JPH02226772A - Infeed type insulated gate electrostatic induction transistor and manufacture thereof - Google Patents

Infeed type insulated gate electrostatic induction transistor and manufacture thereof

Info

Publication number
JPH02226772A
JPH02226772A JP4529289A JP4529289A JPH02226772A JP H02226772 A JPH02226772 A JP H02226772A JP 4529289 A JP4529289 A JP 4529289A JP 4529289 A JP4529289 A JP 4529289A JP H02226772 A JPH02226772 A JP H02226772A
Authority
JP
Japan
Prior art keywords
melting point
point metal
electrode
high melting
insulated gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4529289A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
西沢 潤一
Nobuo Takeda
宣生 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIYOUDENRIYOKU KOSOKU TSUSHIN KENKYUSHO KK
Original Assignee
SHIYOUDENRIYOKU KOSOKU TSUSHIN KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIYOUDENRIYOKU KOSOKU TSUSHIN KENKYUSHO KK filed Critical SHIYOUDENRIYOKU KOSOKU TSUSHIN KENKYUSHO KK
Priority to JP4529289A priority Critical patent/JPH02226772A/en
Priority to US07/483,740 priority patent/US5060029A/en
Priority to NL9000460A priority patent/NL9000460A/en
Priority to DE4006299A priority patent/DE4006299C2/en
Publication of JPH02226772A publication Critical patent/JPH02226772A/en
Priority to US07/747,699 priority patent/US5169795A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten switching time by forming a low resistance electrode composed of high melting point metal or high melting point metal silicide on the polycrystalline Si side surface of a gate electrode. CONSTITUTION:On a main surface of an Si substrate 10, an U-shaped trench 10' is formed, and a polycrystalline Si gate electrode 12 being a control electrode is formed on the side surface of the trench 10', via a thin gate insulating film 11. Further, on at least a part of the side wall of the electrode 21, a low resistance electrode 13 composed of high melting point metal or high melting point metal silicide is formed. On a main surface and a region 14 in contact with the bottom part of the trench 10', a drain region and a base region are formed, respectively. The gate series resistance of an infeed type electrostatic induction transistor having the electrode 13 can be reduced as mentioned above, so that the switching time can be shortened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高速スイッチングが行なえ、高速、低消費電力
の集積回路に応用できる切り込み型絶縁ゲート静電誘導
トランジスタの改良された構造及びその製造方法に関す
る。
Detailed Description of the Invention (Industrial Application Field) The present invention provides an improved structure of a notched insulated gate static induction transistor that can perform high-speed switching and can be applied to high-speed, low-power consumption integrated circuits, and a method for manufacturing the same. Regarding.

(従来の技術) 従来から、高周波増幅器や集積回路に絶縁ゲート型電界
効果トランジスタが用いられているが、電流路が半導体
・絶縁膜界面近傍に限られるため、駆動能力が小さいと
いう欠点を有していた。このような絶縁ゲート型電界効
果トランジスタの欠点を克服し高速化を図る手段として
、現在、短チヤネル化が積極的に進められているが十分
とはいえない。したがって、本願発明者の一人から、高
速スイッチング素子や、高速・低消費電力集積回路用の
素子として優れた性能を発揮する、絶縁ゲート型静電誘
導トランジスタ(例えば、特願昭52−1756号)や
、切り込み型絶縁ゲート静[誘導トランジスタ(例えば
、特願昭52−13707号)が提案されている。
(Prior art) Insulated gate field effect transistors have traditionally been used in high-frequency amplifiers and integrated circuits, but they have the disadvantage of low drive capability because the current path is limited to the vicinity of the semiconductor/insulating film interface. was. As a means of overcoming the drawbacks of such insulated gate field effect transistors and increasing their speed, current efforts are being made to shorten the channels, but this is not sufficient. Therefore, one of the inventors of the present invention proposed an insulated gate electrostatic induction transistor (for example, Japanese Patent Application No. 1756/1983) that exhibits excellent performance as a high-speed switching device or a device for high-speed, low-power consumption integrated circuits. In addition, a notch type insulated gate static induction transistor (for example, Japanese Patent Application No. 13707/1982) has been proposed.

絶縁ゲート型静電誘導トランジスタはドレイン電界の効
果がソースにまで及ぶよ゛うに設計され、半導体・絶縁
膜界面近傍のみならず基板中をも電流が流れるために、
不飽和型電流電圧特性を有し、駆動能力が7大きいなど
の特徴を持つ。特に、切り込み型絶縁ゲート静電誘導ト
ランジスタはチャネルが半導体基板の深さ方向に形成さ
れるために、チャネル長やゲート長の制御性が良く、短
チヤネル化に適している。
Insulated gate static induction transistors are designed so that the effect of the drain electric field extends to the source, and current flows not only near the semiconductor/insulating film interface but also through the substrate.
It has characteristics such as unsaturated current-voltage characteristics and a driving capacity of 7. In particular, the notched insulated gate static induction transistor has a channel formed in the depth direction of the semiconductor substrate, so the channel length and gate length can be easily controlled, making it suitable for shortening the channel.

この切り込み型絶縁ゲート静電誘導トランジスタの従来
の構造を第4図を参照して説明する。チャネルとなる高
抵抗のシリコン基板40の一主表面にU字型の溝40′
が設けられ、その溝40′の側壁には薄いゲート絶縁@
41を介して多結晶シリコンのゲート電極42が形成さ
れている。U字型の溝40′の上部と底部に接する領域
44が例えばn型で高不純物密度のドレイン領域及びソ
ース領域である。勿論、底部をドレインとして用いても
、ソースとして用いてもかまわない。チャネルの導電型
はn型でもp型でもかまわないが、少なくとも動作状態
の一部においてドレイン−ソース間が完全に空乏化すべ
くその不純物密度が決定されている。このような動作状
態に於いては、ソース前面のチャネル中に電位障壁が形
成され、この電位障壁の高さによってキャリアの量が制
御されるので、ドレイン電流はゲート電圧のみならずド
レイン電圧に対しても指数関数的に変化する。
The conventional structure of this notched insulated gate static induction transistor will be explained with reference to FIG. A U-shaped groove 40' is formed on one main surface of a high-resistance silicon substrate 40 that will serve as a channel.
A thin gate insulator is provided on the side wall of the groove 40'.
A gate electrode 42 of polycrystalline silicon is formed through the gate electrode 41 . Regions 44 in contact with the top and bottom of the U-shaped groove 40' are, for example, n-type drain and source regions with high impurity density. Of course, the bottom part may be used as a drain or a source. The conductivity type of the channel may be n-type or p-type, but the impurity density is determined so that the space between the drain and the source is completely depleted during at least a part of the operating state. Under such operating conditions, a potential barrier is formed in the channel in front of the source, and the amount of carriers is controlled by the height of this potential barrier, so the drain current varies not only with the gate voltage but also with respect to the drain voltage. However, it changes exponentially.

この電位障壁は必ずしもシリコン基板とゲート絶縁膜の
界面に形成する必要はなく、シリコン基板内部に形成す
れば良いから大きな駆動能力を得ることができる。
This potential barrier does not necessarily need to be formed at the interface between the silicon substrate and the gate insulating film, and can be formed inside the silicon substrate, thereby achieving a large driving capability.

(発明が解決しようとする課題) しかしながら、前述の切り込み型絶縁ゲート静電誘導ト
ランジスタの構造においては、U字型の溝に対して自己
整合的にゲート電極を形成するために、ゲート電極の材
料として多結晶シリコンを用いていた。従って、ゲート
直列抵抗が大きくなり、これと入力容量との時定数のた
めにスイッチング速度が制限されるという欠点を有して
いた。
(Problem to be Solved by the Invention) However, in the structure of the above-mentioned notched insulated gate static induction transistor, in order to form the gate electrode in a self-aligned manner with respect to the U-shaped groove, the material of the gate electrode is Polycrystalline silicon was used as the material. Therefore, the gate series resistance becomes large, and the switching speed is limited due to the time constant between this resistance and the input capacitance.

本発明の目的は、自己整合性を犠牲にすることなくゲー
ト直列抵抗を小さい切り込み型絶縁ゲート静電誘導トラ
ンジスタ及びその製造方法を提供し、高速化を図ること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a notch type insulated gate static induction transistor with a small gate series resistance without sacrificing self-alignment, and a method for manufacturing the same, thereby increasing the speed of the transistor.

(課題を解決するための手段と作用) そのために本発明においては、ゲート電極の多結晶シリ
コンの側面の少なくとも一部に自己整合的に高融点金属
もしくは高融点金属シリサイドによる低抵抗電極を形成
したもので、これによりゲート直列抵抗を改善してスイ
ッチング時間を小さくできる。
(Means and effects for solving the problem) For this purpose, in the present invention, a low resistance electrode made of a high melting point metal or a high melting point metal silicide is formed in a self-aligned manner on at least a part of the side surface of the polycrystalline silicon of the gate electrode. This improves gate series resistance and reduces switching time.

(実施例) 以下図面を参照して本発明の実施例を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の切り込み型絶縁ゲート静電誘導トラン
ジスタの一実施例の断面構造である。チャネルとなる高
抵抗のシリコン基板10の一主表面にU字型の溝10′
が設けられ、その溝10′の側壁には例えば酸化膜等の
薄いゲート絶縁膜11を介して制御電極である多結晶シ
リコンのゲート電極12が形成されている。さらに多結
晶シリコンのゲート電極12の側壁の少なくとも一部に
は高融点金属もしくは高融点金属シリサイドから成る低
抵抗電極13が形成されている。前記主表面並びに前記
U字型の溝10′の底部に接する領域14にはそれぞれ
主電極である例えばn型で高不純物密度のドレイン領域
及びソース領域が設けられる。勿論、底部をドレインと
して用いてもソースとして用いてもかまわない。チャネ
ルの導71t型はP型でもN型でもかまわないが、少な
くとも動作状態の一部においてチャネルが確実に空乏化
すべくその不純物密度が決定されている。多結晶シリコ
ンのゲート電極12の存在によりトランジスタのしきい
値電圧には変化はないが、低抵抗電極13の存在によっ
て紙面垂直方向に当たるゲート直列抵抗を大幅に低減で
きる。
FIG. 1 shows a cross-sectional structure of an embodiment of a notched insulated gate static induction transistor of the present invention. A U-shaped groove 10' is formed on one main surface of a high-resistance silicon substrate 10 that will serve as a channel.
A polycrystalline silicon gate electrode 12 serving as a control electrode is formed on the side wall of the trench 10' with a thin gate insulating film 11 such as an oxide film interposed therebetween. Further, a low resistance electrode 13 made of a high melting point metal or a high melting point metal silicide is formed on at least a portion of the side wall of the gate electrode 12 made of polycrystalline silicon. On the main surface and the region 14 in contact with the bottom of the U-shaped groove 10', main electrodes, for example, n-type drain and source regions having high impurity density are provided. Of course, the bottom part may be used as a drain or a source. The conductor 71t type of the channel may be either P type or N type, but its impurity density is determined so as to ensure that the channel is depleted in at least a part of the operating state. Although the presence of the polycrystalline silicon gate electrode 12 does not change the threshold voltage of the transistor, the presence of the low resistance electrode 13 can significantly reduce the gate series resistance in the direction perpendicular to the plane of the paper.

第2図は第1図に示した本発明の切り込み型絶縁ゲート
静電誘導トランジスタの一実施例の製造工程を示す。
FIG. 2 shows the manufacturing process of one embodiment of the notched insulated gate static induction transistor of the present invention shown in FIG.

第2図(a):まず、高抵抗のシリコン基板20の一主
表面に、異方性プラズマエツチング によりU字型の溝20′を形成した後、薄いゲート酸化
膜21を成長させる。
FIG. 2(a): First, a U-shaped groove 20' is formed on one main surface of a high-resistance silicon substrate 20 by anisotropic plasma etching, and then a thin gate oxide film 21 is grown.

シリコン基板20は通常1011c11−8〜1011
014cI程度の不純物密度を有する(100)基板が
用いられる。基板表 面近傍のチャネルとなる部分には 10  cm  〜1017cm−3程度の不純物をド
ーピングしても良く、通常の動作 状態の少なくとも一部においてチャネ ルが空乏化するように設定される。U 字型の溝20′の深さは0.1μ−〜1μ1μ度で、例
えばPCfI3を用いた異方性プラズマエツチング等で
形成で きる。薄いゲート酸化膜21は5n會〜100ns程度
が用いられる。
The silicon substrate 20 is usually 1011c11-8 to 1011
A (100) substrate having an impurity density of about 0.014cI is used. A portion near the substrate surface that will become a channel may be doped with an impurity of about 10 cm to 10 17 cm −3 , and is set so that the channel is depleted in at least a part of the normal operating state. The depth of the U-shaped groove 20' is 0.1-1.mu.1 degrees, and can be formed by anisotropic plasma etching using PCfI3, for example. The thickness of the thin gate oxide film 21 is about 5 ns to 100 ns.

第2図(b)二次にCVD法により多結晶シリコン膜2
2を堆積し、さらに高融点金属膜 23を堆積する。多結晶シリコンの膜 厚は0.1μ−〜0.5  μm程度で、S t H4
/H2CVD法ナトニよッテ堆積することができるし、
PH3ある いはB2H6によって同時にドーピン グする事もできる。高融点金属膜23 としては、モリブデン(Mo) 、タングステン(W)
、チタン(Ti)、タ ンタル(Ta)等が適しており、0.[15μ−〜0.
5μ層程度形成される。これらの材料はCVD法に限ら
ず、スパッ タ法や蒸着法等でも形成できるが、U 字型の溝の被覆性を考えるとCVD 法を用いるのが最も適当である。例 えばWF6/H2CVD法ヤW F e /5iH4C
VD法等によって行なうこ とができる。
FIG. 2(b) Polycrystalline silicon film 2 is formed by secondary CVD method.
2 is deposited, and then a high melting point metal film 23 is further deposited. The film thickness of polycrystalline silicon is about 0.1 μm to 0.5 μm, and S t H4
/H2CVD method can be deposited,
Simultaneous doping with PH3 or B2H6 is also possible. The high melting point metal film 23 includes molybdenum (Mo) and tungsten (W).
, titanium (Ti), tantalum (Ta), etc. are suitable. [15μ-~0.
Approximately 5μ layer is formed. These materials can be formed not only by the CVD method but also by sputtering, vapor deposition, etc., but considering the coverage of the U-shaped groove, it is most appropriate to use the CVD method. For example, WF6/H2CVD method WF e /5iH4C
This can be done by the VD method or the like.

第2図(C)二二の高融点金属膜23と多結晶シリコン
膜22を異方性プラズマエツチング により連続してエツチングし、U字型 溝20′の側壁にのみ高融点金属膜 23と多結晶シリコン膜22の2層膜 を残す。また、ランプアニール法など によって高融点金属膜23をシリサイ ド化することも有効である。特にチタ ンはシリサイド化した方が抵抗を下げ ることができる。
FIG. 2(C) The high melting point metal film 23 and the polycrystalline silicon film 22 are continuously etched by anisotropic plasma etching, and the high melting point metal film 23 and polycrystalline silicon film 22 are etched only on the side wall of the U-shaped groove 20'. A two-layer film of crystalline silicon film 22 is left. Furthermore, it is also effective to silicide the high melting point metal film 23 by a lamp annealing method or the like. In particular, the resistance of titanium can be lowered by turning it into a silicide.

第2図(d):ソース並びにドレイン24は1018C
a1〜11021a程度の不純物密度を有し、拡散法あ
るいはイオン注入法等で形成 される。
Figure 2(d): Source and drain 24 are 1018C
It has an impurity density of about a1 to 11021a, and is formed by a diffusion method, an ion implantation method, or the like.

このように、多結晶シリコン膜と高融点金属膜の異方性
エツチングを行なうことにより、U字型溝に対して自己
整合的に低抵抗のゲート電極を形成できる。
By performing anisotropic etching of the polycrystalline silicon film and the refractory metal film in this way, a low-resistance gate electrode can be formed in a self-aligned manner with respect to the U-shaped groove.

また第2図(b’)、 (c’)には本発明の切り込み
型絶縁ゲート静電誘導トランジスタの他の実施例の製造
工程を示す。第2図(a)及び(d)は同じ工程をとる
Further, FIGS. 2(b') and 2(c') show the manufacturing process of another embodiment of the notch type insulated gate static induction transistor of the present invention. Figures 2(a) and 2(d) take the same steps.

第2図(b’):多結晶シリコン膜22を堆積し、異方
性プラズマエツチングによってU字 型溝の側壁にのみ残す。
FIG. 2(b'): A polycrystalline silicon film 22 is deposited and left only on the side walls of the U-shaped trench by anisotropic plasma etching.

第2図(c’)二高融点金属膜23を選択CVD法によ
って多結晶シリコン上にのみ選択的 に堆積させる。このような選択成長 はW F e / S iH4CV D法等ニヨッて行
なうことができる。勿論、第2図 (C)の場合と同様に高融点金属23をシリサイド化す
ることも有効である。
FIG. 2(c') A high melting point metal film 23 is selectively deposited only on polycrystalline silicon by selective CVD. Such selective growth can be performed using the WFe/SiH4CVD method or the like. Of course, it is also effective to silicide the high melting point metal 23 as in the case of FIG. 2(C).

また、高融点金属膜23は全面成長さ せ、熱処理によって多結晶シリコン 22上の高融点金属のみを選択的にシ リサイド化し、残った高融点金属を選 択的にエツチングして除去することに よっても同様の形状が得られる。Moreover, the high melting point metal film 23 is grown on the entire surface. polycrystalline silicon by heat treatment. Selective screening of only the high melting point metal on 22 Select the remaining high melting point metal after reciding. selectively etched to remove A similar shape can also be obtained.

このように、先に多結晶シリコン膜の異方性エツチング
を行ない、選択CVD法もしくは選択シ゛す゛サイド法
によって多結晶シリコン上にのみ高融点金属もしくは高
融点金属シリサイドの低抵抗電極を形成できる。
In this manner, a low-resistance electrode made of a high-melting point metal or a high-melting point metal silicide can be formed only on the polycrystalline silicon by first performing anisotropic etching of the polycrystalline silicon film and then using the selective CVD method or the selective oxidation method.

第1表は従来の多結晶シリコンゲートと本発明の低抵抗
ゲート電極をチタンシリサイドにて形成した場合のシー
ト抵抗の測定例を示す。シート抵抗はn 多結晶シリコ
ンの約1730に、p 多結晶シリコンの約1/100
に改善されていることがわかる。
Table 1 shows measurement examples of sheet resistance when the conventional polycrystalline silicon gate and the low resistance gate electrode of the present invention are formed of titanium silicide. The sheet resistance is about 1730 of n polycrystalline silicon, and about 1/100 of p polycrystalline silicon.
It can be seen that this has been improved.

第1表 これまではnチャネルの切り込み型絶縁ゲート静電誘導
トランジスタについて述べてきたが、ドレイン領域及び
ソース領域の導電型をp型としたpチャネル切り込み型
絶縁ゲート静電誘導トランジスタの場合も同様である。
Table 1 So far, we have discussed n-channel notched insulated gate static induction transistors, but the same applies to p-channel notched insulated gate static induction transistors with p-type conductivity in the drain and source regions. It is.

第3図は従来の多結晶シリコンゲートの切り込み型絶縁
ゲート静電誘導トランジスタによる相補型集積回路と本
発明の低抵抗ゲート電極を用いた切り込み型絶縁ゲート
静電誘導トランジスタによる相補型集積回路の伝播遅延
時間と消費電力との関係を31段のリング発振器を用い
て評価した結果を示す。消費電力が7mVのときに伝播
遅延時間49 psecが得られており、従来のものと
比べてスイッチング時間が約半分に短縮されている。
Figure 3 shows the propagation of a complementary integrated circuit using a conventional polycrystalline silicon gate notched insulated gate static induction transistor and a complementary integrated circuit using a notched insulated gate static induction transistor using a low resistance gate electrode according to the present invention. The results of evaluating the relationship between delay time and power consumption using a 31-stage ring oscillator are shown. A propagation delay time of 49 psec was obtained when the power consumption was 7 mV, and the switching time was reduced by about half compared to the conventional one.

(発明の効果) このように本発明の低抵抗電極を有する切り込み型静M
S誘導トランジスタはゲート直列抵抗を改善できるので
スイッチング時間を小さくでき、高速の論理回路を提供
する事ができる。従って工業的価、値は大きい。
(Effect of the invention) As described above, the notched static M having the low resistance electrode of the present invention
Since the S-induced transistor can improve the gate series resistance, the switching time can be reduced, and a high-speed logic circuit can be provided. Therefore, the industrial value is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の低抵抗電極を有する切り込み型絶縁ゲ
ート静電誘導トランジスタの一実施例を示す断面図、第
2図は本発明の低抵抗電極を有する切り込み型絶縁ゲー
ト静電誘導トランジスタの製造方法の1例を示す各工程
の断面図、第3図は本発明に係る切り込み型絶縁ゲート
静電誘導トランジスタの相補型集積回路のスイッチング
時間と消費電力の関係の1例を従来と比較して示す特性
図、第4図は従来の切り込み型絶縁ゲート静電誘導トラ
ンジスタの断面図である。 10・・・シリコン基板、10′・・・0字型溝、11
・・・ゲート絶縁膜、12・・・多結晶シリコンゲート
電極、13・・・低抵抗電極、14・・・高不純物密度
領域。 出願人代理人 弁理士 鈴江武彦 10:シリコン蟇1及   10’: 0字型溝  〕
1;  ケート杼津和漠12:多奪6#1!シリコンケ
―トを極   13;他tきオ九電極14二高不奪毛牛
惣会度キ臂域 第1図 第 図 第 図
FIG. 1 is a sectional view showing an embodiment of a notched insulated gate static induction transistor having a low resistance electrode of the present invention, and FIG. 2 is a cross sectional view of a notched insulated gate static induction transistor having a low resistance electrode of the present invention. FIG. 3, which is a sectional view of each process showing an example of the manufacturing method, compares an example of the relationship between the switching time and power consumption of the complementary integrated circuit of the notched insulated gate static induction transistor according to the present invention and the conventional one. FIG. 4 is a cross-sectional view of a conventional notched insulated gate static induction transistor. 10...Silicon substrate, 10'...0-shaped groove, 11
... Gate insulating film, 12 ... Polycrystalline silicon gate electrode, 13 ... Low resistance electrode, 14 ... High impurity density region. Applicant's representative Patent attorney Takehiko Suzue 10: Silicon Toad 1 and 10': 0-shaped groove]
1; Kate Shutsuwado 12: Robbery 6 #1! Silicone electrode 13; other electrodes 14 two high hair-free cows armpit area

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板の一主表面にU字型の溝を有し、前
記主表面並びに前記U字型溝の底部にそれぞれ主電極を
有し、かつ前記U字型溝の側壁に薄い絶縁膜並びに多結
晶シリコンの制御電極を有する切り込み型絶縁ゲート静
電誘導トランジスタにおいて、前記多結晶シリコンの制
御電極の側壁の少なくとも一部に、高融点金属もしくは
高融点金属シリサイドを形成したことを特徴とする切り
込み型絶縁ゲート静電誘導トランジスタ。
(1) A silicon substrate has a U-shaped groove on one main surface, main electrodes are provided on the main surface and the bottom of the U-shaped groove, and a thin insulating film is formed on the side walls of the U-shaped groove. Furthermore, a cut-type insulated gate static induction transistor having a polycrystalline silicon control electrode is characterized in that a high melting point metal or a high melting point metal silicide is formed on at least a part of the side wall of the polycrystalline silicon control electrode. Notched insulated gate static induction transistor.
(2)シリコン基板の一主表面にU字型の溝を形成する
工程と、前記U字型溝の側壁に薄い絶縁膜を形成する工
程と、多結晶シリコンを堆積し、異方性プラズマエッチ
ングによって前記U字型の溝の側壁にのみ残す工程と、
高融点金属膜を堆積させ、前記多結晶シリコン上にのみ
残す工程とを有することを特徴とする切り込み型絶縁ゲ
ート静電誘導トランジスタの製造方法。
(2) Forming a U-shaped groove on one main surface of the silicon substrate, forming a thin insulating film on the sidewalls of the U-shaped groove, depositing polycrystalline silicon, and performing anisotropic plasma etching. leaving only on the side wall of the U-shaped groove by
A method for manufacturing a notched insulated gate static induction transistor, comprising the step of depositing a high melting point metal film and leaving it only on the polycrystalline silicon.
JP4529289A 1989-02-28 1989-02-28 Infeed type insulated gate electrostatic induction transistor and manufacture thereof Pending JPH02226772A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4529289A JPH02226772A (en) 1989-02-28 1989-02-28 Infeed type insulated gate electrostatic induction transistor and manufacture thereof
US07/483,740 US5060029A (en) 1989-02-28 1990-02-23 Step cut type insulated gate SIT having low-resistance electrode and method of manufacturing the same
NL9000460A NL9000460A (en) 1989-02-28 1990-02-27 STATIC INDUCTION TRANSISTOR WITH INSULATED STAGE TYPE GATE AND METHOD FOR MANUFACTURING THAT.
DE4006299A DE4006299C2 (en) 1989-02-28 1990-02-28 Step-cut Static Influence Transistor (SIT) with insulated gate and process for its manufacture
US07/747,699 US5169795A (en) 1989-02-28 1991-08-20 Method of manufacturing step cut type insulated gate SIT having low-resistance electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4529289A JPH02226772A (en) 1989-02-28 1989-02-28 Infeed type insulated gate electrostatic induction transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02226772A true JPH02226772A (en) 1990-09-10

Family

ID=12715239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4529289A Pending JPH02226772A (en) 1989-02-28 1989-02-28 Infeed type insulated gate electrostatic induction transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02226772A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147151A (en) * 1982-02-26 1983-09-01 Toshiba Corp Manufacture of semiconductor device
JPS6118175A (en) * 1984-07-04 1986-01-27 Hitachi Ltd Semiconductor device
JPS63131584A (en) * 1986-11-21 1988-06-03 Res Dev Corp Of Japan Manufacture of cut type insulated-gate electrostatic induction transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147151A (en) * 1982-02-26 1983-09-01 Toshiba Corp Manufacture of semiconductor device
JPS6118175A (en) * 1984-07-04 1986-01-27 Hitachi Ltd Semiconductor device
JPS63131584A (en) * 1986-11-21 1988-06-03 Res Dev Corp Of Japan Manufacture of cut type insulated-gate electrostatic induction transistor

Similar Documents

Publication Publication Date Title
US5444282A (en) Semiconductor device and a method of manufacturing thereof
US10164085B2 (en) Apparatus and method for power MOS transistor
US6518127B2 (en) Trench DMOS transistor having a double gate structure
TWI420675B (en) Semiconductor device having screening electrode and method
JP5081367B2 (en) Trench metal oxide semiconductor field effect transistor device with low gate charge and method for manufacturing the same.
KR100750275B1 (en) Trench dmos transistor structure having a low resistance path to a drain contact located on an upper surface, and method for forming the same
JP5259920B2 (en) Semiconductor device and manufacturing method thereof
TWI402987B (en) Semiconductor device having enhanced performance and method
US7253043B2 (en) Short channel semiconductor device fabrication
US7768078B2 (en) Power semiconductor device having improved performance and method
JP2007281489A (en) Electrostatically controlled tunneling transistor
JP2009520365A (en) Super junction power MOSFET
JPH05502548A (en) Microfabricated MISFET device that suppresses hot carriers
US5060029A (en) Step cut type insulated gate SIT having low-resistance electrode and method of manufacturing the same
US4287526A (en) Insulated gate field effect transistor
US6693012B2 (en) Method and device to reduce gate-induced drain leakage (GIDL) current in thin gate oxide MOSFETs
JPH07131007A (en) Semiconductor device
US5169795A (en) Method of manufacturing step cut type insulated gate SIT having low-resistance electrode
JPH02226772A (en) Infeed type insulated gate electrostatic induction transistor and manufacture thereof
JPH0465549B2 (en)
JP3522440B2 (en) Thin film semiconductor device
JPS5868979A (en) Semiconductor device
JPH02226773A (en) Infeed type insulated gate electrostatic induction transistor and manufacture thereof
JP2941984B2 (en) Semiconductor device
JPH03793B2 (en)