JPH0465549B2 - - Google Patents

Info

Publication number
JPH0465549B2
JPH0465549B2 JP54037426A JP3742679A JPH0465549B2 JP H0465549 B2 JPH0465549 B2 JP H0465549B2 JP 54037426 A JP54037426 A JP 54037426A JP 3742679 A JP3742679 A JP 3742679A JP H0465549 B2 JPH0465549 B2 JP H0465549B2
Authority
JP
Japan
Prior art keywords
region
layer
drain
source
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54037426A
Other languages
Japanese (ja)
Other versions
JPS55130171A (en
Inventor
Junji Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3742679A priority Critical patent/JPS55130171A/en
Publication of JPS55130171A publication Critical patent/JPS55130171A/en
Publication of JPH0465549B2 publication Critical patent/JPH0465549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 本発明は、半導体装置に関し、特に短いチヤネ
ル長を有する構造において、パンチスルー耐圧を
高め、所望のしきい値電圧を持ち、ホツトエレク
トロン発生を阻止し得るように構造を工夫したも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a structure having a short channel length, which has a structure that increases punch-through withstand voltage, has a desired threshold voltage, and can prevent the generation of hot electrons. It was devised.

大規模集積回路、特に大容量メモリにはチヤネ
ル長1μm前後のMOS FETが使用される。この
ような短チヤネルMOS FETを従来の長チヤネ
ルMOS FETと同一の構造で、たゞ“スケーリ
ング”の原理で縮小して作ろうとすると種々の問
題に当面する。即ち、この縮少によりソース、ド
レイン拡散深さxjは浅くなるが、余り浅くすると
拡散抵抗が高くなり、高速動作に不利になる。抵
抗を小にするためxjを深くすると空乏層によるチ
ヤネルモジユレーシヨンが起り、正常なオンオフ
動作が不可能になる。この矛循を避けるためソー
ス、ドレインを第1図に示すように深い部分と浅
い部分とで構成することが考えられているが、面
積および工程数が増える。またチヤネル長が小に
なる程低電圧でパンチスルーが生じるが、このパ
ンチスルー耐圧を高めるため基板の不純物濃度を
高くすると接合容量が増大して高速動作に不利と
なり、接合耐圧が低下し、バツクゲート効果が大
きくなつて不利である。かゝる不利を避けるため
ソース,ドレイン間に高濃度および低濃度二層の
チヤネルを形成させる二重チヤネルドープ構造が
提案されているが、これも接合耐圧が低下し、ま
たチヤネルからゲートに電子が飛込みこれがゲー
ト絶縁膜にトラツプされてしきい値電圧Vthを変
化させるホツトエレクトロン効果が無視できなく
なる欠点がある。
MOS FETs with a channel length of around 1 μm are used for large-scale integrated circuits, especially large-capacity memories. If one tries to make such a short channel MOS FET with the same structure as a conventional long channel MOS FET, but only by scaling it down based on the principle of "scaling", various problems arise. That is, this reduction makes the source and drain diffusion depth x j shallower, but if it is made too shallow, the diffusion resistance increases, which is disadvantageous for high-speed operation. If x j is made deep to reduce resistance, channel modulation occurs due to the depletion layer, making normal on/off operation impossible. In order to avoid this contradiction, it has been considered to configure the source and drain into a deep part and a shallow part as shown in FIG. 1, but this increases the area and number of steps. In addition, punch-through occurs at low voltages as the channel length becomes smaller, but if the impurity concentration of the substrate is increased to increase the punch-through voltage, the junction capacitance increases, which is disadvantageous for high-speed operation, lowers the junction voltage, and reduces the back gate voltage. This is disadvantageous because the effect becomes larger. In order to avoid such disadvantages, a double channel doped structure has been proposed in which a high-concentration and low-concentration double-layer channel is formed between the source and drain, but this also reduces the junction breakdown voltage and also causes electrons to flow from the channel to the gate. The disadvantage is that the hot electron effect, which jumps in and becomes trapped in the gate insulating film and changes the threshold voltage Vth, cannot be ignored.

本発明はかゝる種々の欠点を全て除去して長チ
ヤネルFETと同様な安定な動作が期待でき、勿
論短チヤネルFETに期待される高密度集積化可
能、動作速度大などの利点を持ち、製造も容易な
短チヤネルMOS FET構造を提供しようとする
ものである。
The present invention eliminates all of these various drawbacks and can be expected to operate as stable as a long channel FET, and of course has the advantages expected of a short channel FET, such as high density integration and high operating speed. The aim is to provide a short channel MOS FET structure that is easy to manufacture.

本発明では、チヤネルドープ領域を設けるが、
これは高濃度ソース、ドレイン拡散領域とは接触
せず、その間にπ(またはP-)またはυ(または
N-)型のドリフト領域を設ける。チヤネルドー
プ領域は二層とし、基板表面側はVthを所望値に
する濃度とし、基板内部側はパンチスルーを抑え
るに充分な高濃度とする。これらによりシヨート
チヤネル効果(Vth変動)、パンチスルー、ソー
ス、ドレイン接合耐圧問題を改善し得る。また本
発明ではゲート絶縁膜をソース、ドレイン側端部
で厚く、中央部で薄くし、この薄い部分の下に上
記のチヤネルドープ領域を形成しまた厚い部分の
下を上記πまたはυ層とする。これによりホツト
エレクトロン効果を抑止でき、gmが大になり、
また製造に際してアライメントをとり易くなる、
次に実施例を参照しながら本発明を詳細に説明す
る。
In the present invention, a channel doped region is provided;
It has no contact with the heavily doped source, drain diffusion regions, and has no contact between π (or P - ) or υ (or
N - ) type drift region is provided. The channel doped region has two layers, the surface side of the substrate has a concentration that makes Vth a desired value, and the inside side of the substrate has a concentration high enough to suppress punch-through. These can improve the short channel effect (Vth fluctuation), punch-through, and source/drain junction breakdown voltage problems. Further, in the present invention, the gate insulating film is made thick at the end portions on the source and drain sides and thinned at the central portion, and the above-mentioned channel doped region is formed under this thin portion, and the above-mentioned π or υ layer is formed under the thick portion. . This suppresses the hot electron effect, increases gm,
It also makes it easier to align during manufacturing.
Next, the present invention will be explained in detail with reference to Examples.

第2図に本発明の種々の実施例を示す。図示の
如く本発明ではP(Nでもよい)型シリコン基板
Subのチヤネル部中央にチヤネルドープ領域10
を設け、該領域10とソースS、ドレインD各領
域との間12,14は低濃度領域とする。ゲート
絶縁膜16はソース、ドレイン側端部16a,1
6bを厚く、中央部16cを薄くし、この薄い部
分16cをチヤネルドープ領域にまた厚い部分1
6a,16bを低濃度領域12,14に対向させ
る。チヤネルドープ領域は上下二層に分れてお
り、基板表面側10aはVthを考慮して決定した
不純物濃度を有する層、基板内部側10bはパン
チスルー耐圧を考慮して決定した高濃度層であ
る。第2図aはデプレーシヨン型であり、層1
2,14,10aともソース、ドレイン領域と同
じN型である。第2図b,c,dはエンハンスメ
ント型であり、層12,14はb,dではP-型、
cではN-型、層10aはbではN型、c,dで
はP型である。基板内部側の層10bはa〜dと
もP+型であり基板Subと同じ導電型である。
FIG. 2 shows various embodiments of the invention. As shown in the figure, in the present invention, a P (or N) type silicon substrate
Channel doped region 10 in the center of the channel part of Sub
The regions 12 and 14 between the region 10 and the source S and drain D regions are low concentration regions. The gate insulating film 16 has source and drain side ends 16a, 1
6b is made thicker and the central part 16c is made thinner, and this thinner part 16c is made thicker in the channel doped region as well as thicker part 1.
6a and 16b are opposed to the low concentration regions 12 and 14. The channel doped region is divided into upper and lower layers, the substrate surface side 10a is a layer having an impurity concentration determined by considering Vth, and the substrate inner side 10b is a high concentration layer determined by considering punch-through breakdown voltage. . Figure 2a shows the depletion type, with layer 1
2, 14, and 10a are all N type like the source and drain regions. Figure 2 b, c and d are of the enhancement type, and the layers 12 and 14 are of the P - type in b and d;
layer 10a is N - type in layer b, and P-type in layer c and d. The layers 10b on the inside of the substrate are all P + type, and have the same conductivity type as the substrate Sub.

このような構造にすると次のような種々の利点
が得られる。即ち、ゲート電極Gおよびその下部
のゲート酸化膜16とソース、ドレイン領域S,
Dの一部は不純物拡散またはイオン注入の関係で
一部が重なつているから、スケーリング則により
ゲート絶縁膜厚を減少して行くとこの重なり部分
に強い電界が生じ、絶縁破壊または前述のホツト
エレクトロン効果などを生じる。これに対しゲー
ト絶縁膜のソース、ドレイン側端部16a,16
bを厚くするとゲートとソース、ドレイン間耐圧
は向上し、またホツトエレクトロンが生じにくゝ
なる。また厚いゲート絶縁膜16a,16bの下
部基板をP-またはN-の低濃度層にすると電界集
中が緩和され、ソース、ドレインからの空乏層が
充分拡がるのでドレイン側でのインパクトアイオ
ニゼーシヨンによるサブスレシヨルド電流を軽減
することが可能である。またチヤネル部は相対的
に濃度が高い部分10aにより確実に確保される
ので、ソース、ドレイン空乏層の延びによる実効
チヤネル長の減少、所謂短チヤネル効果を抑制す
ることができる。またゲート絶縁膜の端部16
a,16bを厚くすると該端部での耐圧問題に悩
まされることなく中央部のゲート絶縁膜を薄くす
ることができるので、gmが向上する。チヤネル
ドープ領域10のP+型深部10bはドレイン空
乏層がソース領域へ延びてパンチスルーを生じる
のを確実に阻止する。なおパンチスルーは基板表
面ではなく基板深部で生じるから、パンチスルー
を防止する高濃度層10bは基板深部に形成する
のみで充分である。若しこれを基板表面部まで達
すようにする、つまり部分10a,10bを同じ
高濃度層にするとチヤネル形成に支障があり、ま
たしきい値電圧Vthを変化させる欠点がある。基
板表面側の部分10aはその不純物濃度を所望
Vthに応じて決定し、このように機能を分割する
ことで本発明では両側部分12,14の選択とも
相俟つて第2図aのようなデプレーシヨン型もま
た同図b〜dのようなエンハンスメント型も実現
可能である。次に本発明FETの製造方法を説明
する。
Such a structure provides the following various advantages. That is, the gate electrode G and the gate oxide film 16 under it, the source and drain regions S,
A portion of D overlaps due to impurity diffusion or ion implantation, so as the gate insulating film thickness is reduced according to the scaling law, a strong electric field is generated in this overlapped area, resulting in dielectric breakdown or the aforementioned hot spots. Generates electron effects, etc. On the other hand, the source and drain side ends 16a and 16 of the gate insulating film
When b becomes thicker, the breakdown voltage between the gate, source, and drain improves, and hot electrons are less likely to be generated. Furthermore, if the lower substrate of the thick gate insulating films 16a and 16b is made of a low concentration layer of P - or N - , the electric field concentration will be alleviated, and the depletion layer from the source and drain will expand sufficiently, resulting in impact ionization on the drain side. It is possible to reduce subthreshold current. Furthermore, since the channel portion is reliably secured by the relatively high concentration portion 10a, it is possible to suppress a reduction in the effective channel length due to the extension of the source and drain depletion layers, ie, the so-called short channel effect. Also, the end portion 16 of the gate insulating film
By increasing the thickness of a and 16b, the gate insulating film in the central portion can be made thinner without suffering from the breakdown voltage problem at the ends, thereby improving gm. The P + type deep portion 10b of the channel doped region 10 reliably prevents the drain depletion layer from extending into the source region and causing punch-through. Note that since punch-through occurs not on the surface of the substrate but in the deep part of the substrate, it is sufficient to form the high concentration layer 10b that prevents punch-through in the deep part of the substrate. If this layer were to reach the surface of the substrate, that is, if the portions 10a and 10b were made of the same high concentration layer, channel formation would be hindered, and the threshold voltage Vth would change. The portion 10a on the substrate surface side has a desired impurity concentration.
By determining the function according to Vth and dividing the function in this way, in conjunction with the selection of both side portions 12 and 14, the depression type shown in FIG. type is also possible. Next, a method for manufacturing the FET of the present invention will be explained.

第3図aに示すように先ずP型シリコン基板
Subにフイールド酸化膜18を形成し、次いで素
子形成領域に浅くN型不純物をイオン注入して
P-型またはN-型層20を作り、かつ基板表面に
は酸化膜22を形成する。次にホトプロセスより
酸化膜22の中央のゲート形成部分に穴をあけ
る。第3図bの24はこのホトプロセスで用いた
レジスト膜、26は上記の穴である。穴26は酸
化膜22を完全に貫通するものではなく、下部々
分を残した凹部であつてもよい。かゝる状態で基
板と同じ導電型の不純物を高濃度にイオン注入
し、P+層10bを作る。このP+層10bは層2
0より深く形成する。次いで同じまたは反対導電
型の不純物を浅くかつ低濃度にイオン注入し、第
3図cに示すように層10b上の基板部分をPま
たはN型にする。次いで熱酸化してゲート絶縁膜
の薄い部分16cを作る。先に形成した酸化膜2
2はゲート絶縁膜の厚い部分16a,16bにな
るものであるが上記熱酸化等に際し付随的に酸化
が再び行なわれて厚くなるので、同図aの段階で
付ける酸化膜22の厚みはこれを考慮して最終段
階で所望厚みになるように選定する。然るのち全
面に多結晶ポリシリコン層17を被着する。次い
で該ポリシリコン層17をゲート絶縁膜16の薄
い部分16c上から厚い部分22上の一部に亘る
大きさに残るよう選択的に除去したのち該残され
たポリシリコン層をマスクとして厚い酸化膜22
部分に第3図eのようにソース、ドレイン窓をあ
ける。そして基板とは反対のN型不純物を高濃度
に拡散して前記ポリシリコン層17に導電性を付
与すると共にソース、ドレイン領域S,Dを作
る。このソース、ドレイン領域の深さxjは層20
をやゝ突き出る程度とし、チヤネルドープ領域1
0よりは浅くし、領域10がパンチスルーに対す
る有効な障壁となるようにする。以後は周知の手
段によつてソースおよびドレイン各電極(図示せ
ず)を取付ければ所望のFETが出来上る。
As shown in Figure 3a, first, a P-type silicon substrate is
A field oxide film 18 is formed on the Sub, and then N-type impurity ions are implanted shallowly into the element formation region.
A P - type or N - type layer 20 is formed, and an oxide film 22 is formed on the substrate surface. Next, a hole is made in the central gate forming portion of the oxide film 22 by photoprocessing. In FIG. 3b, 24 is the resist film used in this photoprocess, and 26 is the hole described above. The hole 26 does not need to completely penetrate the oxide film 22, but may be a recess with a lower portion left. In such a state, impurities of the same conductivity type as the substrate are ion-implanted at a high concentration to form the P + layer 10b. This P + layer 10b is layer 2
Form deeper than 0. Next, impurities of the same or opposite conductivity type are ion-implanted shallowly and at a low concentration to make the substrate portion on layer 10b P or N type, as shown in FIG. 3c. Next, thermal oxidation is performed to form a thin portion 16c of the gate insulating film. Oxide film 2 formed earlier
2 are the thick parts 16a and 16b of the gate insulating film, but during the above-mentioned thermal oxidation, etc., oxidation is performed again and the thickness becomes thicker, so the thickness of the oxide film 22 applied at the stage a in the figure should be Take this into account and select the desired thickness at the final stage. Thereafter, a polycrystalline silicon layer 17 is deposited over the entire surface. Next, the polysilicon layer 17 is selectively removed so as to remain in a size ranging from the thin part 16c to the thick part 22 of the gate insulating film 16, and then a thick oxide film is formed using the remaining polysilicon layer as a mask. 22
Open source and drain windows in the portion as shown in Figure 3e. Then, an N-type impurity opposite to that of the substrate is diffused at a high concentration to impart conductivity to the polysilicon layer 17 and to form source and drain regions S and D. The depth x j of this source and drain region is layer 20
The channel doped region 1 is made so that it protrudes slightly.
It should be shallower than 0 so that region 10 provides an effective barrier to punch-through. Thereafter, source and drain electrodes (not shown) are attached by known means to complete the desired FET.

このような構造を有する本発明による半導体装
置はゲート絶縁膜の厚さをその中央部とソース、
ドレイン領域近傍とで異ならしめることにより、
後の工程の位置合せが容易である。即ち、単にイ
オン注入してチヤネルドープ領域10を形成した
だけでは、イオン注入部分は目視不可能であるか
ら目印がなくなり、ソース、ドレイン窓開きの際
のマスク合せが厄介である。この点ゲート酸化膜
に図示の如く段差を付けておく本発明方法はこの
段差がマスク合せの目印となり、好都合である。
これは製造工程に起因する実効チヤネル長のバラ
つきを減少させる効果をも伴なう。
In the semiconductor device according to the present invention having such a structure, the thickness of the gate insulating film is the same as that of the center part, the source part, and the gate insulating film.
By making it different from the vicinity of the drain region,
Positioning in subsequent steps is easy. That is, if the channel doped region 10 is simply formed by ion implantation, the ion implanted portion is not visible and there is no mark, making it difficult to align the masks when opening the source and drain windows. In this respect, the method of the present invention in which a step is formed on the gate oxide film as shown in the figure is advantageous because the step serves as a mark for mask alignment.
This also has the effect of reducing variations in effective channel length due to the manufacturing process.

以上詳細に説明したように本発明によれば、パ
ンチスルー耐圧、ゲートとソース、ドレイン間耐
圧、基板とソース、ドレイン領域の耐圧が高ま
り、しきい値電圧の変動およびパンチスルーを防
止でき、ノーマリオン,ノーマリオフの両方が可
能であり、製造も容易である等種々の長所を持つ
短チヤネルMOS FETが得られる。
As described in detail above, according to the present invention, the punch-through withstand voltage, the gate-to-source, drain-to-drain withstand voltage, and the substrate-to-source, drain region withstand voltage are increased, threshold voltage fluctuations and punch-through can be prevented, and no A short channel MOS FET can be obtained that has various advantages such as being capable of both mullion and normally-off operation and being easy to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMOS FETの一例を示す断面
図、第2図a〜dは本発明の実施例を示す断面
図、第3図a〜eは本発明に係るFETの製造工
程を示す断面図である。 図面で10はチヤネルドープ層、S,Dはソー
ス、ドレイン領域、12,14はチヤネルドープ
層とソースドレイン領域との間の基板表面部、1
6はゲート絶縁膜、17はポリシリコンゲート電
極である。
FIG. 1 is a sectional view showing an example of a conventional MOS FET, FIGS. 2 a to d are sectional views showing an embodiment of the present invention, and FIGS. 3 a to e are sectional views showing the manufacturing process of the FET according to the present invention. It is a diagram. In the drawing, 10 is a channel doped layer, S and D are source and drain regions, 12 and 14 are substrate surface parts between the channel doped layer and the source and drain regions, and 1
6 is a gate insulating film, and 17 is a polysilicon gate electrode.

Claims (1)

【特許請求の範囲】 1 半導体基板に導電性不純物を添加して形成さ
れるソース領域とドレイン領域と、 表面が該半導体基板表面と同じで、かつ該ソー
ス領域と該ドレイン領域との間の中央に形成さ
れ、トランジスタのしきい値電圧を所望値にする
ように不純物が添加されてなる第1層とパンチス
ルーを防止するように不純物が添加されてなる第
2層とが順に表面から縦方向に二層隣接してなる
チヤネルドープ領域と、 表面が該半導体基板表面と同じで、かつ該チヤ
ネルドープ領域と該ソース領域との両方に隣接し
て間に形成される第1低濃度領域と、 表面が該半導体基板表面と同じで、かつ該チヤ
ネルドープ領域と該ドレイン領域との両方に隣接
して間に形成される第2低濃度領域と を有し、 該第1低濃度領域、該第2低濃度領域の各々よ
りも前記チヤネルドープ領域の第1層の方が深く
形成されてなることを特徴とする半導体装置。
[Scope of Claims] 1. A source region and a drain region formed by adding conductive impurities to a semiconductor substrate, and a region whose surface is the same as the surface of the semiconductor substrate and at the center between the source region and the drain region. A first layer doped with an impurity to set the threshold voltage of the transistor to a desired value and a second layer doped with an impurity to prevent punch-through are formed in order from the surface in the vertical direction. a first low concentration region having a surface that is the same as the surface of the semiconductor substrate and adjacent to and between both the channel doped region and the source region; a second low concentration region having a surface the same as the surface of the semiconductor substrate and adjacent to and between both the channel doped region and the drain region, the first low concentration region, the first low concentration region; 2. A semiconductor device, wherein the first layer of the channel doped region is formed deeper than each of the two low concentration regions.
JP3742679A 1979-03-29 1979-03-29 Mos field effect transistor Granted JPS55130171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3742679A JPS55130171A (en) 1979-03-29 1979-03-29 Mos field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3742679A JPS55130171A (en) 1979-03-29 1979-03-29 Mos field effect transistor

Publications (2)

Publication Number Publication Date
JPS55130171A JPS55130171A (en) 1980-10-08
JPH0465549B2 true JPH0465549B2 (en) 1992-10-20

Family

ID=12497181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3742679A Granted JPS55130171A (en) 1979-03-29 1979-03-29 Mos field effect transistor

Country Status (1)

Country Link
JP (1) JPS55130171A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139471A (en) * 1982-02-15 1983-08-18 Fujitsu Ltd Mis field effect transistor
DE3739501A1 (en) * 1986-11-26 1988-06-01 Hewlett Packard Co MOS transistor
US4906588A (en) * 1988-06-23 1990-03-06 Dallas Semiconductor Corporation Enclosed buried channel transistor
JP2746482B2 (en) * 1991-02-14 1998-05-06 三菱電機株式会社 Field effect transistor and method for manufacturing the same
US5894158A (en) * 1991-09-30 1999-04-13 Stmicroelectronics, Inc. Having halo regions integrated circuit device structure
JP2001352057A (en) 2000-06-09 2001-12-21 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
US7485514B2 (en) * 2006-01-05 2009-02-03 Winslow Thomas A Method for fabricating a MESFET
CN101299439B (en) 2008-06-24 2011-06-22 广州南科集成电子有限公司 High pressure resistant constant-current source device and production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144880A (en) * 1974-10-16 1976-04-16 Suwa Seikosha Kk
JPS51114074A (en) * 1975-03-31 1976-10-07 Sony Corp Insulation gate type field effect transistor
JPS5227280A (en) * 1975-08-25 1977-03-01 Sony Corp Method to form pinholes
JPS5291381A (en) * 1976-01-26 1977-08-01 Nec Corp Field effect type semiconductor device
JPS52107777A (en) * 1976-03-08 1977-09-09 Nippon Telegr & Teleph Corp <Ntt> Production of semiconductor unit
JPS5321582A (en) * 1976-08-11 1978-02-28 Mitsubishi Electric Corp Mos type semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144880A (en) * 1974-10-16 1976-04-16 Suwa Seikosha Kk
JPS51114074A (en) * 1975-03-31 1976-10-07 Sony Corp Insulation gate type field effect transistor
JPS5227280A (en) * 1975-08-25 1977-03-01 Sony Corp Method to form pinholes
JPS5291381A (en) * 1976-01-26 1977-08-01 Nec Corp Field effect type semiconductor device
JPS52107777A (en) * 1976-03-08 1977-09-09 Nippon Telegr & Teleph Corp <Ntt> Production of semiconductor unit
JPS5321582A (en) * 1976-08-11 1978-02-28 Mitsubishi Electric Corp Mos type semiconductor device

Also Published As

Publication number Publication date
JPS55130171A (en) 1980-10-08

Similar Documents

Publication Publication Date Title
US3936857A (en) Insulated gate field effect transistor having high transconductance
JPH02250331A (en) Semiconductor device and its manufacture
JPH02191340A (en) Field effect semiconductor device and its manufacture
JPH0621468A (en) Insulated gate semiconductor device
JP2004508717A (en) Method and device for reducing gate induced drain leakage (GIDL) current in thin gate oxide MOSFETs
JPH0434968A (en) Complementary field-effect transistor and manufacture thereof
JPH0465549B2 (en)
JPS60226185A (en) Semiconductor device
JPH05251694A (en) Mos type semiconductor device and its manufacture
US5502322A (en) Transistor having a nonuniform doping channel
JPH01120067A (en) Semiconductor device and its manufacture
JPH04264776A (en) Semiconductor device
JPS63293979A (en) Semiconductor device
JPH10144922A (en) Field-effect transistor (fet) and method for forming semiconductor field-effect transistor
JP3003633B2 (en) Field effect transistor and method for manufacturing the same
JP3057792B2 (en) Method for manufacturing thin film transistor
JP2578662B2 (en) Method for manufacturing semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
US20050116298A1 (en) MOS field effect transistor with small miller capacitance
US7202538B1 (en) Ultra low leakage MOSFET transistor
JP3344078B2 (en) Insulated gate field effect transistor
JP3708370B2 (en) Semiconductor device and manufacturing method thereof
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPH0870122A (en) Mos transistor and its fabrication
JP2540754B2 (en) High voltage transistor