JPS6017964A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6017964A
JPS6017964A JP12462383A JP12462383A JPS6017964A JP S6017964 A JPS6017964 A JP S6017964A JP 12462383 A JP12462383 A JP 12462383A JP 12462383 A JP12462383 A JP 12462383A JP S6017964 A JPS6017964 A JP S6017964A
Authority
JP
Japan
Prior art keywords
gate
film
semiconductor
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12462383A
Other languages
Japanese (ja)
Other versions
JPH0566031B2 (en
Inventor
Kazumichi Omura
大村 八通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12462383A priority Critical patent/JPS6017964A/en
Publication of JPS6017964A publication Critical patent/JPS6017964A/en
Publication of JPH0566031B2 publication Critical patent/JPH0566031B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To reduce the area of an MOS transistor by half and to largely decrease a current leakage by forming a gate through an insulating film around a pole or conical unit of semiconductor between two sources and drains. CONSTITUTION:The surfaces of an Mo strip film 5 having a width of a gate length and an insulator 4 are finished substantially in the same height, a gate dielectric insulating film SiO2 of semiconductor MOS is accumulated on Mo, and polycrystalline Si 10 is crystallized in large grains. Then, a gate SiO2 film 14 is formed, semiconductor islands of source, channel, drain are etched, and the film 5 of lower part is exposed. Then, when an Mo film 5' which contains oxygen is accumulated and annealed, a semiconductor Si film 10 contacted with the Mo at the side of the film 10 is varied to an SiO2 film 14, and an MOS structure is formed at the side. Then, the Mo except the gate is etched to expose source and drains 15, 16, P<+> ions 11 are implanted, and converted into N<+> type. When an acceptor impurity is previously doped with a semiconductor substrate, thereby forming electrodes 6, 7, 8 of source, drain and gate to form an n-channel transistor.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 不発明は、絶縁性ゲートの金属−誘填体膜一半導体(M
OS)型トランジスタに関し、特Kgmの高いMOS)
ランジスタに関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The invention relates to a metal-difill film-semiconductor (M
Regarding OS) type transistors, especially MOS) with high Kgm.
Regarding the transistor.

〔従来技術と七の問題点〕[Prior art and seven problems]

金属−酸化物−半導体構造トランジスタはその高い入力
インピーダンスのためにLSIの基本素子として広く使
用されている。その構造を第1図に示す概念図を使って
説明する。−導電型の半導体基体1の表面の離れた2ケ
所に第二導電型の部分2.3を設け、部分2,3の中間
の表面上に絶縁膜4、例えば8iの酸化物もしくは窒化
物を挾んでゲート5、例えば金属、金属シリサイド、多
結晶半導体を形成し、第二導電型の部分2,3すなわち
ソース・ドレインおよびゲート5から電極6゜7.8を
取〕出す。このトランジスタのソース・ドレイン間電圧
VD にドレイン電流IDが比例するVDの領域では■
Dは簡単に ID!、μCo(Vo VT)VD と表わされる。ここでW、Lは夫々チャネル巾と長さ、
μはキャリア移動度、co は絶縁物の容量、VG、V
Tはゲート電圧とそのしきい値である。ゲートに電圧を
印加することにより第二導電型のキャリアを表面に誘起
せしめて伝導状態にするが絶縁物を介するため前述のよ
うに入力インピーダンスが高い。このため入カ′成カは
容量性のもののみとなる。このような特徴を有するMO
S )ランジスタであるがこのような従来構造では次の
問題がある。
Metal-oxide-semiconductor structure transistors are widely used as basic elements of LSIs because of their high input impedance. The structure will be explained using the conceptual diagram shown in FIG. - A second conductivity type portion 2.3 is provided at two separate locations on the surface of the conductivity type semiconductor substrate 1, and an insulating film 4, for example, an oxide or nitride of 8i, is provided on the intermediate surface between the portions 2 and 3. A gate 5, for example, metal, metal silicide, or polycrystalline semiconductor is formed between them, and electrodes 6°7.8 are taken out from the second conductivity type portions 2, 3, that is, the source/drain and the gate 5. In the VD region where the drain current ID is proportional to the source-drain voltage VD of this transistor,
D is simply ID! , μCo(Vo VT) VD . Here, W and L are the channel width and length, respectively.
μ is the carrier mobility, co is the capacitance of the insulator, VG, V
T is the gate voltage and its threshold value. By applying a voltage to the gate, carriers of the second conductivity type are induced on the surface and made into a conductive state, but as described above, the input impedance is high because it is through an insulator. Therefore, the input component is only capacitive. MO with these characteristics
S) This conventional structure has the following problems.

その一つはMO8)ランジスタはバイポーラトランジス
タと異り、得られる電流が少いことである。
One of them is that MO8) transistors, unlike bipolar transistors, can obtain less current.

或ハコンダクタンスfjmが小さい。上式でこのynを
大きくするためにチャネル[1]Wを犬に、チャネル長
りを小にし、更にゲート絶縁膜を薄<L、CC。
In some cases, the conductance fjm is small. In order to increase this yn in the above equation, channel [1] W is set to dog, the channel length is made small, and the gate insulating film is made thin <L, CC.

を大きくする。このだめWが大きくなる結果素子占領面
積が大きくなる。他の問題はチャネル部分以外の表面9
等に、グー) −7tに圧に無関係に電流が流れること
である。このだめオフ状態とオン状態の電流の差が小さ
くなる等である〇 〔発明の目的〕 この発明は上述した従来のMO8)ランジスタの欠点を
改良したものC1二次元的に同一の大きさであっても得
られる4流が大きく、又チャネル1〕ス外の領域(フィ
ールド)にゲート電圧に無関係に磁流を流さしめぬよう
にしたMOSトランジスタを提供することを目的とする
Make it bigger. As a result of this increase in W, the area occupied by the element increases. Another problem is the surface 9 other than the channel part.
etc., etc.) A current flows through -7t regardless of the pressure. As a result, the difference in current between the OFF state and the ON state becomes smaller.〇 [Object of the Invention] This invention improves the drawbacks of the conventional MO8) transistor mentioned above. It is an object of the present invention to provide a MOS transistor in which a large current can be obtained even with a channel 1, and a magnetic current is not caused to flow in a region (field) outside the channel 1 regardless of the gate voltage.

〔発明の概要〕[Summary of the invention]

本発明のMO8)ランジスタは基板Si上に形成される
ものでなく、最近のビーム再結晶技術や微細加工技術等
により得られるSOI (絶縁物上のSi単結晶薄膜)
等を利用するものである。すなわち、柱状又は錐状の半
導体基体(更に具体的な例としては矩形の薄膜半導体単
結晶板)の、柱体又は錐体を取巻く離れだ第1及び第2
の部分にソース・ドレインを形成し、このソース・ドレ
イン間ニ同じく柱体又は錐体を取巻いて、絶縁膜を介し
てゲートを形成したMO8)ランジスタである。錐体の
場合は例えば平行平板薄膜単結晶板でなく角度をなす台
形状、三角形状単結晶板、基板に垂直に形成された円、
角錐、円、向合形である。
The MO8) transistor of the present invention is not formed on a Si substrate, but is an SOI (Si single crystal thin film on an insulator) obtained by recent beam recrystallization technology, microfabrication technology, etc.
etc. That is, in a columnar or cone-shaped semiconductor substrate (a more specific example is a rectangular thin-film semiconductor single crystal plate), separated first and second portions surrounding the columnar or conical body are formed.
This is an MO8) transistor in which a source and a drain are formed in a portion, and a gate is formed between the source and drain, surrounding a column or a pyramid with an insulating film interposed therebetween. In the case of a pyramid, for example, instead of a parallel flat thin film single crystal plate, it is a trapezoidal plate with an angle, a triangular single crystal plate, a circle formed perpendicular to the substrate,
They are pyramidal, circular, and opposed.

〔発明の効果〕〔Effect of the invention〕

例えば−導電型の矩形の薄膜半導体単結晶板の一組の対
向する2辺側に第二導電型領域を形成、この隔離した2
領域の中間部に単結晶板の側面すべてを取巻いてゲート
絶縁膜とゲート材料を形成する。このトランジスタのチ
ャネル長りは二つの第二導電型領域の間隔に等しいが、
チャネル@′Jwは矩形の[1〕の二1音(表チャネル
と裏チャネル)および僅かではあるが半導体薄膜厚さの
二倍分が加わす、従来の二次元的MO8)ランジスタの
チャネル11]の2倍となる。この結果トランスコンダ
クタンスは当然2陪となる。本発明トランジスタの第二
の効果はフィールド部のないことである。すなわちソー
スからドレインに達する半導体表面にはすべて誘電体絶
縁膜を介してゲートが存在する。
For example, - a second conductivity type region is formed on two opposite sides of a set of rectangular thin film semiconductor single crystal plates of a conductivity type, and these isolated two
A gate insulating film and a gate material are formed in the middle of the region, surrounding all sides of the single crystal plate. The channel length of this transistor is equal to the distance between the two second conductivity type regions,
The channel @'Jw is the channel 11 of a conventional two-dimensional MO8) transistor with a rectangular [1] 21 sound (front channel and back channel) and twice the thickness of the semiconductor thin film added, although slightly. It will be twice as much. As a result, the transconductance naturally becomes 2 series. The second advantage of the transistor of the present invention is that there is no field section. That is, a gate exists on the entire semiconductor surface from the source to the drain with a dielectric insulating film interposed therebetween.

従ってゲートで制御出来ないリーク電流は存在しない。Therefore, there is no leakage current that cannot be controlled by the gate.

〔発明の実施列〕[Implementation sequence of the invention]

本発明半導体装置の一実施例の製造工程を、第2図(a
)〜(d) Icチャネルと垂直方向の断面図で、第3
図(al〜(d)にチャネル方向断面図で示す。絶縁物
4の上にゲート長の巾のMO帯状膜5を堆積し、この周
辺を平坦化してM(1表面と外部絶縁物の次面を略同−
高さに仕上げる。次に半導体MOBのグー)#’4体絶
体膜縁膜5tO2O上に堆積しく第2及び第3図(a)
 ) 、次に多結晶5t10を600OA堆積し、電子
ビーム或いはV−ザービームアニ〜ルにより犬粒径多請
晶或いは単結晶化を行なう(第2及び第3図(h))。
The manufacturing process of one embodiment of the semiconductor device of the present invention is shown in FIG.
) to (d) Cross-sectional views perpendicular to the Ic channel, showing the third
Figures (al to (d) are cross-sectional views in the channel direction. An MO band-shaped film 5 with a width equal to the gate length is deposited on the insulator 4, and its periphery is flattened. Approximately the same surface
Finish to height. Next, it is deposited on the #' 4-body insulating film 5tO2O of the semiconductor MOB.
), Next, 600 OA of polycrystalline 5t10 is deposited, and subjected to electron beam or V-zer beam annealing to form a dog-grain-sized polycrystal or single crystal (FIGS. 2 and 3 (h)).

次に酸化或は堆積により表側チャネルの為、ゲート5L
O2I4を形成する。次に111E等により、ソース・
チャネル・ドレインノ半導体島をエッチして作る。これ
により下部のM。
Next, gate 5L is formed by oxidation or deposition for the front side channel.
Forms O2I4. Next, by using 111E etc., the source
Create a channel/drain semiconductor island by etching. This allows the lower M.

5が露出する。次に酸素を含有したMO5′を堆積し高
温でアニールする。このときMO中の酸素は界面側に拡
散し板状半導体10側面のMOと接触した半導体5il
Qを5in214に変化せしめるので側面にMO8構造
が形成される。次にゲート部以外のMOヲエッチングし
、ソース・ドレイン部15゜16を露出する。P+ (
リン)11を高加速エネルギーでイオン注入し、ソース
・ドレイン部を表面から裏面まで1化する(第2及び第
3図(C))。予め半導体基板にアクセプタ不純物をド
ープしておくことによシ、ソース・ドレイン・ゲートよ
り電[6,7,8をとシ、nチャネルトランジスタl/
i’A作される(第2及び第3図(d))。第4図は炸
裂された半導体装置の斜視図である。同一形状のソース
・チャネル・ドレインを持ち、上部のみにゲートを有す
るnチャネルトランジスタを形成し比較した所、同一ド
レイン電圧、ゲート電圧で本発明のトランジスタでは2
.0倍のドレイン電流が得られた。これはトランスコン
ダクタンスが2 fPtであることを意味し、表、裏に
チャネルが存在する効果である。本発明の上記のトラン
ジスタ(チャネル長5μm)のVD= 5V 、 ■o
=−5Vでのリーク電流は10−+4A/μm以下であ
った。−刃表面のみにゲートを有する同一形状11チヤ
ネルトランジスタでは同一条件で10”−12Alpm
もの大きさであった。これは板状半導体の側面、裏面と
これと接する誘電絶縁膜との界面に固定正電荷が残存し
半導体表面にキャリアを誘起する結果、リーク電流に寄
与する為と考えられる。
5 is exposed. Next, MO5' containing oxygen is deposited and annealed at high temperature. At this time, oxygen in the MO diffuses to the interface side, and the semiconductor 5il that is in contact with the MO on the side surface of the plate-shaped semiconductor 10
Since Q is changed to 5in214, an MO8 structure is formed on the side surface. Next, the MO other than the gate portion is etched to expose the source/drain portions 15 and 16. P+ (
Phosphorus) 11 is ion-implanted at high acceleration energy, and the source/drain portion is unified from the front surface to the back surface (FIGS. 2 and 3 (C)). By doping the semiconductor substrate with acceptor impurities in advance, electric current [6, 7, 8] is removed from the source, drain, and gate, and the n-channel transistor l/
i'A is created (Figures 2 and 3 (d)). FIG. 4 is a perspective view of the exploded semiconductor device. When we formed and compared n-channel transistors with the same source, channel, and drain shapes and a gate only on the top, we found that with the same drain voltage and gate voltage, the transistor of the present invention has 2
.. A drain current of 0 times was obtained. This means that the transconductance is 2 fPt, which is an effect of the presence of channels on the front and back sides. VD of the above transistor (channel length 5 μm) of the present invention = 5V, ■o
The leakage current at =-5V was less than 10-+4A/μm. - 10"-12 Alpm under the same conditions for the same shape 11 channel transistor with gate only on the blade surface
It was huge. This is thought to be because fixed positive charges remain at the interface between the side and back surfaces of the plate-shaped semiconductor and the dielectric insulating film in contact therewith, inducing carriers on the semiconductor surface and contributing to leakage current.

同チャネル部とソース・ドレインが異る導電型である例
を示したがチャネル部もソース・ドレインと同一導電型
のn−である場合、 E/Dインバータの負荷トランジ
スタとして使用する。本発明の場合は同一の伝導率を得
るのに1の巾で良いことが容易に判る。
Although an example has been shown in which the channel part and the source/drain are of different conductivity types, if the channel part is also of the same conductivity type as the source/drain (n-), it is used as a load transistor of an E/D inverter. In the case of the present invention, it is easy to see that a width of 1 is sufficient to obtain the same conductivity.

このよって本発明は従来Δ[081−ランジスタの面積
を半減きしめ、且電流リークを大巾だ減少せしめた新構
造の素子を提供するものと言える。
Therefore, it can be said that the present invention provides an element with a new structure in which the area of the conventional Δ[081-transistor is halved and current leakage is greatly reduced.

矩形状の半導体板で説明したが台形、又は三角形状の半
導体板でも良い。父、最近のビームアニール技術や、微
測加工技術によシ赦μm高さの角柱1円柱、角錐(第5
図)9円錐状半導体を容易に得ることが可能である。こ
のような角柱に側面を敗り巻いてゲート絶縁膜およびゲ
ートを形成、これを挾んでソース・ドレインと上下に形
成することも可能である。このようなA1O8)ランジ
スタは素子を立体的に集積する場合その集積度を向上さ
せ、或は上下二層素子のゲートとして使用することが出
来る。
Although a rectangular semiconductor board has been described, a trapezoidal or triangular semiconductor board may also be used. My father, using recent beam annealing technology and micro-measuring technology, we can produce 1 cylinder and 5th pyramid with a height of μm.
Figure) 9 It is possible to easily obtain a conical semiconductor. It is also possible to form a gate insulating film and a gate by winding the side surfaces of such a prism, and to sandwich this and form the source and drain above and below. Such an A1O8) transistor can improve the degree of integration when devices are three-dimensionally integrated, or can be used as a gate of an upper and lower two-layer device.

λ(0ゲートを用い自己整合的に、半導体周囲に酸化膜
とMOゲートを構成する方法で説明したが、自己畦合的
でなくても製作することが出来る。その場合半導体板側
面の酸化膜厚が上丁面の酸化膜厚と異る可能性があるが
それは前述の本発明の効果を損うものではない。
Although we have explained the method of configuring the oxide film and MO gate around the semiconductor in a self-aligned manner using a λ(0 gate), it can also be manufactured without self-alignment.In that case, the oxide film on the side surface of the semiconductor board Although the thickness may be different from the oxide film thickness on the upper surface, this does not impair the effects of the present invention described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の+WOS )−ランジスタの斜視図、第
2図は本発明半導体装置の一実施例の製造工程を示すチ
ャネルと垂直方向から見た。正面図、第3図は同製造工
程を示す断面図、第4図は本発明の一実施例の斜視図、
第5図は本発明の他の実施例の斜視図である。 4.14・・ゲート絶縁膜、 5.5′・・・モリブデン・ゲート電極、10・多結晶
シリコン層、 15.16 ソース・ドレイン部。
FIG. 1 is a perspective view of a conventional +WOS)- transistor, and FIG. 2 is a perspective view of a semiconductor device according to the present invention, viewed from a direction perpendicular to the channel. A front view, FIG. 3 is a sectional view showing the same manufacturing process, and FIG. 4 is a perspective view of an embodiment of the present invention.
FIG. 5 is a perspective view of another embodiment of the invention. 4.14... Gate insulating film, 5.5'... Molybdenum gate electrode, 10. Polycrystalline silicon layer, 15.16 Source/drain part.

Claims (1)

【特許請求の範囲】[Claims] 第1導電形の柱状或いは錐状半導体基体の軸方向に離間
して第1及び第2の第2導電形の部分が形成されソース
およびドレインを構成し、この離間した第1及び第2の
部分の中間の前記基体側面を囲むように絶縁性1ili
tt体膜を介して導電性ゲートが形成され金属−誘電体
膜一半導体構造を成していることを特赦とする半導体装
置。
First and second portions of a second conductivity type are formed spaced apart in the axial direction of a columnar or conical semiconductor substrate of a first conductivity type to constitute a source and a drain, and the first and second portions separated from each other are formed to constitute a source and a drain. An insulating layer 1ili surrounds the side surface of the base in the middle of
A semiconductor device in which a conductive gate is formed through a tt body film to form a metal-dielectric film-semiconductor structure.
JP12462383A 1983-07-11 1983-07-11 Semiconductor device Granted JPS6017964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12462383A JPS6017964A (en) 1983-07-11 1983-07-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12462383A JPS6017964A (en) 1983-07-11 1983-07-11 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6017964A true JPS6017964A (en) 1985-01-29
JPH0566031B2 JPH0566031B2 (en) 1993-09-20

Family

ID=14889998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12462383A Granted JPS6017964A (en) 1983-07-11 1983-07-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6017964A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107861A (en) * 1983-11-16 1985-06-13 Nippon Precision Saakitsutsu Kk Mos type semiconductor device
JPS6427270A (en) * 1987-07-23 1989-01-30 Agency Ind Science Techn Field-effect type semiconductor device
JPH05235337A (en) * 1992-01-21 1993-09-10 Nippon Precision Circuits Kk Mis type semiconductor device
WO2007110940A1 (en) * 2006-03-29 2007-10-04 Fujitsu Limited Semiconductor device and its fabrication process
JP2020508566A (en) * 2017-02-22 2020-03-19 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Fabrication of vertical field effect transistor devices with improved vertical fin shape

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107861A (en) * 1983-11-16 1985-06-13 Nippon Precision Saakitsutsu Kk Mos type semiconductor device
JPS6427270A (en) * 1987-07-23 1989-01-30 Agency Ind Science Techn Field-effect type semiconductor device
JPH05235337A (en) * 1992-01-21 1993-09-10 Nippon Precision Circuits Kk Mis type semiconductor device
WO2007110940A1 (en) * 2006-03-29 2007-10-04 Fujitsu Limited Semiconductor device and its fabrication process
JP4755245B2 (en) * 2006-03-29 2011-08-24 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
JP2020508566A (en) * 2017-02-22 2020-03-19 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Fabrication of vertical field effect transistor devices with improved vertical fin shape

Also Published As

Publication number Publication date
JPH0566031B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
JP2572003B2 (en) Method of manufacturing thin film transistor having three-dimensional multi-channel structure
JP5172671B2 (en) Method for manufacturing a dual gate CMOS structure, capacitor, and dual gate capacitor
KR900008386B1 (en) Semiconductor device and manufacture thereof
JPH03225873A (en) Semiconductor device
JPH05160396A (en) Mos field effect transistor
US3946424A (en) High frequency field-effect transistors and method of making same
JP2002270850A (en) Dual-gate field effect transistor
JP3287038B2 (en) Liquid crystal display
JPS58100460A (en) Vertical type metal oxide semiconductor device
JPS6042626B2 (en) Manufacturing method of semiconductor device
US3414781A (en) Field effect transistor having interdigitated source and drain and overlying, insulated gate
JPH04268767A (en) Semiconductor device
JP3230846B2 (en) Semiconductor device and semiconductor integrated circuit device
JPS6017964A (en) Semiconductor device
GB2064866A (en) Field effect semiconductor device
US3344322A (en) Metal-oxide-semiconductor field effect transistor
JPH08148694A (en) Thin-film transistor
JPH01302768A (en) Inverse stagger type si-thin film transistor
JP2847745B2 (en) Thin film transistor
KR100405450B1 (en) Dmos transistor having structure of pocket type junction layer and manufacturing method thereof
JPH06181312A (en) Manufacture of semiconductor device
KR20180047698A (en) Trench Structured Vertical MOSFET
JPH069245B2 (en) Field effect semiconductor device
JPH0424877B2 (en)
JPS63131584A (en) Manufacture of cut type insulated-gate electrostatic induction transistor