JPH069245B2 - Field effect semiconductor device - Google Patents

Field effect semiconductor device

Info

Publication number
JPH069245B2
JPH069245B2 JP62182144A JP18214487A JPH069245B2 JP H069245 B2 JPH069245 B2 JP H069245B2 JP 62182144 A JP62182144 A JP 62182144A JP 18214487 A JP18214487 A JP 18214487A JP H069245 B2 JPH069245 B2 JP H069245B2
Authority
JP
Japan
Prior art keywords
channel region
semiconductor device
channel
gate
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62182144A
Other languages
Japanese (ja)
Other versions
JPS6427270A (en
Inventor
博顕 間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62182144A priority Critical patent/JPH069245B2/en
Publication of JPS6427270A publication Critical patent/JPS6427270A/en
Publication of JPH069245B2 publication Critical patent/JPH069245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体装置に係わり、特に絶縁膜上に形成さ
れた電界効果型トランジスタにおいて、チャネル領域を
取り囲む様にゲート部を配置し、そのゲート部によって
ゲート部下表面のみならずゲートで取り囲まれた領域全
体の電位を制御するようにしたものである。これにより
従来の絶縁膜上に形成された電界効果型半導体装置より
も特性を大幅に改善した半導体装置に関する。
The present invention relates to a semiconductor device, and more particularly to a field effect transistor formed on an insulating film, in which a gate portion surrounds a channel region. Is arranged, and the gate portion controls not only the lower surface of the gate portion but also the potential of the entire region surrounded by the gate. Accordingly, the present invention relates to a semiconductor device having significantly improved characteristics as compared with a field effect semiconductor device formed on an insulating film.

(従来の技術) 電界効果型のトランジスタにおいて、素子の微細化に伴
い様々な問題が生じてきている。例えば、デバイスのチ
ャネル長が短くなるにつれてソース、ドレイン領域間の
距離が近付きパンチスルー耐圧が低下するという問題が
生じる。また、素子の高集積化に伴い配線長が長くな
り、それによる寄生容量とデバイスの電流駆動力とのア
ンバランス等の問題が生じている。通常、素子の微細化
に伴うパンチスルー耐圧の低下については、半導体基板
の不純物の濃度を上げることに依って対処しているがこ
れには次の様な欠点がある。半導体基板の不純物濃度を
上げるとキャリアの移動度の低下やドレインのブレイク
ダウン電圧の低下を生ずる。従って、より素子を微細化
する為には他の方法、又はそれらの併用を考えて行く必
要がある。また、電界効果型のトランジスタは一般にチ
ャネル部が活性化された場合、ゲート直下に非常に薄い
反転層(100Å程度)が形成され、そこが電流のチャ
ネルとなる為にバルク伝導型のデバイスに比べてその電
流駆動力は低いという欠点がある。特に素子が微細化さ
れ素子自身の動作速度は非常に高速化されてきている
が、高集積化に伴いデバイス内での配線長はますます長
くなりこの寄生容量と素子の電流駆動力とのアンバラン
スからくる遅延については十分に改善されておらず、こ
れがデバイス全体の高速動作の妨げとなっている。
(Prior Art) In field-effect transistors, various problems have arisen with the miniaturization of elements. For example, as the channel length of the device becomes shorter, the distance between the source and drain regions becomes smaller, and the punch-through breakdown voltage lowers. In addition, the wiring length becomes longer as the integration of the device becomes higher, which causes a problem such as imbalance between the parasitic capacitance and the current driving force of the device. Usually, the decrease in punch-through breakdown voltage due to the miniaturization of elements is dealt with by increasing the concentration of impurities in the semiconductor substrate, but this has the following drawbacks. Increasing the impurity concentration of the semiconductor substrate causes a decrease in carrier mobility and a decrease in drain breakdown voltage. Therefore, in order to further miniaturize the device, it is necessary to consider another method or a combination thereof. In addition, in the field-effect transistor, a very thin inversion layer (about 100 Å) is formed directly under the gate when the channel part is activated, and it becomes a current channel. The current driving force is low. In particular, the device has become finer and the operating speed of the device itself has become extremely high.However, the wiring length within the device has become longer with higher integration, and this parasitic capacitance and the current driving force of the device have become unbalanced. The delay from balance has not been improved sufficiently, which prevents the high speed operation of the entire device.

今後、更に素子の微細化および高集積化を図る上で、パ
ンチスルー耐圧の低下が防止でき、電流駆動力の大きい
(チャネルコンダクタンスの大きい)デバイスを作るこ
とがデバイス全体高速化を図る上で非常に重要な問題と
なってくる。
In the future, in order to further miniaturize and highly integrate the elements, it is extremely important to increase the speed of the entire device by making it possible to prevent the punch-through breakdown voltage from decreasing and to have a large current driving force (large channel conductance). Becomes an important issue.

(発明が解決しようとする問題点) 本発明は電界効果型トランジスタを微細化するに当たっ
て問題となる前記パンチスルー耐圧の低下、電界駆動の
低下、電流駆動力の低下を抑制し、微細素子においてそ
の素子特性を飛躍的に向上させた半導体装置を提供する
ものである。
(Problems to be Solved by the Invention) The present invention suppresses the above-mentioned lowering of punch-through breakdown voltage, lowering of electric field driving, and lowering of current driving force, which are problems in miniaturizing a field effect transistor. The present invention provides a semiconductor device with dramatically improved element characteristics.

(作用) 本発明による半導体装置は絶縁膜基板上に作成されてお
り、デバイスの基板電位は固定されない。また本発明に
よる半導体装置はチャネル領域は少なくともその三方を
ゲート電極に囲まれており、その寸法は例えば、チャネ
ル表面を反転させる様にゲート電位を印加した場合にチ
ャネル表面から伸びる空乏層がチャネル表面に反転層が
形成される前に互いに接する程度小とすればチャネル領
域全体のポテンシャルをゲート電極によって抑制する事
が可能となる。何故ならば通常のMOS型の電界効果型
トランジスタに於ては第3図(a)に示すように、チャネ
ルを活性化させる様に金属層(M)(ゲート電極)に絶縁
層(O)を介して、電圧(ゲート電圧)を印加した場合
に、半導体層(S)の反転層下のチャネル表面には非常に
薄い反転層(30)が形成され、そこでゲート電極から伸
びてきた電気力線は終端される為にそれ以上基板側のポ
テンシャルをゲート電極によって制御することができな
い。
(Operation) Since the semiconductor device according to the present invention is formed on the insulating film substrate, the substrate potential of the device is not fixed. Further, in the semiconductor device according to the present invention, the channel region is surrounded by the gate electrode on at least three sides, and the dimension thereof is, for example, a depletion layer extending from the channel surface when a gate potential is applied so as to invert the channel surface. The gate electrode can suppress the potential of the entire channel region if it is small enough to contact each other before the inversion layer is formed. This is because, in a normal MOS field effect transistor, an insulating layer (O) is formed on the metal layer (M) (gate electrode) so as to activate the channel, as shown in FIG. 3 (a). When a voltage (gate voltage) is applied through the semiconductor layer (S), a very thin inversion layer (30) is formed on the channel surface below the inversion layer, and the electric field lines extending from the gate electrode there are formed. Since it is terminated, the potential on the substrate side cannot be controlled further by the gate electrode.

すなわち、反転層(30)は、真性エネルギー準位(Ei)とフ
ェルミエネルギー準位(EF)の差を表す半導体層(S)内部
のポテンシャル(qψ)と、真性エネルギー準位(Ei)
の半導体層(S)と絶縁層(O)界面でのまがり量、すなわ
ち表面ポテンシャル(qψ)との間の関係がqψ
2qψとなったときに発生する。この反転層(30)は金
属層(M)(ゲート)にかける電圧を次第にあげることに
より形成されるが、通常、反転層(30)の深さXJは約1
00Å程度であり、この反転層(30)中を電子が移動する
ことにより、ソース,ドレイン間に電流が流れる。
That is, the inversion layer (30) has a potential (qψ B ) inside the semiconductor layer (S) that represents a difference between the intrinsic energy level (Ei) and the Fermi energy level (EF) and the intrinsic energy level (Ei).
Of the semiconductor layer (S) and the insulating layer (O) at the interface, that is, the relationship between the surface potential (qψ S ) and qψ s >
It occurs when it becomes 2qψ B. The inversion layer (30) is formed by gradually increasing the voltage applied to the metal layer (M) (gate), and the depth XJ of the inversion layer (30) is usually about 1
It is about 00Å, and when electrons move in the inversion layer (30), a current flows between the source and the drain.

ここで、Ecは伝導帯のエネルギー準位、Evは、価電
子帯のエネルギー準位、(31)は空乏層である。
Here, Ec is the energy level of the conduction band, Ev is the energy level of the valence band, and (31) is the depletion layer.

これに対し、本発明による半導体装置は例えば、チャネ
ル表面に反転層が形成される前に空乏層が互いに接する
程度にチャネル幅を小とするので、ゲート電極から伸び
た電気力線は、チャネル表面で終端されることなく、さ
らにチャネル領域の内部深く侵入するので、それに伴い
チャネル領域のポランシャルのゲート電極よる制御性は
増す。
On the other hand, in the semiconductor device according to the present invention, for example, the channel width is so small that the depletion layers are in contact with each other before the inversion layer is formed on the channel surface. Since it does not terminate in, it further penetrates deeply into the channel region, so that the controllability of the channel region polancial by the gate electrode increases accordingly.

すなわち、第3図(b)に示すように、チャネル領域(32)
は、両側の絶縁層(O)及び金属層(M)により挟持される
構造となっているので、金属層(M)への電圧を徐々に印
加していくと空乏層は、チャネル領域(32)の内部に向か
って両側からのびる。そして、前記両側からのびた空乏
層がチャネル領域内で接した後、反転層が両側の絶縁層
(O)下のチャネル領域表面に形成される。更にゲート電
圧をあげていくとチャネル領域内のポテンシャルは上が
る(エネルギー準位は下がる)ことになり、チャネル領
域全体が反転層化して、チャネルとして使用できる領域
は通常のデバイスよりも広いものとなる。そして結局、
チャネル領域内部の電子の移動度が高まり、電流駆動力
は向上する。
That is, as shown in FIG. 3 (b), the channel region (32)
Has a structure in which it is sandwiched between the insulating layer (O) and the metal layer (M) on both sides. Therefore, when the voltage is gradually applied to the metal layer (M), the depletion layer becomes a channel region (32 ) From both sides towards the inside. Then, after the depletion layers extending from both sides are in contact with each other in the channel region, the inversion layer is formed on both sides of the insulating layer.
It is formed on the surface of the channel region under (O). When the gate voltage is further increased, the potential in the channel region increases (the energy level decreases), the entire channel region becomes an inversion layer, and the region that can be used as the channel becomes wider than that of a normal device. . And in the end,
The mobility of electrons inside the channel region is increased, and the current driving force is improved.

又、従来ではゲート電圧がカットオフの場合にチャネル
領域にドレイン電圧の影響が生じ、パンチスルー現象が
生じた。これに対して、本発明による半導体装置では、
チャネル領域のポテンシャルがゲート電圧によって制御
されており、ドレイン電圧の影響は受けないのでパンチ
スルーは生じない。従ってパンチスルー耐圧は非常に高
く、またその電流駆動力は表面チャネル伝導型のデバイ
スに比べて大きなものになる。
Further, in the past, when the gate voltage was cut off, the channel region was affected by the drain voltage, and the punch through phenomenon occurred. On the other hand, in the semiconductor device according to the present invention,
Since the potential of the channel region is controlled by the gate voltage and is not affected by the drain voltage, punch through does not occur. Therefore, the punch-through breakdown voltage is very high, and its current driving force is larger than that of the surface channel conduction type device.

したがって本発明を用いれば基板の不純物濃度を高くす
ることなくパンチスルー耐圧を高くすることが出来るた
めにドレインのブレイクダウン電圧の低下をまねく事な
くパンチスルーに対して対処が可能である。また同時に
チャネルとして使用できる領域が広がる為に電流駆動力
も大きな素子をつくることが可能である。
Therefore, according to the present invention, since the punch-through breakdown voltage can be increased without increasing the impurity concentration of the substrate, it is possible to cope with punch-through without lowering the breakdown voltage of the drain. At the same time, since the area that can be used as a channel is expanded, it is possible to make an element having a large current driving force.

(実施例) 以下、本発明の詳細についてNチャネルMOSFETを
例にとり、図面を用いて説明する。
(Example) Hereinafter, the present invention will be described in detail with reference to the drawings, taking an N-channel MOSFET as an example.

まず、第1図(a)および(b)は、本発明による半導体装
置の斜視図、および、この斜視図のA−A′断面図であ
る。
First, FIGS. 1 (a) and 1 (b) are a perspective view of a semiconductor device according to the present invention and a sectional view taken along line AA 'of this perspective view.

第1図は、絶縁膜(図示せず)上に形成した電界効果型
半導体装置を示す。(1)は幅wソース,ドレイン部であ
り、このソース,ドレイン部の間に幅w(<W)のチャ
ネル領域(3)があり、このチャネル領域を覆うようにゲ
ート絶縁膜(4),更にその上にゲート電極(2)が被覆さ
れてゲート部が形成されている。
FIG. 1 shows a field effect semiconductor device formed on an insulating film (not shown). Reference numeral (1) denotes a source / drain portion having a width w, and a channel region (3) having a width w (<W) is provided between the source and drain portions. A gate insulating film (4) is provided so as to cover the channel region. Further, a gate electrode (2) is covered thereover to form a gate portion.

具体的には、wは、ゲート電極に電圧を印加した時に、
チャネル領域内に伸びる空乏層が前記チャネル領域表面
に反転層が形成される前に互い接する寸法を以下とし
た。
Specifically, w is, when a voltage is applied to the gate electrode,
The dimension at which the depletion layer extending in the channel region is in contact with each other before the inversion layer is formed on the surface of the channel region is as follows.

このような構造であれば、先に述べたようにゲート電極
(2)への電圧の印加によりチャネル領域(3)内に有効に
反転層が形成されるので、この領域での電子の移動度は
大となり、電流駆動力を大きくできる。又、このような
構造の電界効果型半導体装置においては、パンチスルー
電流は、防止される。
With such a structure, as described above, the gate electrode
Since the inversion layer is effectively formed in the channel region (3) by applying the voltage to (2), the mobility of electrons in this region becomes large and the current driving force can be increased. Further, in the field effect type semiconductor device having such a structure, punch through current is prevented.

次に本発明による半導体装置の製造方法について述べ
る。
Next, a method of manufacturing a semiconductor device according to the present invention will be described.

第2図は、その構造工程断面図である。FIG. 2 is a sectional view of the structural process.

まず、第2図(a)のように半導体基板(5)全面にスパッ
タ法またはCVD法によりシリコン酸化膜(6)を例えば
1μmの厚さに堆積し、さらに、シリコン酸化膜(6)の
上に多結晶シリコン酸化膜を8000Åの厚さに堆積し
た。次いでビームアニール法またはヒータによるアニー
ル法を用いて多結晶シリコン膜を単結晶化シリコン膜
(7)SOI構造の単結晶シリコン基板を形成した。
First, as shown in FIG. 2 (a), a silicon oxide film (6) is deposited to a thickness of, for example, 1 μm on the entire surface of a semiconductor substrate (5) by a sputtering method or a CVD method. Then, a polycrystalline silicon oxide film was deposited to a thickness of 8000Å. Then, the polycrystalline silicon film is converted into a single crystallized silicon film by using a beam annealing method or an annealing method using a heater.
(7) A single crystal silicon substrate having an SOI structure was formed.

次に第2図(b)の様にMOSFET形成領域(8)を通常
のリソグラフィ及び異方性食刻を用いて基板に対して垂
直にシリコン酸化膜(6)に達するまでエッチングし、島
状にパターンニングした。
Next, as shown in FIG. 2 (b), the MOSFET formation region (8) is etched using normal lithography and anisotropic etching until it reaches the silicon oxide film (6) perpendicularly to the substrate to form an island shape. Patterned.

次いで、この島状にパターンニングしたMOSFET形
成領域(8)の中央部(ゲート部となる部分)の幅が第1
図(a)に示したように両側に形成されるソース,ドレイ
ンよりも小となるようにRJE法等によりエッチングす
る。このときの中央部(ゲート部)の幅は、例えば1μ
mのソース,ドレインに対して1000Åとなるように
した。
Next, the width of the central part (the part which becomes the gate part) of the MOSFET formation region (8) patterned in the island shape is the first
Etching is performed by the RJE method or the like so as to be smaller than the source and drain formed on both sides as shown in FIG. The width of the central portion (gate portion) at this time is, for example, 1 μm.
It was set to be 1000 Å for the source and drain of m.

次に、第2図(c)に示す様に酸素雰囲気中での熱酸化法
によりゲート酸化膜(11)を200Å形成して、ゲート電
極となる多結晶シリコン膜(12)を4000Å堆積し約9
00度で燐拡散を行い多結晶シリコン膜のシート抵抗値
を30オーム以下にし、次いで通常のNチャネルMOS
FETの形成方法に従い、前記MOSFET形成領域
(8)の中央部がゲート電極(12)となるようにパターンニ
ングした。
Next, as shown in FIG. 2 (c), a gate oxide film (11) is formed to 200 Å by a thermal oxidation method in an oxygen atmosphere, and a polycrystalline silicon film (12) to be a gate electrode is deposited to 4000 Å and deposited. 9
Phosphorus diffusion is performed at 00 degrees to reduce the sheet resistance of the polycrystalline silicon film to 30 ohms or less, and then the normal N-channel MOS
According to the method of forming the FET, the MOSFET forming region is formed.
Patterning was performed so that the central portion of (8) became the gate electrode (12).

このとき、中央部のソース,ドレイン(9),(10)よりも
幅のせまい、MOSFET形成領域(8)の部分がチャネ
ル領域となる。このチャネル領域は前記ゲート酸化膜(1
1)およびゲート電極となる多結晶シリコン膜(12)によっ
て少なくとも三方から囲まれ、ゲート部を形成する。
At this time, since the width is narrower than that of the source / drain (9) and (10) in the central portion, the MOSFET forming region (8) becomes the channel region. This channel region is formed by the gate oxide film (1
The gate portion is formed by being surrounded by at least three sides by 1) and the polycrystalline silicon film (12) which becomes the gate electrode.

次にゲート電極(12)をマスクとして通常のセルフアライ
ン法を用いてソース(9),ドレイン(10)領域に不純物イ
オン注入を行う。次にCVDシリコン酸化膜(13)を40
00Å堆積し、そののち通常のリソグラフィ及び食刻法
を用いてソース,ドレイン,ゲートに達するコンタクト
ホールをシリコン酸化膜に形成し、金属配線(14)を用い
て配線する。
Next, using the gate electrode (12) as a mask, impurity ions are implanted into the source (9) and drain (10) regions by using a normal self-alignment method. Next, a CVD silicon oxide film (13) is added to 40
After depositing 00Å, contact holes reaching the source, drain, and gate are formed in the silicon oxide film by using the ordinary lithography and etching method, and wiring is performed using the metal wiring (14).

本発明はチャネルの導電の型を変更するだけでPチャネ
ルMOSFETにも適応出来る事は明らかである。
Obviously, the present invention can be applied to a P-channel MOSFET simply by changing the conductivity type of the channel.

[発明の効果] 以上、述べたように、本発明によれば、チャネル幅が、
例えば1μm以下と小さい電界効果型半導体装置におい
て、素子の微細化にもかかわらず電流駆動力が高く、ス
イッチング特性の良好なパンチスルーを抑制できる良好
なトランジスタを得ることができる。
[Advantages of the Invention] As described above, according to the present invention, the channel width is
For example, in a field effect type semiconductor device having a small size of 1 μm or less, it is possible to obtain a good transistor which has a high current driving force and can suppress punch-through having a good switching characteristic despite the miniaturization of elements.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b)は、本発明による電界効果型半導体装
置の一実施例を示す斜視図及び断面図、第2図は、本発
明による電界効果型半導体装置の一実施例の製造工程断
面図、第3図は本発明の作用を説明するための図であ
る。 1,9,10……ソース,ドレイン 2,12……ゲート電極 4……ゲート絶縁膜 3……チャネル領域 5……基板 6……絶縁膜
1 (a) and 1 (b) are a perspective view and a sectional view showing an embodiment of a field effect semiconductor device according to the present invention, and FIG. 2 is a view of an embodiment of a field effect semiconductor device according to the present invention. FIG. 3 is a cross-sectional view of a manufacturing process for explaining the operation of the present invention. 1, 9, 10 Source, drain 2, 12 Gate electrode 4 Gate insulating film 3 Channel region 5 Substrate 6 Insulating film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板上の素子形成領域に、幅Wのソー
ス、ドレイン部が形成され、このソース、ドレイン間の
前記素子形成領域に幅w(<W)のチャネル領域が形成
され、このチャネル領域の開放された3方向が絶縁膜を
介してゲート電極で被覆されてゲート部が形成されると
共に、前記チャネル領域の幅wの寸法を、チャネル領域
表面に反転層が形成されるようにゲート電極に電圧を印
加した場合に、チャネル領域内部に伸びる空乏層が前記
チャネル領域表面に反転層が形成される前に互いに接す
る寸法以下としたことを特徴とする電界効果型半導体装
置。
1. A source / drain portion having a width W is formed in an element forming region on an insulating substrate, and a channel region having a width w (<W) is formed in the element forming region between the source and drain. The opened three directions of the channel region are covered with a gate electrode through an insulating film to form a gate portion, and the width w of the channel region is changed so that an inversion layer is formed on the surface of the channel region. A field-effect-type semiconductor device, characterized in that, when a voltage is applied to the gate electrode, the depletion layer extending inside the channel region has a dimension not more than a size in contact with each other before the inversion layer is formed on the surface of the channel region.
【請求項2】前記チャネル領域の幅wは、1000Å以下の
厚みを持つことを特徴とする特許請求の範囲第1項記載
の電界効果型半導体装置。
2. The field effect semiconductor device according to claim 1, wherein the width w of the channel region has a thickness of 1000 Å or less.
JP62182144A 1987-07-23 1987-07-23 Field effect semiconductor device Expired - Lifetime JPH069245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62182144A JPH069245B2 (en) 1987-07-23 1987-07-23 Field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62182144A JPH069245B2 (en) 1987-07-23 1987-07-23 Field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS6427270A JPS6427270A (en) 1989-01-30
JPH069245B2 true JPH069245B2 (en) 1994-02-02

Family

ID=16113125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62182144A Expired - Lifetime JPH069245B2 (en) 1987-07-23 1987-07-23 Field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPH069245B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2768719B2 (en) * 1988-11-21 1998-06-25 株式会社日立製作所 Semiconductor device and semiconductor storage device
JP2789931B2 (en) * 1991-05-27 1998-08-27 日本電気株式会社 Semiconductor device
US6630388B2 (en) 2001-03-13 2003-10-07 National Institute Of Advanced Industrial Science And Technology Double-gate field-effect transistor, integrated circuit using the transistor and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017964A (en) * 1983-07-11 1985-01-29 Toshiba Corp Semiconductor device
JPH0750785B2 (en) * 1983-10-27 1995-05-31 工業技術院長 Method for suppressing short channel effect in field effect transistor

Also Published As

Publication number Publication date
JPS6427270A (en) 1989-01-30

Similar Documents

Publication Publication Date Title
JP2940880B2 (en) Semiconductor device and manufacturing method thereof
US5970351A (en) Production method for a MISFET, complementary MISFET
US6124614A (en) Si/SiGe MOSFET and method for fabricating the same
JP2707977B2 (en) MOS type semiconductor device and method of manufacturing the same
JP2002270850A (en) Dual-gate field effect transistor
US5238857A (en) Method of fabricating a metal-oxide-semiconductor device having a semiconductor on insulator (SOI) structure
JPH0296375A (en) Semiconductor device
US5371391A (en) MOS semiconductor device and method of fabricating the same
JPH0685262A (en) Field effect transistor and its manufacture
JPH05343686A (en) Semiconductor device and manufacture thereof
JP2579954B2 (en) MOS transistor
JPH07153952A (en) Semiconductor device and manufacture thereof
JP2729422B2 (en) Semiconductor device
JP2000012851A (en) Field-effect transistor and manufacture thereof
JPH069245B2 (en) Field effect semiconductor device
JPH05235335A (en) Semiconductor device
EP0401577B1 (en) Metal oxide-semiconductor device and fabrication method of the same
JP2963750B2 (en) Semiconductor device
JP2776059B2 (en) Insulated gate field effect transistor
WO2001057930A1 (en) Semiconductor device and its manufacturing method
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH1145999A (en) Semiconductor device and manufacture thereof and image display device
JPH1126765A (en) Field effect transistor an manufacture thereof
JP3400547B2 (en) Semiconductor device and method of manufacturing semiconductor device
KR100386939B1 (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term