの周辺に
厚みの児分な810!膜をほぼ一様に形成できるので、
高集積度(チャネル長は例えば3μm以下)で配憶保持
機能の優れた兄PROMを再現性良く作成できる。なシ
、第5α図の工程においては、フローテイングゲー)P
GKは既にリン処理で所定濃度のリンが含まれているこ
とから七の表面での1iio、の成長速度が大きく、ま
友ゲート両側のゲート酸化機1の箇所に゛もB1−01
か新たに成長するために、フローテイングゲー)IFG
の周辺14aの810t[厚は全体としてゲート酸化膜
よりも充分大きなものとなってい基。
Then, as shown in Figure 5H, apply one layer of phosphosilicate glass J [17
And the underlying JiiOsMl[e is patterned by known photoetching to form each contact hole. Then, apply aluminum to the entire surface using a known vacuum evaporation technique, and form 18 to 20 fathoms of aluminum electrodes or wiring as shown in Figure 2 by photo-etching. 810, the henchman! Since the film can be formed almost uniformly,
It is possible to create an older brother PROM with high integration (channel length, for example, 3 μm or less) and excellent storage retention function with good reproducibility. No, in the process shown in Figure 5α, floating game) P
Since GK already contains a predetermined concentration of phosphorus in the phosphorus treatment, the growth rate of 1iio on the surface of No.
In order to grow new, floating game) IFG
810t of the periphery 14a [the thickness is sufficiently larger than the gate oxide film as a whole].

以上九本発明を例示したか、上述の実施例は本発明の技
術的思想に基いて更に変形が可能である。
The nine embodiments of the present invention have been described above, and further modifications can be made to the embodiments described above based on the technical idea of the present invention.

例えIdz’ローティングゲート周辺の81(hJl[
14&の膜厚alJ−りt*の減少という目的から言え
ば、ゲート酸化Mlと同程度であっても差支え表い。こ
の場合にも、’−i’図で述ベアt1s犀の場合に比−
べて配憶保持機能はずっと良好となる。また、プロセス
面では、第51図′のイオン打込み讐第5G図のライト
酸化後に行なう仁ともできる。この場合には、比較的厚
いンース及びドレイン領域6〜9上の810.膜をイオ
ンが通過し得るようその打込みエネルギーを選択子れば
よい。
For example, 81 (hJl[
From the purpose of reducing the film thickness alJ-rit* of 14&, there is no problem even if the film thickness is the same as that of gate oxidation M1. In this case as well, compared to the case of the bear t1s rhinoceros mentioned in the '-i' diagram, -
storage retention is much better. In terms of process, the ion implantation shown in FIG. 51' can also be performed after the light oxidation shown in FIG. 5G. In this case, 810. on the relatively thick source and drain regions 6-9. The implantation energy can be selected to allow ions to pass through the membrane.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明を説明するもので6って、第1図はこれま
での方法でライト酸化を行なった場合のリークの状mt
示すメモリセル+要5IDW略断面図、第2図は本発明
の実施例によるIaFROM主要部の断面図、第3図は
同実施例によるメモリセル主要部についてリークの状m
t−−丁概略断面図、第4図はメモリセル部の平面図、
tJII5ム図〜第5図画第5H−の構造の製造方法を
工程順に示讐各断面図である。 なお、図面に示し是符号において、1はゲート酸化機、
2及び3は注入電−のリーク、1化5to=膜、14a
t;tフローティングゲート周辺のEIiO1%IFG
はブローティングゲート、OG−はコントロールゲート
である。 代理人 弁理士 薄 1)利 ^ 第1図 第  3  図   ゛ ・     第  4  図
The drawings are for explaining the present invention.6 Figure 1 shows the leakage pattern when light oxidation is performed using the conventional method.
FIG. 2 is a cross-sectional view of the main part of the IaFROM according to the embodiment of the present invention, and FIG. 3 is a schematic cross-sectional view of the main part of the memory cell according to the embodiment.
t--D schematic cross-sectional view, FIG. 4 is a plan view of the memory cell section,
FIG. 5 is a cross-sectional view showing the manufacturing method of the structure shown in FIG. In addition, in the symbols shown in the drawings, 1 is a gate oxidizer;
2 and 3 are leakage of injected charge, 1 oxide 5to = film, 14a
t; EIiO1% IFG around floating gate
is a bloating gate, and OG- is a control gate. Agent Patent Attorney Usui 1) Li ^ Figure 1 Figure 3 ゛・ Figure 4

Claims (1)

【特許請求の範囲】 1、  フローティングゲートトコントロールゲートト
カらなるケート構造を肩するメモリ七ルによって構成嘔
れ、七のチャネル長及びゲート酸化膜厚か共に微小化石
れた再書込み可能な高集積ROMにお−て、前記の各ゲ
ートの表面からソース及びドレイン領域の表面Kかけて
形成された酸化膜のうち、少なくとも前記フローティン
グゲートの周辺に存在Tる部分の膜厚か前記ゲート駿化
膜の膜厚とriiJIlp若しくはそれ以上になってお
p、これによって書込み時における前記フa−ティング
ゲートへの注入電荷かこのフローティングゲートの周縁
部か−ら前記酸化alt−通して漏れ難くなるように構
W、もれたことを%獣とする再書込み可能な高集積RO
M0 2、半導体基体の一生面に酸化によって薄い酸化fil
l形成する工程と、この薄い酸化膜上に第1の半導体膜
と第2の半導体膜とt−cnら21間にI−間絶縁Mを
介在した状態で順次積層するIaと、この積層後ζで前
記第2の半導体膜、層間絶縁膜および第1の半導体膜と
をほぼ同一形状に連続的にパターニングしてコントロー
ルゲートトフローテイングゲートとを夫々形成する工程
と、前記−主面側の全面ヲ酸化することによって前記の
両ゲートの表面にこれらゲートの両側位置にシける前記
薄い酸化膜とほぼ一様に連続した新たな酸化膜を成長嘔
ゼる工程と、前記の両ゲートの両側位置における前記牛
祷体基体に不純物を導入してソース及びドレイン領域を
選択的に形成する工程とt夫々有了ることを特徴とする
再書込み可能な高集積ROMの製造方法。
[Claims] 1. A rewritable high-integration device consisting of a memory cell supporting a gate structure consisting of a floating gate and a control gate, and having a microscopic channel length and gate oxide film thickness. In the ROM, among the oxide films formed from the surface of each gate to the surface K of the source and drain regions, the thickness of at least the portion T existing around the floating gate is equal to or greater than the gate oxide film. The film thickness is set to riiJIlp or more, so that the charge injected into the floating gate during writing is difficult to leak from the peripheral part of the floating gate through the oxidized alt-. Structure W, rewritable, highly integrated RO that makes leakage a beast
M0 2, a thin oxide film is formed on the whole surface of the semiconductor substrate by oxidation.
Ia is sequentially laminated on this thin oxide film with an I-interval insulation M interposed between the first semiconductor film, the second semiconductor film, and tcn et al. 21, and after this lamination. ζ of successively patterning the second semiconductor film, interlayer insulating film, and first semiconductor film into substantially the same shape to form a control gate and a floating gate, respectively; a step of growing a new oxide film almost uniformly continuous with the thin oxide film on both sides of the gates by oxidizing the entire surface; A method for manufacturing a rewritable highly integrated ROM, comprising the steps of: selectively forming source and drain regions by introducing impurities into the substrate at certain locations.
JP56147910A 1981-09-21 1981-09-21 High integration rom enable of rewriting and manufacture thereof Pending JPS5850771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147910A JPS5850771A (en) 1981-09-21 1981-09-21 High integration rom enable of rewriting and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147910A JPS5850771A (en) 1981-09-21 1981-09-21 High integration rom enable of rewriting and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5850771A true JPS5850771A (en) 1983-03-25

Family

ID=15440874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147910A Pending JPS5850771A (en) 1981-09-21 1981-09-21 High integration rom enable of rewriting and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5850771A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177678A (en) * 1984-02-24 1985-09-11 Hitachi Ltd Semiconductor integrated circuit device and production thereof
JPS61113272A (en) * 1984-11-08 1986-05-31 Mitsubishi Electric Corp Ultraviolet ray elimination type semiconductor memory
US5013674A (en) * 1989-01-17 1991-05-07 Sgs-Thomson Microelectronics S.A. A method of manufacturing integrated circuits comprising EPROM memory and logic transistors
US5165066A (en) * 1988-12-29 1992-11-17 Sgs-Thomson Microelectronics S.R.L. Contact chain structure for troubleshooting eprom memory circuits
US5208175A (en) * 1990-12-21 1993-05-04 Samsung Electronics Co., Ltd. Method of making a nonvolatile semiconductor memory device
US5449634A (en) * 1992-10-27 1995-09-12 Nec Corporation Method of fabricating non-volatile semiconductor memory device
US5453634A (en) * 1987-12-21 1995-09-26 Kabushiki Kaisha Toshiba Non-volatile semiconductor device
US5663084A (en) * 1994-05-13 1997-09-02 Samsung Electronics Co., Ltd. Method for manufacturing nonvolatile semiconductor memory device
JP2008108833A (en) * 2006-10-24 2008-05-08 Sharp Corp Substrate and substrate assembling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512767A (en) * 1978-07-13 1980-01-29 Mitsubishi Electric Corp Semiconductor device manufacturing method
JPS55111172A (en) * 1979-02-20 1980-08-27 Nec Corp Nonvolatile semiconductor memory device
JPS567482A (en) * 1979-06-29 1981-01-26 Hitachi Ltd Manufacturing of semiconductor device
JPS5626472A (en) * 1979-08-13 1981-03-14 Hitachi Ltd Semiconductor memory
JPS5649571A (en) * 1979-09-28 1981-05-06 Hitachi Ltd Semiconductor memory and its manufacturing process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512767A (en) * 1978-07-13 1980-01-29 Mitsubishi Electric Corp Semiconductor device manufacturing method
JPS55111172A (en) * 1979-02-20 1980-08-27 Nec Corp Nonvolatile semiconductor memory device
JPS567482A (en) * 1979-06-29 1981-01-26 Hitachi Ltd Manufacturing of semiconductor device
JPS5626472A (en) * 1979-08-13 1981-03-14 Hitachi Ltd Semiconductor memory
JPS5649571A (en) * 1979-09-28 1981-05-06 Hitachi Ltd Semiconductor memory and its manufacturing process

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177678A (en) * 1984-02-24 1985-09-11 Hitachi Ltd Semiconductor integrated circuit device and production thereof
JPS61113272A (en) * 1984-11-08 1986-05-31 Mitsubishi Electric Corp Ultraviolet ray elimination type semiconductor memory
US5453634A (en) * 1987-12-21 1995-09-26 Kabushiki Kaisha Toshiba Non-volatile semiconductor device
US5165066A (en) * 1988-12-29 1992-11-17 Sgs-Thomson Microelectronics S.R.L. Contact chain structure for troubleshooting eprom memory circuits
US5013674A (en) * 1989-01-17 1991-05-07 Sgs-Thomson Microelectronics S.A. A method of manufacturing integrated circuits comprising EPROM memory and logic transistors
US5208175A (en) * 1990-12-21 1993-05-04 Samsung Electronics Co., Ltd. Method of making a nonvolatile semiconductor memory device
JPH06310731A (en) * 1990-12-21 1994-11-04 Samsung Electron Co Ltd Nonvolatile semiconductor memory cell and preparation thereof
US5449634A (en) * 1992-10-27 1995-09-12 Nec Corporation Method of fabricating non-volatile semiconductor memory device
US5663084A (en) * 1994-05-13 1997-09-02 Samsung Electronics Co., Ltd. Method for manufacturing nonvolatile semiconductor memory device
JP2008108833A (en) * 2006-10-24 2008-05-08 Sharp Corp Substrate and substrate assembling method

Similar Documents

Publication Publication Date Title
US4561004A (en) High density, electrically erasable, floating gate memory cell
US4317272A (en) High density, electrically erasable, floating gate memory cell
KR910007378B1 (en) Ultraviolet erasable nonvolatile semiconductor device
JPH0587031B2 (en)
JPH10200003A (en) Manufacture of flash memory cells
JP2001156276A (en) Forming method of gate oxide layer of different thickness
JPS5850771A (en) High integration rom enable of rewriting and manufacture thereof
JPS61131488A (en) Manufacture of integrated structural body containing non-volatile memory cell and associated transistor having self-matched silicon layer
JPH07240478A (en) Preparation of nonvolatile semiconductor memory device
JPH0661498A (en) Non-volatile semiconductor storage
JPH04217373A (en) Non-volatile memory device and manufacture thereof
JPH05259467A (en) Formation of thin oxide portion in electrically erasable and programmable read only memory cell
US6645814B1 (en) Method of forming an array of FLASH field effect transistors and circuitry peripheral to such array
US6329245B1 (en) Flash memory array structure with reduced bit-line pitch
JP2637149B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP2875109B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP3307496B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPS6341224B2 (en)
JPH0661499A (en) Manufacture of non-volatile semiconductor storage
JPH05347416A (en) Manufacture of semiconductor memory
JPH05183168A (en) Nonvolatile semiconductor memory and manufacture thereof
JPS6292477A (en) Manufacture of semiconductor memory
JPH04118960A (en) Manufacture of semiconductor device
JPH03148875A (en) Semiconductor device
JPH0621470A (en) Semiconductor memory device and fabrication thereof