JPH0685262A - Field effect transistor and its manufacture - Google Patents

Field effect transistor and its manufacture

Info

Publication number
JPH0685262A
JPH0685262A JP23792092A JP23792092A JPH0685262A JP H0685262 A JPH0685262 A JP H0685262A JP 23792092 A JP23792092 A JP 23792092A JP 23792092 A JP23792092 A JP 23792092A JP H0685262 A JPH0685262 A JP H0685262A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
semiconductor thin
thin film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23792092A
Other languages
Japanese (ja)
Other versions
JP2903892B2 (en
Inventor
Toyoji Yamamoto
豊二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4237920A priority Critical patent/JP2903892B2/en
Publication of JPH0685262A publication Critical patent/JPH0685262A/en
Application granted granted Critical
Publication of JP2903892B2 publication Critical patent/JP2903892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78612Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing the kink- or the snapback effect, e.g. discharging the minority carriers of the channel region for preventing bipolar effect
    • H01L29/78615Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing the kink- or the snapback effect, e.g. discharging the minority carriers of the channel region for preventing bipolar effect with a body contact

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To suppress the floating substrate effect of a MOS-FET composed of an SOI structure and improve the switching speed of the MOS-FET by a method wherein a substrate electrode is formed and connected to a gate electrode. CONSTITUTION:A P-type silicon layer 3 which is to be a channel layer is formed on a foundation wafer 1 made of P-type silicon with a silicon oxide film 2 therebetween. After element isolation oxide films 4 are formed by selective oxidation, a gate oxide film 5 is formed. Then polycrystalline silicon is deposited and patterned to form a gate electrode 6 which has a contact hole on a region where a P<+>-type diffused layer is to be formed. After N<+>-type source/drain regions 7 are formed, an layer insulating film 8 is built up. After a contact hole is drilled in the layer insulating film 8, a P<+>-type diffused layer 9 is formed. After the insulating film near the contact is etched, an Al wiring which is connected to the P<+>-type diffused layer 9 and the gate electrode 6 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はSOIを用いたMOS電
界効果トランジスタおよびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS field effect transistor using SOI and a method for manufacturing the same.

【0002】[0002]

【従来の技術】絶縁物である酸化シリコンなどの上に形
成されたシリコンなどからなる半導体薄膜の表面をチャ
ネルとするMOS電界効果トランジスタ(以下、SOI
MOSFETという)はシリコン基板表面をチャネルと
するバルクMOSFETに比べて、短チャネル効果に強
く、スイッチング速度が速くなるなどの利点がある。
2. Description of the Related Art A MOS field effect transistor (hereinafter referred to as SOI) having a channel on the surface of a semiconductor thin film made of silicon or the like formed on an insulating material such as silicon oxide.
Compared with a bulk MOSFET having a silicon substrate surface as a channel, the MOSFET has a short channel effect, and has an advantage that a switching speed is increased.

【0003】しかし、SOIMOSFETではシリコン
薄膜(以下、基板という)に電極を接続して基板電位を
固定することが難しいので、通常、浮遊電位のまま動作
させている。そのため基板に少数キャリアが蓄積すると
基板電位が変動し、その結果MOSFETの特性が変化
するという欠点がある。
However, since it is difficult to fix the substrate potential by connecting an electrode to a silicon thin film (hereinafter referred to as a substrate) in the SOI MOSFET, the SOI MOSFET is normally operated with a floating potential. Therefore, when minority carriers are accumulated in the substrate, the substrate potential fluctuates, and as a result, the characteristics of the MOSFET change.

【0004】従来は、少数キャリア発生の原因となるイ
ンパクトイオン化を抑制するため、高濃度ドレインに隣
接して低濃度ドレインを形成するLDD構造を適用した
り、発生した少数キャリアをソース領域に引き込んで、
再結合によって消滅させる再結合中心となる金属をソー
ス領域に導入して、この浮遊基板効果を抑制している。
Conventionally, in order to suppress impact ionization that causes generation of minority carriers, an LDD structure in which a low-concentration drain is formed adjacent to a high-concentration drain is applied, or the generated minority carriers are drawn into a source region. ,
This floating substrate effect is suppressed by introducing into the source region a metal serving as a recombination center that disappears by recombination.

【0005】[0005]

【発明が解決しようとする課題】SOIMOSFETの
浮遊基板効果を抑制するため、LDD構造にすると低濃
度ドレインの抵抗成分のためMOSFETの電流駆動能
力が低下する。そのため本来のSOIMOSFETの利
点である速いスイッチ速度を遅くしてしまうという問題
がある。
When the LDD structure is used to suppress the floating substrate effect of the SOIMOSFET, the current driving capability of the MOSFET is lowered due to the resistance component of the lightly doped drain. Therefore, there is a problem that the fast switching speed, which is the original advantage of the SOIMOSFET, is reduced.

【0006】また、ソース領域に再結合中心を導入して
少数キャリアをソースに引き抜こうとしても、少数キャ
リアの発生はドレイン端で生じるのでソースに到達する
までに少数キャリアの一部が基板に蓄積する。MOSF
ET特性の変動は小さくなっても残ってしまうという問
題がある。これらの問題はSOIMOSFETにおいて
は基板電極を形成することが困難であることから生じ
る。
Further, even if the recombination center is introduced into the source region to extract the minority carriers to the source, the minority carriers are generated at the drain end, so that some of the minority carriers are accumulated in the substrate before reaching the source. To do. MOSF
There is a problem that the fluctuation of the ET characteristic remains even if it becomes small. These problems arise from the difficulty in forming the substrate electrode in SOI MOSFETs.

【0007】また、基板電極を形成したとしても、その
領域を設けた分だけチップ面積が増えてしまうという問
題が生じる。
Further, even if the substrate electrode is formed, there is a problem that the chip area is increased by the amount of the area provided.

【0008】本発明の目的は、チップ面積を増やすこと
なく基板電極を形成すると同時にスイッチ速度の高速化
を実現した電界効果トランジスタおよびその製造方法を
提供することにある。
It is an object of the present invention to provide a field effect transistor which can form a substrate electrode without increasing the chip area and at the same time realizes a high switching speed, and a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明の電界効果トラン
ジスタは、絶縁物の上に半導体薄膜、ゲート絶縁膜およ
びゲート電極が順次積層され、前記ゲート電極および前
記ゲート絶縁膜に形成されたコンタクトを覆う金属配線
によって、前記ゲート電極と前記半導体薄膜とが電気的
に接続されたものである。
In the field effect transistor of the present invention, a semiconductor thin film, a gate insulating film, and a gate electrode are sequentially laminated on an insulator, and a contact formed on the gate electrode and the gate insulating film is formed. The gate electrode and the semiconductor thin film are electrically connected by a covering metal wiring.

【0010】また、本発明の電界効果トランジスタの製
造方法は、絶縁物の上に形成された一導電型半導体薄膜
を選択酸化して素子分離酸化膜を形成する工程と、前記
素子分離酸化膜に囲まれて残された前記半導体薄膜の表
面にゲート絶縁膜を形成したのち全面にポリシリコンを
堆積する工程と、前記ポリシリコンおよび前記ゲート絶
縁膜をパターニングして、前記半導体薄膜表面に達する
第1のコンタクト開口を有する前記ポリシリコンからな
るゲート電極を形成する工程と、逆導電型不純物をイオ
ン注入して前記ゲート電極両側の直下の前記半導体薄膜
にソース・ドレイン層を形成する工程と、全面に層間絶
縁膜を堆積したのち前記第1のコンタクト開口の内側に
第2のコンタクト開口を形成する工程と、一導電型不純
物をイオン注入して前記第2のコンタクト開口の前記半
導体薄膜にオーミック層を形成する工程と、前記ゲート
電極および前記オーミック層に接する前記第2のコンタ
クト開口近傍の絶縁膜をエッチングする工程とを含むも
のである。
The method of manufacturing a field effect transistor according to the present invention further comprises a step of selectively oxidizing one conductivity type semiconductor thin film formed on an insulator to form an element isolation oxide film, and a step of forming the element isolation oxide film. A step of forming a gate insulating film on the surface of the semiconductor thin film left surrounded and then depositing polysilicon on the entire surface, and patterning the polysilicon and the gate insulating film to reach the surface of the semiconductor thin film. Forming a gate electrode made of the polysilicon having a contact opening, forming a source / drain layer in the semiconductor thin film immediately below both sides of the gate electrode by ion-implanting an impurity of opposite conductivity type, and A step of forming a second contact opening inside the first contact opening after depositing an interlayer insulating film, and ion-implanting one conductivity type impurity Wherein forming an ohmic layer on the semiconductor thin film of the second contact opening, the second contact opening near the insulating film in contact with the gate electrode and the ohmic layer is intended to include the step of etching.

【0011】[0011]

【作用】NチャネルMOSFETのドレイン電流とゲー
ト電圧との関係を図3に示す。基板にゲート電圧と同一
極性の1Vを印加すると、破線に示すようにMOSFE
Tのしきい値電圧が下がってドレイン電流が増大すると
同時に、ゲート電圧0Vのオフ時のリーク電流が増大す
る。
The relationship between the drain current and the gate voltage of the N-channel MOSFET is shown in FIG. When 1V with the same polarity as the gate voltage is applied to the substrate, the MOSFE
At the same time as the threshold voltage of T decreases and the drain current increases, the leak current when the gate voltage 0V is off increases.

【0012】一方、基板とゲート電極とをショート(短
絡)すると実線に示すように変る。ゲート電圧0Vにお
ける漏れ電流は十分に小さいうえ、ドレイン電流に対す
るゲート電圧特性の勾配が急峻になるのでFETのON
(オン)状態とOFF(オフ)状態との区別がより明確
になる。さらにFETがオン状態のときのドレイン電流
が増大してスイッチング特性が向上する。
On the other hand, when the substrate and the gate electrode are short-circuited (short circuit), the change occurs as shown by the solid line. The leakage current at a gate voltage of 0V is sufficiently small, and the slope of the gate voltage characteristic with respect to the drain current becomes steep, so the FET is turned on.
The distinction between the (on) state and the off (off) state becomes clearer. Further, the drain current when the FET is in the ON state is increased, and the switching characteristics are improved.

【0013】チップ面積を増やすことなく、基板に電極
を形成してゲート電極と接続することができる。その結
果、SOIMOSFETの問題点である浮遊基板効果を
抑制するとともに、FETの高速化が可能になる。
An electrode can be formed on the substrate and connected to the gate electrode without increasing the chip area. As a result, the floating substrate effect, which is a problem of the SOIMOSFET, can be suppressed and the speed of the FET can be increased.

【0014】[0014]

【実施例】本発明の一実施例について、図2(a)〜
(g)を参照して工程順に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention is shown in FIGS.
The process order will be described with reference to FIG.

【0015】はじめに平面図である図2(a)およびそ
の断面図である図2(b)に示すように、P型シリコン
からなる下地ウェーハ1に酸化シリコン膜2で絶縁分離
されたP型シリコン層3が形成されている、P型SOI
基板を用いる。SOI基板は酸素イオン注入によるSI
MOX(Separation by Implant
ed Oxygen)または、レーザ、電子ビームやラ
ンプアニールによって再結晶するZMR(Zone M
elting Recrystallization)
などで形成される。つぎに選択酸化法により素子分離用
酸化膜4を形成して素子領域となるP型シリコン層3を
絶縁分離する。このとき図2(a)に示すように、ゲー
ト電極のコンタクト予定領域までP型シリコン層3を残
して凸型にしたことに特徴がある。
First, as shown in FIG. 2 (a) which is a plan view and FIG. 2 (b) which is a cross-sectional view thereof, a P-type silicon insulatingly separated by a silicon oxide film 2 is formed on a base wafer 1 made of P-type silicon. P-type SOI with layer 3 formed
A substrate is used. SOI substrate is SI by oxygen ion implantation
MOX (Separation by Implant)
ed Oxygen) or ZMR (Zone M) recrystallized by laser, electron beam or lamp annealing.
eluting Recrystallization)
And so on. Next, an element isolation oxide film 4 is formed by a selective oxidation method to insulate and isolate the P-type silicon layer 3 to be an element region. At this time, as shown in FIG. 2A, it is characterized in that the P-type silicon layer 3 is left to reach the contact planned region of the gate electrode to form a convex shape.

【0016】つぎに平面図である図2(c)およびその
断面図である図2(d)に示すように、ゲート酸化膜5
を形成したのちしきい値電圧を調整するためボロン(硼
素)をイオン注入する。つぎに燐をドープしたポリシリ
コンを形成してからパターニングしてゲート電極6を形
成する。ポリシリコンをパターニングするとき、同時に
ゲート電極6にコンタクト11を開口する。
Next, as shown in a plan view of FIG. 2C and a sectional view of FIG. 2D, the gate oxide film 5 is formed.
Then, boron (ion) is ion-implanted to adjust the threshold voltage. Next, phosphorus-doped polysilicon is formed and then patterned to form the gate electrode 6. At the same time when the polysilicon is patterned, the contact 11 is opened in the gate electrode 6.

【0017】つぎに平面図である図2(e)およびその
断面図である図2(f)に示すように、砒素をイオン注
入してN+ 型ソース・ドレイン拡散層7を形成する。つ
ぎに全面に厚さ0.4μmの層間絶縁膜8を堆積したの
ち、レジスト(図示せず)をマスクとしてエッチングし
てコンタクト12を開口する。このときコンタクト12
はゲート電極6と同時にパターニングしたコンタクト1
1よりもひとまわり小さくして、コンタクト12の側面
に層間絶縁膜8からなる厚さ約0.1μmの側壁が残る
ようにする。このあとボロンをイオン注入したとき、ゲ
ート電極6にボロンが侵入しないようにするためであ
る。
Next, as shown in a plan view of FIG. 2E and a sectional view of FIG. 2F, arsenic is ion-implanted to form an N + type source / drain diffusion layer 7. Next, after depositing an interlayer insulating film 8 having a thickness of 0.4 μm on the entire surface, the contact 12 is opened by etching using a resist (not shown) as a mask. Contact 12 at this time
Is the contact 1 patterned at the same time as the gate electrode 6
It is made slightly smaller than 1 so that the side wall of the interlayer insulating film 8 having a thickness of about 0.1 μm remains on the side surface of the contact 12. This is to prevent boron from entering the gate electrode 6 when boron is ion-implanted thereafter.

【0018】つぎに平面図である図2(g)およびその
断面図である図2(h)に示すように、ボロンをイオン
注入したのちアニールして基板電極予定領域にP+ 型オ
ーミック拡散層9を形成する。つぎにコンタクト12の
側面に残っている層間絶縁膜8などからなる絶縁膜をエ
ッチングする。
Next, as shown in a plan view of FIG. 2 (g) and a sectional view of FIG. 2 (h), boron ions are implanted and then annealed to form a P + -type ohmic diffusion layer in the substrate electrode planned region. 9 is formed. Next, the insulating film formed of the interlayer insulating film 8 and the like remaining on the side surface of the contact 12 is etched.

【0019】最後に平面図である図1(a)およびその
断面図である図1(b)に示すように、スパッタ法によ
り全面にAl(アルミニウム)系合金を堆積したのち、
パターニングしてAl配線10を形成して素子部が完成
する。
Finally, as shown in a plan view of FIG. 1A and a sectional view of FIG. 1B, an Al (aluminum) type alloy is deposited on the entire surface by a sputtering method,
The Al wiring 10 is formed by patterning to complete the element portion.

【0020】本実施例ではNチャネルのFETについて
説明したが、本発明はNチャネルに限定されることなく
極性を変えることによりPチャネルのFETにも適用す
ることができる。さらにNチャネルおよびPチャネルの
FETが共存するCMOS集積回路に適用しても同様の
効果を得ることができる。
Although the N-channel FET has been described in this embodiment, the present invention is not limited to the N-channel FET and can be applied to the P-channel FET by changing the polarity. Further, the same effect can be obtained even when applied to a CMOS integrated circuit in which N-channel and P-channel FETs coexist.

【0021】[0021]

【発明の効果】基板とゲート電極とを短絡することによ
り、チップ面積を増やすことなくSOIMOSFETの
問題点である浮遊基板効果を抑制することができる。さ
らにFETのオン状態とオフ状態との区別が明確にな
り、オン状態のドレイン電流が増加して、FETの高速
動作が可能になった。
By short-circuiting the substrate and the gate electrode, the floating substrate effect, which is a problem of the SOIMOSFET, can be suppressed without increasing the chip area. Furthermore, the distinction between the on-state and the off-state of the FET has been clarified, the drain current in the on-state has increased, and high-speed operation of the FET has become possible.

【0022】しかもレジスト工程を追加することなく、
自己整合的に基板コンタクト領域の不純物濃度を上げ
て、コンタクト抵抗を低減することができる。
Moreover, without adding a resist process,
The contact resistance can be reduced by increasing the impurity concentration in the substrate contact region in a self-aligning manner.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の一実施例を示す平面図であ
る。(b)は(a)の断面図である。
FIG. 1A is a plan view showing an embodiment of the present invention. (B) is sectional drawing of (a).

【図2】(a),(c),(e),(g)は本発明の一
実施例を工程順に示す平面図である。(b),(d),
(f),(h)は本発明の一実施例を工程順に示す断面
図である。
2 (a), (c), (e) and (g) are plan views showing an embodiment of the present invention in the order of steps. (B), (d),
(F), (h) is sectional drawing which shows one Example of this invention in order of process.

【図3】FETのゲート電圧に対するドレイン電流の特
性を示すグラフである。
FIG. 3 is a graph showing characteristics of drain current with respect to gate voltage of FET.

【符号の説明】[Explanation of symbols]

1 下地ウェーハ 2 酸化シリコン膜 3 P型シリコン層 4 素子分離酸化膜 5 ゲート酸化膜 6 ゲート電極 7 N+ 型ソース・ドレイン 8 層間絶縁膜 9 P+ 型拡散層 10 Al配線 11,12 コンタクト1 Base Wafer 2 Silicon Oxide Film 3 P-Type Silicon Layer 4 Element Isolation Oxide Film 5 Gate Oxide Film 6 Gate Electrode 7 N + Type Source / Drain 8 Interlayer Insulation Film 9 P + Type Diffusion Layer 10 Al Wiring 11, 12 Contacts

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁物の上に半導体薄膜、ゲート絶縁膜
およびゲート電極が順次積層され、前記ゲート電極およ
び前記ゲート絶縁膜に形成されたコンタクトを覆う金属
配線によって、前記ゲート電極と前記半導体薄膜とが電
気的に接続された電界効果トランジスタ。
1. A semiconductor thin film, a gate insulating film, and a gate electrode are sequentially laminated on an insulator, and the gate electrode and the semiconductor thin film are formed by metal wiring covering the gate electrode and the contact formed on the gate insulating film. A field effect transistor in which and are electrically connected.
【請求項2】 絶縁物の上に形成された一導電型半導体
薄膜を選択酸化して素子分離酸化膜を形成する工程と、
前記素子分離酸化膜に囲まれて残された前記半導体薄膜
の表面にゲート絶縁膜を形成したのち、全面にポリシリ
コンを堆積する工程と、前記ポリシリコンおよび前記ゲ
ート絶縁膜をパターニングして、前記半導体薄膜表面に
達する第1のコンタクト開口を有する前記ポリシリコン
からなるゲート電極を形成する工程と、逆導電型不純物
をイオン注入して前記ゲート電極両側の直下の前記半導
体薄膜にソース・ドレイン層を形成する工程と、全面に
層間絶縁膜を堆積したのち前記第1のコンタクト開口の
内側に第2のコンタクト開口を形成する工程と、一導電
型不純物をイオン注入して前記第2のコンタクト開口の
前記半導体薄膜にオーミック層を形成する工程と、前記
ゲート電極および前記オーミック層に接する前記第2の
コンタクト開口近傍の絶縁膜をエッチングする工程とを
含む電界効果トランジスタの製造方法。
2. A step of selectively oxidizing one conductivity type semiconductor thin film formed on an insulator to form an element isolation oxide film,
Forming a gate insulating film on the surface of the semiconductor thin film left surrounded by the element isolation oxide film, depositing polysilicon on the entire surface, and patterning the polysilicon and the gate insulating film, Forming a gate electrode made of the polysilicon having a first contact opening reaching the surface of the semiconductor thin film; and ion-implanting an impurity of opposite conductivity type to form a source / drain layer in the semiconductor thin film immediately below both sides of the gate electrode. A step of forming a second contact opening inside the first contact opening after depositing an interlayer insulating film on the entire surface, and ion-implanting one conductivity type impurity into the second contact opening. Forming an ohmic layer on the semiconductor thin film, and near the second contact opening in contact with the gate electrode and the ohmic layer. Method of manufacturing a field effect transistor comprising the step of etching the insulating film.
JP4237920A 1992-09-07 1992-09-07 Method for manufacturing field effect transistor Expired - Lifetime JP2903892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4237920A JP2903892B2 (en) 1992-09-07 1992-09-07 Method for manufacturing field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4237920A JP2903892B2 (en) 1992-09-07 1992-09-07 Method for manufacturing field effect transistor

Publications (2)

Publication Number Publication Date
JPH0685262A true JPH0685262A (en) 1994-03-25
JP2903892B2 JP2903892B2 (en) 1999-06-14

Family

ID=17022412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4237920A Expired - Lifetime JP2903892B2 (en) 1992-09-07 1992-09-07 Method for manufacturing field effect transistor

Country Status (1)

Country Link
JP (1) JP2903892B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000001015A1 (en) * 1998-06-30 2000-01-06 Sharp Kabushiki Kaisha Semiconductor device and method of manufacture thereof
US6172405B1 (en) 1998-07-17 2001-01-09 Sharp Kabushiki Kaisha Semiconductor device and production process therefore
US6177811B1 (en) 1995-06-06 2001-01-23 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device
US6191449B1 (en) * 1996-09-19 2001-02-20 Kabushiki Kaisha Toshiba SOI based transistor having an independent substrate potential control
US6255704B1 (en) 1996-06-28 2001-07-03 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
JP2002509360A (en) * 1997-12-16 2002-03-26 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Silicon oxide insulator (SOI) semiconductor having a selectively connected body
US6841828B2 (en) 1997-02-28 2005-01-11 Kabushiki Kaisha Toshiba Method of manufacturing SOI element having body contact
JP2005123565A (en) * 2003-10-16 2005-05-12 Samsung Sdi Co Ltd Gate body contact thin film transistor
JP2007324530A (en) * 2006-06-05 2007-12-13 Oki Electric Ind Co Ltd Semiconductor device
US11715796B2 (en) 2021-03-12 2023-08-01 Kabushiki Kaisha Toshiba High frequency transistor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177811B1 (en) 1995-06-06 2001-01-23 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device
US6573577B1 (en) 1996-06-28 2003-06-03 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
KR100330782B1 (en) * 1996-06-28 2002-08-13 샤프 가부시키가이샤 Semiconductor device and manufacturing method thereof
US6927463B2 (en) 1996-06-28 2005-08-09 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
US6255704B1 (en) 1996-06-28 2001-07-03 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
KR100387902B1 (en) * 1996-06-28 2003-06-18 샤프 가부시키가이샤 semiconductor device and method for fabricating the same
US6191449B1 (en) * 1996-09-19 2001-02-20 Kabushiki Kaisha Toshiba SOI based transistor having an independent substrate potential control
US6841828B2 (en) 1997-02-28 2005-01-11 Kabushiki Kaisha Toshiba Method of manufacturing SOI element having body contact
JP2002509360A (en) * 1997-12-16 2002-03-26 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Silicon oxide insulator (SOI) semiconductor having a selectively connected body
US6426532B1 (en) 1998-06-30 2002-07-30 Sharp Kabushiki Kaisha Semiconductor device and method of manufacture thereof
WO2000001015A1 (en) * 1998-06-30 2000-01-06 Sharp Kabushiki Kaisha Semiconductor device and method of manufacture thereof
US6682966B2 (en) 1998-06-30 2004-01-27 Sharp Kabushiki Kaisha Semiconductor device and method for producing the same
US6172405B1 (en) 1998-07-17 2001-01-09 Sharp Kabushiki Kaisha Semiconductor device and production process therefore
JP2005123565A (en) * 2003-10-16 2005-05-12 Samsung Sdi Co Ltd Gate body contact thin film transistor
US8704305B2 (en) 2003-10-16 2014-04-22 Samsung Display Co., Ltd. Thin film transistor
JP2007324530A (en) * 2006-06-05 2007-12-13 Oki Electric Ind Co Ltd Semiconductor device
US11715796B2 (en) 2021-03-12 2023-08-01 Kabushiki Kaisha Toshiba High frequency transistor

Also Published As

Publication number Publication date
JP2903892B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US5266515A (en) Fabricating dual gate thin film transistors
KR0134756B1 (en) Semiconductor device and manufacture method thereof
US5804858A (en) Body contacted SOI MOSFET
JP2835216B2 (en) Method for manufacturing semiconductor device
US5214295A (en) Thin film field effect transistor, CMOS inverter, and methods of forming thin film field effect transistors and CMOS inverters
JP3455452B2 (en) Semiconductor device and manufacturing method thereof
EP0962988A2 (en) SOI semiconductor device and method for manufacturing the same
US5286663A (en) Methods for producing thin film transistor having a diode shunt
US6166412A (en) SOI device with double gate and method for fabricating the same
JPH10294465A (en) Semiconductor device
JP3103159B2 (en) Semiconductor device
JP2001156290A (en) Semiconductor device
JP2903892B2 (en) Method for manufacturing field effect transistor
JP4348757B2 (en) Semiconductor device
JP3057436B2 (en) Semiconductor device and manufacturing method thereof
JPH06268215A (en) Mis type semiconductor device
JPH05102179A (en) Semiconductor device and its manufacture
US6621118B2 (en) MOSFET, semiconductor device using the same and production process therefor
JP3057792B2 (en) Method for manufacturing thin film transistor
JPH09135029A (en) Mis semiconductor device and manufacturing method therefor
US20010001497A1 (en) Semiconductor device and method for manufacturing the same
JP2519541B2 (en) Semiconductor device
JPH0766296A (en) Mis semiconductor device and manufacture thereof
JPH09181313A (en) Manufacturing method for mosfet
JP3260200B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 14