JPH0424877B2 - - Google Patents

Info

Publication number
JPH0424877B2
JPH0424877B2 JP57022363A JP2236382A JPH0424877B2 JP H0424877 B2 JPH0424877 B2 JP H0424877B2 JP 57022363 A JP57022363 A JP 57022363A JP 2236382 A JP2236382 A JP 2236382A JP H0424877 B2 JPH0424877 B2 JP H0424877B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
disposed
impurity concentration
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57022363A
Other languages
Japanese (ja)
Other versions
JPS58139471A (en
Inventor
Junji Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2236382A priority Critical patent/JPS58139471A/en
Publication of JPS58139471A publication Critical patent/JPS58139471A/en
Publication of JPH0424877B2 publication Critical patent/JPH0424877B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明はMIS電界効果トランジスタ(以下、単
にMOSトランジスタと記す)に関するもので、
特に、短いチヤネル長を有するMOSトランジス
タのパンチスルー耐圧を高める構造に関するもの
である。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to MIS field effect transistors (hereinafter simply referred to as MOS transistors).
In particular, the present invention relates to a structure that increases the punch-through breakdown voltage of a MOS transistor having a short channel length.

(b) 技術の背景 大規模集積回路、特に大容量メモリには、チヤ
ネル長が1μm或いはそれ以下のMOSトランジス
タが用いられる。このような短チヤネルMOSト
ランジスタに於いては、従来の数μmのチヤネル
長のMOSトランジスタには無かつた種々の不都
合が生じる。
(b) Background of the Technology MOS transistors with a channel length of 1 μm or less are used in large-scale integrated circuits, especially large-capacity memories. Such short channel MOS transistors have various disadvantages that do not exist in conventional MOS transistors with a channel length of several μm.

それらの問題のうち大きなものは、微細パター
ンの実現に関するものを別にすると、シヨートチ
ヤネル効果の発生、ソース/ドレイン耐圧の低
下、ホツトエレクトロン効果の発生である。
The major problems among these problems, apart from those related to the realization of fine patterns, are the occurrence of a short channel effect, a decrease in source/drain breakdown voltage, and the occurrence of a hot electron effect.

一方、本発明に利用される技術として、SOI技
術が存在する。該技術の代表例は、二酸化珪素等
の絶縁物層上に非晶質シリコン層或いは多結晶シ
リコン層を被着し、それを単結晶化するものであ
つて、このようにして得た単結晶シリコン層に素
子が形成され、集積回路が形成される。この場合
の基板構成が一般的に、Semiconductor on
Insulatorと表現されることから、SOIと呼ばれる
のである。
On the other hand, SOI technology exists as a technology utilized in the present invention. A typical example of this technology is to deposit an amorphous silicon layer or a polycrystalline silicon layer on an insulating layer such as silicon dioxide, and convert it into a single crystal. Devices are formed in the silicon layer to form an integrated circuit. In this case, the board configuration is generally made by Semiconductor on
It is called an SOI because it is expressed as an insulator.

(c) 従来技術の問題点 本発明は、先に前記の諸問題を解決するMOS
トランジスタを発明し、特許出願を行つた。該発
明の詳細は特開昭55−130171号公報に記されてい
るので、此処ではその要点だけを紹介する。
(c) Problems with the prior art The present invention first solves the above-mentioned problems using a MOS
Invented the transistor and filed a patent application. The details of this invention are described in Japanese Patent Application Laid-Open No. 130171/1982, so only the main points thereof will be introduced here.

該先願発明は第1図に示す構造を有する。該
MOSトランジスタに於ては、まず、基板1の不
純物濃度は、ソース(S)或いはドレイン(D)であ
るn+領域2,3との接合耐圧を十分なものと
し、且つ空乏層の無用の伸びを抑制し得る濃度に
設定されている。p+領域4の存在によつて、ド
レイン空乏層がソース領域に伸びてパンチスルー
が生じるのが阻止され、更に、p−領域5,5′
の存在により電界が緩和されてホツトエレクトロ
ンの発生が抑えられると共に、チヤネル両端に生
ずるエツジ効果が抑制されて、Vthに及ぼすチヤ
ネル長の影響(シヨートチヤネル効果)を無くし
ている。無効的チヤネル長を定める領域6の不純
物濃度は所定のVthを得る値に設定されている。
前記p−領域領域5,5′及び前記p領域6上に
絶縁膜7を介してゲート電極8が設けられてい
る。尚、9はフイールド絶縁膜を示している。
The prior invention has the structure shown in FIG. Applicable
In a MOS transistor, first, the impurity concentration of the substrate 1 is set to have a sufficient junction breakdown voltage with the n+ regions 2 and 3, which are the source (S) or drain (D), and to prevent unnecessary elongation of the depletion layer. The concentration is set at a level that can be suppressed. The presence of the p+ region 4 prevents the drain depletion layer from extending into the source region and causing punch-through, and furthermore, the presence of the p- regions 5, 5'
Due to the presence of , the electric field is relaxed and the generation of hot electrons is suppressed, and the edge effect occurring at both ends of the channel is suppressed, thereby eliminating the influence of channel length (short channel effect) on V th . The impurity concentration in the region 6 that defines the effective channel length is set to a value that provides a predetermined V th .
A gate electrode 8 is provided on the p-region regions 5, 5' and the p-region 6 with an insulating film 7 interposed therebetween. Note that 9 indicates a field insulating film.

かかる構造のMOSトランジスタに於ては、前
記の問題点はほぼ解決されているのであるが、
MOSトランジスタが更に小型化した場合には、
空乏層が前記p+領域4の下を通つて拡がり、パ
ンチスルーが発生してしまう。即ち、第2図の矢
印に示す径路によるブレークダウンが起るのであ
るが、小型MOSトランジスタに於ては、実現し
得るp+領域4の深さには限界があるので、前記
構造ではこの問題は解決されない。
In MOS transistors with such a structure, the above-mentioned problems are almost solved; however,
If MOS transistors become even smaller,
The depletion layer passes under the p+ region 4 and expands, resulting in punch-through. That is, breakdown occurs along the path shown by the arrow in FIG. 2, but since there is a limit to the depth of the p+ region 4 that can be realized in small MOS transistors, this problem cannot be solved with the above structure. Not resolved.

(d) 発明の目的 本発明の目的は、かかる径路によるブレークダ
ウンの発生することのない短チヤネルMOSトラ
ンジスタを提供することである。
(d) Object of the Invention An object of the invention is to provide a short channel MOS transistor in which breakdown due to such a path does not occur.

(e) 発明の構成 この目的を達成する為、本発明のMOSトラン
ジスタは、絶縁基板上に形成された半導体層、前
記半導体層に、互いに離隔して配設された第一導
電型を有する第1の領域と第2の領域、前記第1
の領域と第2の領域との間に配設された第二の導
電型を有する第3の領域、前記第1の領域と第3
の領域との間に配設された第二導電型で低不純物
濃度を有する第4の領域、前記第2の領域と第3
の領域との間に配設された第二導電型で低不純物
濃度を有する第5の領域、前記第3の領域下に、
当該第3の領域と前記絶縁基板とに接して配置さ
れた第二導電型で高不純物濃度を有する第6の領
域、及び前記第3の領域上に絶縁膜を介して配設
されたゲート電極とを備えた構造を有する。
(e) Structure of the Invention In order to achieve this object, the MOS transistor of the present invention includes a semiconductor layer formed on an insulating substrate, a semiconductor layer having a first conductivity type and arranged at a distance from each other. a first area and a second area, the first area
a third region having a second conductivity type disposed between the region and the second region;
a fourth region having a second conductivity type and a low impurity concentration disposed between the second region and the third region;
a fifth region having a second conductivity type and a low impurity concentration disposed between the region and the third region;
a sixth region of a second conductivity type and having a high impurity concentration, disposed in contact with the third region and the insulating substrate; and a gate electrode disposed on the third region via an insulating film. It has a structure equipped with.

(f) 発明の実施例 本発明のMOSトランジスタは前記SOI構造の
基板に構成される。該SOI構造の基板を得ること
は公知技術である。本発明の実施に適したSOI基
板の一例は、シリコン層の厚みが0.3〜1μm、不
純物濃度1×1015/cm3のp型のものである。
(f) Embodiments of the Invention A MOS transistor of the present invention is constructed on the substrate having the SOI structure. Obtaining a substrate with the SOI structure is a known technique. An example of an SOI substrate suitable for carrying out the present invention is a p-type substrate with a silicon layer having a thickness of 0.3 to 1 μm and an impurity concentration of 1×10 15 /cm 3 .

第3図に本発明のnチヤネルMOSトランジス
タの構造が示される。同図aは平面図であり、b
はそのX−X′断面図である。
FIG. 3 shows the structure of an n-channel MOS transistor of the present invention. Figure a is a plan view, and b
is a sectional view taken along line X-X'.

本発明のnチヤネルMOSトランジスタに於て
も、前記先願発明のMOSトランジスタと同様、
p+領域14が設けられており、ドレイン空乏層
がソース領域に伸びてパンチスルーが生じるのを
阻止している。更に、p−領域15,15′がチ
ヤネル領域16の両側に設けられて、シヨートチ
ヤネル効果とホツトエレクトロン効果の発生を防
止している。p+領域14の形成はイオン注入に
よつて実施される。
In the n-channel MOS transistor of the present invention, as well as the MOS transistor of the prior invention,
A p+ region 14 is provided to prevent the drain depletion layer from extending into the source region and punch-through. Furthermore, p-regions 15, 15' are provided on both sides of channel region 16 to prevent short channel effects and hot electron effects from occurring. Formation of p+ region 14 is performed by ion implantation.

チヤネル領域16の不純物濃度は所定のVth
得るように設定されており、該領域の不純物濃度
調整はイオン注入によつて行われる。
The impurity concentration of the channel region 16 is set to obtain a predetermined V th , and the impurity concentration of this region is adjusted by ion implantation.

かかる構造を採ることによつて本発明のMOS
トランジスタは、前記先願発明のMOSトランジ
スタと同様、チヤネル長が小であるにもかかわら
ず、シヨートチヤネル効果の発生、ソース/ドレ
イン耐圧の低下、ホツトエレクトロン効果の発生
といつた問題を解決しているのであるが、更に、
前記先願発明のMOSトランジスタでは未解決で
あつた、p+領域の下を通る径路によるブレーク
ダウンの問題も解決されている。
By adopting such a structure, the MOS of the present invention
Similar to the MOS transistor of the prior invention, the transistor has a small channel length, but solves problems such as short channel effect, reduction in source/drain breakdown voltage, and hot electron effect. However, furthermore,
The problem of breakdown due to a path passing under the p+ region, which was unsolved in the MOS transistor of the prior invention, has also been solved.

即ち、本発明のMOSトランジスタはSOI基板
に形成され、p+領域14の下は二酸化珪素の如
き絶縁体であることから、p+領域14の下を通
る径路を存在せず、かかる径路のブレークダウン
は生じないのである。
That is, since the MOS transistor of the present invention is formed on an SOI substrate and an insulator such as silicon dioxide is formed under the p+ region 14, there is no path passing under the p+ region 14, and breakdown of such a path is prevented. It does not occur.

本発明のMOSトランジスタを構成する諸領域
はいずれもイオン注入によつて形成される。第3
図の11は絶縁体、12,13はソース或いはド
レイン領域であるn+領域、17はゲート絶縁
膜、18はゲート電極(n+型多結晶シリコン)、
19はフイールド絶縁膜である。尚、第3図には
図示されていないが、ソース、ドレイン電極はn
+領域12,13上に配設され、接続される。
The various regions constituting the MOS transistor of the present invention are all formed by ion implantation. Third
In the figure, 11 is an insulator, 12 and 13 are n+ regions that are source or drain regions, 17 is a gate insulating film, 18 is a gate electrode (n+ type polycrystalline silicon),
19 is a field insulating film. Although not shown in FIG. 3, the source and drain electrodes are n
+ regions 12 and 13 and are connected to each other.

(g) 発明の効果 以上説明した如く、本発明のMOSトランジス
タに於ては、トランジスタの小型化にともなつて
生じるシヨートチヤネル効果の発生、ソース/ド
レイン耐圧の低下、ホツトエレクトロン効果の発
生といつた問題を解決しているだけでなく、p+
領域14の下を通る径路によるブレークダウンも
生じることがないので、MOSトランジスタをよ
り小型化し、集積回路を高集積化することが可能
となる。
(g) Effects of the Invention As explained above, the MOS transistor of the present invention has problems such as short channel effect, decrease in source/drain breakdown voltage, and hot electron effect that occur as the transistor becomes smaller. Not only are we solving problems, but p+
Since breakdown due to the path passing under the region 14 does not occur, it becomes possible to further downsize the MOS transistor and increase the degree of integration of the integrated circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は先行技術とその問題点を示
す図、第3図は本発明を示す図であつて、図に於
て、1はp型シリコン基板、2,12,3,13
はソース或いはドレイン領域、4,14はp+領
域、5,5,15,15′はp−領域、6,16
はチヤネル領域、7,17はゲート絶縁膜、8,
18はゲート電極、9,19はフイールド絶縁
膜、11は絶縁体基板である。
1 and 2 are diagrams showing the prior art and its problems, and FIG. 3 is a diagram showing the present invention, in which 1 is a p-type silicon substrate, 2, 12, 3, 13
is a source or drain region, 4, 14 are p+ regions, 5, 5, 15, 15' are p- regions, 6, 16
is a channel region, 7, 17 is a gate insulating film, 8,
18 is a gate electrode, 9 and 19 are field insulating films, and 11 is an insulating substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板上に形成された半導体層、前記半導
体層に、互いに離隔して配設された第一導電型を
有する第1の領域と第2の領域、前記第1の領域
と第2の領域との間に配設された第二の導電型を
有する第3の領域、前記第1の領域と第3の領域
との間に配設された第二導電型で低不純物濃度を
有する第4の領域、前記第2の領域と第3の領域
との間に配設された第二導電型で低不純物濃度を
有する第5の領域、前記第3の領域下に、当該第
3の領域と前記絶縁基板とに接して配置された第
二導電型で高不純物濃度を有する第6の領域、及
び前記第3の領域上に絶縁膜を介して配設された
ゲート電極とを備えてなることを特徴とするMIS
電界効果トランジスタ。
1. A semiconductor layer formed on an insulating substrate, a first region and a second region having a first conductivity type that are spaced apart from each other in the semiconductor layer, and the first region and the second region. a third region having a second conductivity type disposed between the first region and the third region; and a fourth region having a second conductivity type and having a low impurity concentration disposed between the first region and the third region. a fifth region having a second conductivity type and a low impurity concentration disposed between the second region and the third region; a fifth region below the third region; A sixth region of a second conductivity type and having a high impurity concentration is disposed in contact with the insulating substrate, and a gate electrode is disposed on the third region with an insulating film interposed therebetween. MIS featuring
Field effect transistor.
JP2236382A 1982-02-15 1982-02-15 Mis field effect transistor Granted JPS58139471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2236382A JPS58139471A (en) 1982-02-15 1982-02-15 Mis field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2236382A JPS58139471A (en) 1982-02-15 1982-02-15 Mis field effect transistor

Publications (2)

Publication Number Publication Date
JPS58139471A JPS58139471A (en) 1983-08-18
JPH0424877B2 true JPH0424877B2 (en) 1992-04-28

Family

ID=12080538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2236382A Granted JPS58139471A (en) 1982-02-15 1982-02-15 Mis field effect transistor

Country Status (1)

Country Link
JP (1) JPS58139471A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2782781B2 (en) * 1989-05-20 1998-08-06 富士通株式会社 Method for manufacturing semiconductor device
US5238857A (en) * 1989-05-20 1993-08-24 Fujitsu Limited Method of fabricating a metal-oxide-semiconductor device having a semiconductor on insulator (SOI) structure
JP2007214495A (en) * 2006-02-13 2007-08-23 Oki Electric Ind Co Ltd Semiconductor device and method for fabrication thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103778A (en) * 1975-03-10 1976-09-13 Nippon Telegraph & Telephone Handotaisochito sonoseizohoho
JPS55130171A (en) * 1979-03-29 1980-10-08 Fujitsu Ltd Mos field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103778A (en) * 1975-03-10 1976-09-13 Nippon Telegraph & Telephone Handotaisochito sonoseizohoho
JPS55130171A (en) * 1979-03-29 1980-10-08 Fujitsu Ltd Mos field effect transistor

Also Published As

Publication number Publication date
JPS58139471A (en) 1983-08-18

Similar Documents

Publication Publication Date Title
JP3364559B2 (en) Semiconductor device
US3933529A (en) Process for the production of a pair of complementary field effect transistors
JP2700955B2 (en) Semiconductor device with field effect transistor
JPH08130308A (en) Semiconductor device
US4330850A (en) MNOS Memory cell
JPS63102264A (en) Thin film semiconductor device
US4142197A (en) Drain extensions for closed COS/MOS logic devices
JPH11135795A (en) Field-effect transistor
JPH0424877B2 (en)
JPH0571190B2 (en)
JPS6123669B2 (en)
JPS62262462A (en) Semiconductor device
JPS6271274A (en) Mos semiconductor device
JP3143102B2 (en) MIS type transistor
JPS62274778A (en) Semiconductor device
JPS5858747A (en) Metal oxide semiconductor type semiconductor integrated circuit
JPH04115538A (en) Semiconductor device
JPS6024593B2 (en) semiconductor equipment
JPS626660B2 (en)
JPH04313238A (en) Semiconductor device
JP2676769B2 (en) Semiconductor device
KR950003238B1 (en) Logic element structure using multi-electrode
JPH05243261A (en) Insulated-gate field-effect transistor
JPH05136382A (en) Complementary gate array
JPH0620134B2 (en) Semiconductor device