JPS60226185A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60226185A
JPS60226185A JP8175084A JP8175084A JPS60226185A JP S60226185 A JPS60226185 A JP S60226185A JP 8175084 A JP8175084 A JP 8175084A JP 8175084 A JP8175084 A JP 8175084A JP S60226185 A JPS60226185 A JP S60226185A
Authority
JP
Japan
Prior art keywords
type
layer
concentration
region
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8175084A
Other languages
Japanese (ja)
Other versions
JPH06101566B2 (en
Inventor
Mitsunori Ketsusako
光紀 蕨迫
Hideo Sunami
英夫 角南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59081750A priority Critical patent/JPH06101566B2/en
Publication of JPS60226185A publication Critical patent/JPS60226185A/en
Priority to US08/093,033 priority patent/US5357131A/en
Publication of JPH06101566B2 publication Critical patent/JPH06101566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To realize a novel element structure leading to the high-reproducibility manufacture of vertical-type transistors equipped with excellent performance characteristics by a method wherein punch-through at the middle portion of a device is prevented and the structural sensitivity of the device is regulated by controlling the dopant concentration in the active region of a transistor. CONSTITUTION:An N<+> type diffused layer 41 is formed on the surface of a P type (100) Si substrate, and a P type layer 42 is added thereto. Injection of B<+> ions is effected for the formation of a high-concentration P type region 43 (40) in the middle of the P type layer 42. Further, in the surface, a high-concentration N type layer 44 (47) is provided by As diffusion. The multilayer structureis subjected to plasma-etching for the creation of a groove as deep as to reach the N<+> diffusion layer 41. This is followed by the formation by plasma-deposition of an SiO2 film to cover the bottom and surface of the groove. Oxidation is then accomplished of the groove side walls for the formation of a gate insulating film 46. Lithography is applied for the provision of a contact hole in the SiO2 film formed on the high-concentration N type region 47 to be a drain. A metal layer is formed by the directional evaporation method, and lithography is again used for the creation of gates 48 and drain electrode.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置の構造に係り、特に高集積回路の形
成に好適な、縦方向に流れる電流を制御する方式のトラ
ンジスタの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the structure of a semiconductor device, and particularly to the structure of a transistor that controls a current flowing in the vertical direction and is suitable for forming a highly integrated circuit.

〔発明の背景〕[Background of the invention]

(発明に最も近い公知例、持分56−26143 )L
SIの高集積化に伴ない、それを構成するトランジスタ
等の素子の寸法はますます微小化し、1μmを切る大き
さで素子の能動領域が形成される状況にある。しかし、
従来のLSIのように、例えばSi結晶表面にソース、
ドレーン等の高濃度拡散領域が形成され、同じ結晶表面
に形成されるチャネル領域を流れる電流をチャネル上に
設けた制御電極で制御する方式の平面的素子では、ソー
ス、ドレーン、ゲートの各領域及びこれらの領域への電
極接続等のために多くの面積が占められ、高集積化の一
つの障害要因になっている。また、素子の微細化に伴っ
てソース、ドレーン間が近接し、このためチャネル領域
のSi結晶内部で空乏層が拡がり、パンチスルー現象を
起し易くなるいわゆる短チヤネル効果が現われ、これも
素子微細化の障害となっている。
(Known example closest to the invention, equity 56-26143)L
As SIs become more highly integrated, the dimensions of elements such as transistors that make up the SIs become smaller and smaller, and the active regions of the elements are now formed with a size of less than 1 μm. but,
For example, as in conventional LSI, there is a source on the Si crystal surface.
In a planar element in which a high concentration diffusion region such as a drain is formed and a control electrode provided on the channel controls the current flowing through a channel region formed on the same crystal surface, each of the source, drain, gate regions and A large area is occupied by electrode connections to these regions, which is one of the obstacles to higher integration. In addition, as devices become smaller, the source and drain become closer together, which causes a depletion layer to expand inside the Si crystal in the channel region, creating a so-called short channel effect that tends to cause a punch-through phenomenon. This has become an obstacle to the development of

かかる平面的デバイスに起因する問題点を解決し得る構
造として、素子の動作を基板と垂直な方向に流れる電流
を制御するという考えのもとに行わしめる方式が提案さ
れている。第1図、第2図で示すいわゆる静電誘導形ト
ランジスタ(SIT、特公昭56−26143号)もそ
の−っである。従来構造のSITの動作を理解すること
は本発明を理解するために有益であり、第1図、及び第
2図を用いて簡単に説明する。
As a structure capable of solving the problems caused by such planar devices, a method has been proposed in which the operation of the element is performed based on the idea of controlling the current flowing in a direction perpendicular to the substrate. The so-called static induction type transistor (SIT, Japanese Patent Publication No. 56-26143) shown in FIGS. 1 and 2 is also one such example. Understanding the operation of a conventionally structured SIT is useful for understanding the present invention, and will be briefly explained using FIGS. 1 and 2.

第1図はショットキ障壁形素子の断面図であり、トラン
ジスタ部は、ソースSとなるべき例えばn形低抵抗基板
11、ドレーンDとなるべきn形低抵抗領域12と、そ
の間に介在するチャネルとなるべきn形高抵抗領域13
及びこれとショットキ接合をなすゲートGの電極14で
構成されている。
FIG. 1 is a cross-sectional view of a Schottky barrier type element, and the transistor part includes, for example, an n-type low resistance substrate 11 which is to become a source S, an n-type low resistance region 12 which is to be a drain D, and a channel interposed therebetween. Desired n-type high resistance region 13
and an electrode 14 of the gate G forming a Schottky junction therewith.

矢印15で示されたソース、ドレーン間電流は、ソース
、ゲート電圧によって大きさの変化する空乏層16によ
って流路幅が変調されることで制御される。ここで17
はゲート・ソース間絶縁用の絶縁膜である。
The current between the source and the drain indicated by the arrow 15 is controlled by modulating the channel width by the depletion layer 16 whose size changes depending on the source and gate voltages. here 17
is an insulating film for gate-source insulation.

この構造から明らかなように、この形のデバイスでは通
常ソース、ドレーンが導通状態で、ゲートバイアスによ
ってピンチオフする方向に動作させるデプリーション形
のものが得られる。無バイアスでは側壁空乏層によりピ
ンチオフ状態となっていて、空乏層を縮小する方向にバ
イアスして電流路を拡張させるエンハンスメント形のも
のも形成できなくはないが、ドレーン電圧、高抵抗層内
のドーピング精度、デバイス加工寸法精度に大きく依存
し、デバイス動作が構造敏感なため、特性の揃ったもの
を再現性良く得るのは非常に難しい。
As is clear from this structure, in this type of device, a depletion type device is obtained in which the source and drain are normally in a conductive state and the device is operated in a pinch-off direction by a gate bias. With no bias, the sidewall depletion layer causes a pinch-off state, and it is possible to form an enhancement type that expands the current path by biasing the depletion layer in the direction of shrinking it, but depending on the drain voltage and the doping in the high resistance layer. It is extremely difficult to obtain products with uniform characteristics with good reproducibility because the device operation is highly dependent on precision and device processing dimensional precision and is sensitive to structure.

一方、第2図は絶縁ゲート形素子の断面図であり、例え
ばn形の低抵抗基板21をソースS、 n形の低抵抗領
域22をドレーンDとし、この間にn形の高抵抗領域2
3が設けられる。断面側壁にはゲート絶縁膜24が形成
され、これ介してゲート電極25が形成される。ソース
、ドレーン間電流は高抵抗P影領域23の側壁に形成さ
れる反転層を介して矢印26で示されるように流れ、反
転層の形成状況をゲート25の電圧によって制御する。
On the other hand, FIG. 2 is a cross-sectional view of an insulated gate type device.
3 is provided. A gate insulating film 24 is formed on the sidewall of the cross section, and a gate electrode 25 is formed therebetween. The source-drain current flows through the inversion layer formed on the side wall of the high-resistance P shadow region 23 as shown by the arrow 26, and the formation of the inversion layer is controlled by the voltage at the gate 25.

ここで27はゲート、ソース間の絶縁膜である。Here, 27 is an insulating film between the gate and the source.

このデバイスで問題となるのはドレーン耐圧の寸法依存
性である。P影領域23の幅に比べて側壁の高さが十分
に大きい場合には、従来の平面素子を単に垂直に形成し
たと考えて差しつかえない。
The problem with this device is the size dependence of the drain breakdown voltage. If the height of the side wall is sufficiently larger than the width of the P shadow region 23, it can be safely assumed that the conventional planar element is simply formed vertically.

しかし、通常の加工では第3図に示すように、側壁ゲー
1−35によって形成されるP影領域33の側壁からの
空乏層厚みが一般には1μm以下となるため、n形ドレ
ーン32から延びる空乏層が中央附近の点38でソース
31側から延びている空乏層に接してしまい、パンチス
ルーの状況となる。
However, in normal processing, as shown in FIG. The layer contacts the depletion layer extending from the source 31 side at a point 38 near the center, resulting in a punch-through situation.

このためにこの様な構造では正常な絶縁ゲート形FET
の動作をしない。FET動作をさせるためには第2図の
如き非常に細い、1μm以下の動作領域を精度良く形成
することが必要であり、ここでもトランジスタ特性の構
造敏感性が重要な課題となる。
For this reason, in such a structure, a normal insulated gate FET
It doesn't work. In order to operate the FET, it is necessary to accurately form a very thin operating region of 1 μm or less as shown in FIG. 2, and here again, the structural sensitivity of the transistor characteristics is an important issue.

しかしながら、縦型に動作させる方式のトランジスタは
、微細寸法であるにも拘らず、平面構造に比して電流容
量を大きくとれ、相互コンダクタンスも大きく、高速動
作が可能である等の集積回路構成上魅力ある特性を有し
ている。
However, despite their small size, vertically operated transistors have a large current capacity compared to planar structures, have large mutual conductance, and are capable of high-speed operation due to their integrated circuit structure. It has attractive properties.

また、回路設計上からは素子寸法に自由度が必要であり
、同一デバイスに複数個のゲートを設は独立に動作させ
て、たとえばOR回路を構成するなどの効率の良い使用
法が可能となることが望まれる。
In addition, from a circuit design perspective, a degree of freedom is required in element dimensions, and multiple gates can be installed in the same device and operated independently to enable efficient usage, such as configuring an OR circuit. It is hoped that

〔発明の目的〕[Purpose of the invention]

本発明の目的はかかる縦形構造素子の問題点を排除し、
再現性良く、特性の優れた縦形トランジスタを実現し得
る新規な素子構造を提供することにある。
The object of the present invention is to eliminate the problems of such vertical structural elements,
The object of the present invention is to provide a novel element structure capable of realizing a vertical transistor with good reproducibility and excellent characteristics.

〔発明の概要〕[Summary of the invention]

本発明は、簡単には第3図で説明したデバイス中央部に
おけるパンチスルーを防止する方途を提供するが、さら
に進んで、第1図及び第2図で示した構造のデバイスに
おける構造敏感性を制御する方途をも提供する6その方
法は、具体的にはトランジスタの能動領域におけるドー
パント濃度を制御することによって得られる。
The present invention provides a way to prevent punch-through in the center of the device as briefly described in FIG. 6 The method also provides a way to control, specifically by controlling the dopant concentration in the active region of the transistor.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明を実施例に基づき説明する。第4図は、第
3図で例示した構造に本発明を適用した場合の素子断面
模式図である。
The present invention will be explained below based on examples. FIG. 4 is a schematic cross-sectional view of an element when the present invention is applied to the structure illustrated in FIG. 3.

素子構造は第3図に例示したものと同じであるが、p形
領域内にこれよりも濃度の高いp形部分40を設けた点
が異なる。この構造に到らしめる工程を次に簡単に記す
The device structure is the same as that illustrated in FIG. 3, except that a p-type region 40 with a higher concentration is provided within the p-type region. The steps to arrive at this structure are briefly described below.

p形(100)のシリコン基板の表面に選択拡散によっ
てn+拡散層41を形成し、この上に1μmの厚さのp
形層42を形成した後、B+イオンを200keVでl
Xl013an−”打込み、P形層42の中程に高濃度
p影領域43(40)を形成すると同時に、表面にはA
s拡散による高濃度n形層44(47)を設けた。この
多層構造をプラズマエッチによりn十拡散層41に到達
する程度の深さに溝を回らし、次いでプラズマ堆積法に
より溝の底部および表面にSi○2被膜を約300nm
形成した。このとき、溝底部のSi○2膜45膜上5高
さはn十拡散層の上面と略一致していた。次いで、溝側
壁を酸化し、ゲート絶棹膜46を設けた。ドレーンとな
るべき高濃度n影領域47上の5in2膜(図示せず)
にコンタクト用の穴をリソグラフィで形成した後、方向
性蒸着により金属層を形成し、再びリソグラフィにより
、ゲート48及びドレーン電極(図示せず)を形成した
。なお、工程の説明は省略したが、ソース領域41への
コンタクトは別途形成しである。
An n+ diffusion layer 41 is formed on the surface of a p-type (100) silicon substrate by selective diffusion, and a 1 μm thick p-type layer 41 is formed on the surface of a p-type (100) silicon substrate.
After forming the shape layer 42, B+ ions are irradiated with l at 200 keV.
Xl013an-" implantation, forming a high concentration p shadow region 43 (40) in the middle of the p-type layer 42, and at the same time
A high concentration n-type layer 44 (47) formed by s-diffusion was provided. This multilayer structure is etched by plasma etching to form a groove deep enough to reach the n+ diffusion layer 41, and then a Si○2 film of about 300 nm is deposited on the bottom and surface of the groove by plasma deposition.
Formed. At this time, the height of the Si○2 film 45 at the bottom of the groove approximately coincided with the upper surface of the n1 diffusion layer. Next, the trench sidewalls were oxidized and a gate insulation film 46 was provided. 5in2 film (not shown) on the high concentration n shadow area 47 that will become a drain
After forming contact holes by lithography, a metal layer was formed by directional vapor deposition, and a gate 48 and a drain electrode (not shown) were formed by lithography again. Although the description of the process is omitted, the contact to the source region 41 is formed separately.

p影領域42内に形成したP形高濃度領域40のピーク
濃度は約40X10”am−’であり、厚さは約0.2
μmである。このバリア層があるため、ドレーン47か
ら延びる空乏層はソース41へ到達できず、通常の素子
動作領域ではパンチスルーを起すことなく、8v以上の
ドレーン耐圧を得ることができる。P形高濃度領域40
を形成することにより、側壁部に形成されるFETのし
きい電圧は高くなるが、ゲート酸化による側壁部でのB
再分配と、実効チャネル長がほぼバリア層厚さに近くな
るため、空間濃度から推定されるしきい電圧程高くはな
らない。
The peak concentration of the P-type high concentration region 40 formed within the P shadow region 42 is approximately 40×10” am−’, and the thickness is approximately 0.2
It is μm. Because of this barrier layer, the depletion layer extending from the drain 47 cannot reach the source 41, and a drain breakdown voltage of 8V or more can be obtained without causing punch-through in a normal device operation region. P type high concentration region 40
Although the threshold voltage of the FET formed on the sidewall increases by forming B on the sidewall due to gate oxidation,
Because of the redistribution and because the effective channel length is close to the barrier layer thickness, the threshold voltage is not as high as estimated from the spatial concentration.

本発明を適用した第4図の素子構造では、実効チャネル
長が短かく、チャネル幅はP影領域40の全周となるた
め、同面程で得られる平面素子に比し、きわめて大きな
相互コンダクタンスを得ることができる。
In the device structure shown in FIG. 4 to which the present invention is applied, the effective channel length is short and the channel width is the entire circumference of the P shadow region 40, so the mutual conductance is extremely large compared to a planar device obtained with the same surface area. can be obtained.

本実施例ではnチャネルMO5FETについて記したが
、導電形の極性を変えればPチャネルMO3FETにも
そのまま適用することができる。また、本実施例ではP
形高濃度領域は高エネルギーのイオン打込み法によって
P影領域42の高さのほぼ半分の位置に形成したが、こ
れはゲート電極との位置整合性を考慮しているためであ
る。しかし、高濃度p影領域40の形成は高エネルギー
イオン打込みだけでなく、例えば低エネルギーのイオン
打込みに続く拡散によって素子の表面近傍に形成するこ
とも可能であり、または単に拡散によって形成しても良
いし、あるいは、P形層42の形成時に同時に作り込ん
でも形成することができるが、素子特性が構造敏感であ
るため、ドーパント濃度及び分布は厳密に再現する必要
がある。
Although this embodiment has been described for an n-channel MO5FET, it can also be applied to a P-channel MO3FET by changing the polarity of the conductivity type. In addition, in this example, P
The shaped high-concentration region was formed at a position approximately half the height of the P shadow region 42 by high-energy ion implantation, but this was done in consideration of positional matching with the gate electrode. However, the high-concentration p shadow region 40 can be formed not only by high-energy ion implantation, but also by, for example, low-energy ion implantation followed by diffusion near the surface of the device, or simply by diffusion. Alternatively, it can be formed at the same time as the P-type layer 42 is formed, but since the device characteristics are structurally sensitive, the dopant concentration and distribution must be precisely reproduced.

p形高濃度層を他の方法で形成した場合の実施例を次に
示す。
An example in which the p-type high concentration layer is formed using another method will be shown below.

第5図は第4図で説明した工程のうち、Bの導入を集束
イオンビームを用いて導入した場合の素子断面を示して
いる。基板のn十領域41、p形層42は第4図での工
程と同様に形成するが、高濃度P影領域50を形成する
ときには、前例のようにBイオンを全面に打込まず、0
.1μm径程度に集束されたBイオンビームを島状P影
領域52の周辺0.5μmを残してその内側を走査しな
がら照射し、第5図の如き高濃度領域50の形状を得る
。表面n十層44の形成は打込み層のアニールを兼ねて
行なわれ、このあとのゲート、ソース絶縁膜45、ゲー
ト酸化膜46、ゲート金属48の形成は前例と同様に行
なわれる。
FIG. 5 shows a cross section of an element when B is introduced using a focused ion beam in the process explained in FIG. 4. The n+ region 41 and the p-type layer 42 of the substrate are formed in the same manner as in the process shown in FIG.
.. A B ion beam focused to a diameter of about 1 μm is irradiated while scanning the inside of the island-like P shadow region 52, leaving 0.5 μm around the periphery, to obtain the shape of the high concentration region 50 as shown in FIG. The formation of the surface layer 44 is performed concurrently with the annealing of the implantation layer, and the subsequent formation of the gate, source insulating film 45, gate oxide film 46, and gate metal 48 is performed in the same manner as in the previous example.

本素子の構造により得られる素子動作上の利点は第4図
で説明したものと同じであるが、高濃度p影領域50の
相対的位置、ドーパント濃度及び分布が任意に制御でき
るため、同一島状p影領域52内の異なる場所でゲート
電極を独立に設けた場合に、例えばしきい値電圧の異な
るいくつかのFETを並列に接続した構造の複合素子を
得ることができ、多値処理等の回路に応用することがで
きる。
The advantages in terms of device operation obtained by the structure of this device are the same as those explained in FIG. When gate electrodes are provided independently at different locations within the p-shaped shadow region 52, it is possible to obtain a composite element having a structure in which, for example, several FETs with different threshold voltages are connected in parallel, and multivalue processing, etc. It can be applied to the following circuits.

側壁から一定距離をおいて、ドーピングするプロセスは
、第1図で説明したショットキ障壁形FETあるいは接
合形FETに適用でき、特性の揃ったSITを再現性良
く形成することができると共に、さらに前述のような複
合素子を得ることができる。その構造の一例を第6図に
示す。
The process of doping at a certain distance from the sidewall can be applied to the Schottky barrier FET or junction FET described in FIG. 1, and can form an SIT with uniform characteristics with good reproducibility. It is possible to obtain such a composite element. An example of the structure is shown in FIG.

素子の構造はn形高抵抗層13の内部にP形高濃度領域
60を形成した他は第1図と同様である。
The structure of the device is the same as that shown in FIG. 1 except that a P-type high concentration region 60 is formed inside the n-type high resistance layer 13.

基板にはn形低抵抗領域61、及びn形高抵抗層13を
介してn形能抵抗領域12が設けられ、n形高抵抗層1
3の側壁にはこれとショットキ接合を形成する金属ゲー
ト14が、ソース61とは絶縁膜17を介して設けられ
る。なお、金属ゲート14は低抵抗p形Stであっても
良く、この場合にはn形高抵抗領域に該P形ASiから
ドーパントが若干拡散して形成されたpn接合によって
分離される接合形FET構造となる。
An n-type high-resistance region 12 is provided on the substrate via an n-type low-resistance region 61 and an n-type high-resistance layer 13.
A metal gate 14 forming a Schottky junction therewith is provided on the side wall of the source 61, and is connected to the source 61 via an insulating film 17. Note that the metal gate 14 may be a low-resistance p-type St, and in this case, it is a junction-type FET separated by a pn junction formed by slightly diffusing a dopant from the p-type ASi into an n-type high-resistance region. It becomes a structure.

この構造では、ソース、ドレーン間電流は、側壁に形成
されゲート14側より延びる空乏層66と、n形高抵抗
領域13とp形高濃度領域6oとの間に形成される空乏
層62との間隙を矢印63の如く流れる。この空乏層間
隙の大きさはn形高抵抗領域13のドーパント濃度に依
存する他、p形高濃度領域60の濃度及び側壁からの距
離にも依存するが、これらは集束イオンビームを用いて
精密に制御することが可能である。従って第1図のよう
に単純に島状領域13の加工精度のみに依存するよりも
制御の水準は高く、任意の大きさの島状領域についても
動作可能な素子を提供することができる。
In this structure, the source-drain current flows between a depletion layer 66 formed on the sidewall and extending from the gate 14 side, and a depletion layer 62 formed between the n-type high resistance region 13 and the p-type high concentration region 6o. It flows through the gap as shown by the arrow 63. The size of this depletion layer gap depends on the dopant concentration of the n-type high-resistance region 13, as well as the concentration of the p-type high-concentration region 60 and the distance from the sidewall, but these can be precisely determined using a focused ion beam. It is possible to control the Therefore, the level of control is higher than simply relying only on the machining accuracy of the island-like region 13 as shown in FIG. 1, and it is possible to provide an element that can operate on an island-like region of any size.

本発明の構造はまた、微細化した素子にも適用し得る。The structure of the present invention can also be applied to miniaturized devices.

素子の動作領域に用いられる半導体の不純物濃度は10
””c+n−”前後で、これは1μm3に103個含ま
れる状態であるが、−稜が0.4μm位になるとこの中
に含まれる不純物は100個を切る量となり、統計的変
動によって素子の特性を均一に実現することが困難とな
る。すなわち、素子の中に量子化された不純物が含まれ
るような制御を必要とする。本発明の主旨に従って、第
7図に示すように、高抵抗領域73の純度を上げて、例
えばドーパント濃度を10110l3’あるいはそれ以
下とし、この高抵抗領域73内にこれよりも高濃度で能
動領域の特性を決定する量の不純物を含む高濃度領域7
8を例えば集束イオンビーム等を用いて形成することで
この問題は解決できる。
The impurity concentration of the semiconductor used in the active region of the device is 10
Around "c+n-", this is a state in which 103 impurities are contained in 1 μm3, but when the - edge becomes about 0.4 μm, the number of impurities contained in this decreases to less than 100, and due to statistical fluctuations, the element It becomes difficult to achieve uniform characteristics.In other words, control is required to ensure that quantized impurities are included in the device.According to the spirit of the present invention, as shown in FIG. The purity of the region 73 is increased to, for example, a dopant concentration of 10110l3' or lower, and the high-resistance region 73 contains an amount of impurity that determines the characteristics of the active region at a higher concentration.
This problem can be solved by forming 8 using, for example, a focused ion beam.

第7図は第2図と類似の構造で、シリコン基板に設けら
れたn形低抵抗領域71と、表面に設けられたn形低抵
抗領域72との間に上記高抵抗領域73が島状に形成さ
れ、素子の制御は島状高抵抗領域73の側壁に設けられ
たゲート絶縁膜74を介して設けたゲート電極75の印
加電圧を制御することによって行なう。本素子において
はゲート電極75は、絶縁膜77によってソース71と
分離されている。
FIG. 7 shows a structure similar to that in FIG. 2, in which the high resistance region 73 is arranged in the form of an island between an n-type low resistance region 71 provided on the silicon substrate and an n-type low resistance region 72 provided on the surface. The device is controlled by controlling the voltage applied to a gate electrode 75 provided through a gate insulating film 74 provided on the side wall of the island-like high resistance region 73. In this device, the gate electrode 75 is separated from the source 71 by an insulating film 77.

高濃度p領域78の形成は集束イオンビームを用いて個
々に行なうため、集積回路を構成した場合に任意のデバ
イスに任意のドーズで不純物を導入することができ、例
えばMOSFETのしきい電圧等も制御して設定するこ
ともできる。また、基板の主面と平行な方向の高抵抗領
域の幅が1μm程度以下の場合には、しきい電圧はイオ
ンドーズに比例して変化し、その量は第7図の紙面垂直
方向の線密度で3X10−”c/μm前後で十分である
Since the formation of the high concentration p regions 78 is performed individually using a focused ion beam, impurities can be introduced at any dose into any device when an integrated circuit is constructed. For example, the threshold voltage of a MOSFET can be It can also be controlled and set. Furthermore, when the width of the high resistance region in the direction parallel to the main surface of the substrate is about 1 μm or less, the threshold voltage changes in proportion to the ion dose, and the amount changes as shown by the line perpendicular to the paper in Figure 7. A density of around 3 x 10-''c/μm is sufficient.

従って1nA級の出力を有する集束ビームを用いても3
X10−7sec/μmの描画時間であり、数分の描画
時間で4インチウェーハを処理することができる。
Therefore, even if a focused beam with an output of 1 nA class is used, 3
The writing time is X10-7 sec/μm, and a 4-inch wafer can be processed in a writing time of several minutes.

以上の目的に用いられて有効なp形高濃度層の濃度範囲
を第8図に示す。第8図は第4図で例示した素子の中央
部について深さ方向に測った不純物濃度分布であり、8
1は基板に設けた高濃度n影領域のP濃度、82は基板
表面に形成したn形紙抵抗領域のAs濃度であり、斜線
で示す領域83は打込みによって形成したp最高濃度領
域を含む表面領域のB濃度である。
FIG. 8 shows the concentration range of the p-type high concentration layer that is effective for the above purpose. Figure 8 shows the impurity concentration distribution measured in the depth direction at the center of the element illustrated in Figure 4.
1 is the P concentration of the high concentration n shadow area provided on the substrate, 82 is the As concentration of the n type paper resistance area formed on the substrate surface, and the shaded area 83 is the surface containing the highest p concentration area formed by implantation. This is the B concentration of the region.

第3図で述べたソース、ドレーン間のパンチスルーする
ためには、ピーク濃度が101101B’以上あれば実
用上十分であり、これを大きく越えても工程時間を要す
るだけで利点はない。さらに第5図で示すデバイスでは
しきい電圧が高くなり過ぎて素子動作も得られなくなる
他、導入による結晶欠陥が増加する等の不都合が生じて
くる。また1 016am −”以下の場合には不純物
導入の効果が十分に現れてこない。
In order to achieve the punch-through between the source and the drain described in FIG. 3, it is practically sufficient if the peak concentration is 101101B' or more, and even if it greatly exceeds this, it will only require a longer process time and there will be no advantage. Furthermore, in the device shown in FIG. 5, the threshold voltage becomes too high, making it impossible to obtain device operation, and other problems arise, such as an increase in crystal defects due to the introduction. Further, if the thickness is less than 1016 am-'', the effect of impurity introduction will not be sufficiently manifested.

勿論第8図は濃度分布の一例にすぎず、実際には分布の
形状によりその範囲は変化し、第7図で例示したように
導入される不純物の総量が素子特性に寄与する場合もあ
る。従って、本発明は、中間層に、その層を構成する半
導体中の不純物濃度よりも高い濃度を有する領域をその
中間層内に設けることが重要であると理解することがで
きよう。
Of course, FIG. 8 is only an example of the concentration distribution, and in reality, the range changes depending on the shape of the distribution, and as illustrated in FIG. 7, the total amount of impurities introduced may contribute to the device characteristics. Therefore, in the present invention, it can be understood that it is important to provide the intermediate layer with a region having a higher impurity concentration than the impurity concentration in the semiconductor constituting the intermediate layer.

また、素子の動作特性上、ソース、ドレーンを構成する
領域の導電形とは極性の異なる不純物を導入することに
よって1本発明の高濃度領域を形成することが必要であ
ることも理解できよう。
It can also be understood that, in view of the operating characteristics of the device, it is necessary to form the high concentration region of the present invention by introducing an impurity having a polarity different from the conductivity type of the regions constituting the source and drain.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明を適用することにより、微細化
して種々の素子特性上の利点の得られる縦方向動作素子
を、安定かつ確実に製造することができるようになる他
、本発明で形成される低抵抗領域を構成する不純物につ
いてその導入量を制御することによって、素子特性を制
御し、集積回路構成上新たな自由度を付加することがで
きる。
As described above, by applying the present invention, it becomes possible to stably and reliably manufacture a vertically moving element that can be miniaturized and obtain various advantages in terms of element characteristics, and also enables By controlling the amount of impurities introduced that constitute the low resistance region, it is possible to control device characteristics and add a new degree of freedom in the integrated circuit configuration.

なお、実施例はnチャネル形を主に説明したが導電形の
極性を反転することによってpチャネル形素子に対して
も本発明を適用することができる。
Although the embodiments have mainly been described with respect to n-channel devices, the present invention can also be applied to p-channel devices by reversing the polarity of the conductivity type.

またシリコンを半導体の例として引用したがGaAs等
の化合物半導体についても同様に適用できることは言う
までもない。
Further, although silicon has been cited as an example of a semiconductor, it goes without saying that the invention can be similarly applied to compound semiconductors such as GaAs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来構造の縦形素子の断面図、第
3図は従来構造における問題点を説明すめための素子断
面図、第4図乃至第7図は本発明の実施例を示す断面図
、第8図は本発明適用による深さ方向のドーパント濃度
分布を示す図である。 41.44.47・・・低抵抗n形半導体領域、42・
・・高抵抗P形半導体領域、40.43・・・低抵抗p
形半導体領域、14,25,35,75.48・・・ゲ
ート導体、16,66・・・空乏層、17,27゜37
.45.77・・・絶縁膜、24.34,46゜74・
・・ゲート絶縁膜。 Y 1 図 第 2 図 M3 口 J゛/ 酌 4− 図 第 5 図 ’dat 図 第 7 口 AI?fDかうqン屑(さ兜γυ
Figures 1 and 2 are cross-sectional views of a vertical element with a conventional structure, Figure 3 is a cross-sectional view of the element for explaining problems in the conventional structure, and Figures 4 to 7 show embodiments of the present invention. The cross-sectional view, FIG. 8, is a diagram showing the dopant concentration distribution in the depth direction according to the present invention. 41.44.47...Low resistance n-type semiconductor region, 42.
...High resistance P type semiconductor region, 40.43...Low resistance p
type semiconductor region, 14, 25, 35, 75. 48... gate conductor, 16, 66... depletion layer, 17, 27° 37
.. 45.77... Insulating film, 24.34, 46°74.
...Gate insulating film. Y 1 Figure 2 Figure M3 口J゛/ Cup 4- Figure 5 Figure'dat Figure 7 Mouth AI? fD Kauqun rubbish (Sakan γυ

Claims (1)

【特許請求の範囲】[Claims] 1、高抵抗半導体層を挾んで一対の低抵抗半導体層が積
層され、その断面側壁に設けた制御電極により上記低抵
抗半導体層間を流れる電流を電界で制御する方式の半導
体装置において、上記介在高抵抗半導体層内に、上記低
抵抗半導体層とは異なる導電形の不純物を該高抵抗半導
体層のドーパントよりも高濃度で含む領域を設けたこと
を特徴とする半導体装置。
1. In a semiconductor device in which a pair of low-resistance semiconductor layers are laminated with a high-resistance semiconductor layer in between, and a control electrode provided on the cross-sectional side wall of the layer controls the current flowing between the low-resistance semiconductor layers using an electric field, the intervening height is A semiconductor device characterized in that a region containing an impurity of a conductivity type different from that of the low-resistance semiconductor layer at a higher concentration than the dopant of the high-resistance semiconductor layer is provided in the resistive semiconductor layer.
JP59081750A 1982-03-10 1984-04-25 Vertical field effect transistor Expired - Lifetime JPH06101566B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59081750A JPH06101566B2 (en) 1984-04-25 1984-04-25 Vertical field effect transistor
US08/093,033 US5357131A (en) 1982-03-10 1993-07-19 Semiconductor memory with trench capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081750A JPH06101566B2 (en) 1984-04-25 1984-04-25 Vertical field effect transistor

Publications (2)

Publication Number Publication Date
JPS60226185A true JPS60226185A (en) 1985-11-11
JPH06101566B2 JPH06101566B2 (en) 1994-12-12

Family

ID=13755110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081750A Expired - Lifetime JPH06101566B2 (en) 1982-03-10 1984-04-25 Vertical field effect transistor

Country Status (1)

Country Link
JP (1) JPH06101566B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252969A (en) * 1985-08-30 1987-03-07 Nippon Texas Instr Kk Insulated gate field effect semiconductor device
JPS62272570A (en) * 1986-03-24 1987-11-26 シリコニクス インコ−ポレイテツド Planar vertical channel dmos structure
US4914058A (en) * 1987-12-29 1990-04-03 Siliconix Incorporated Grooved DMOS process with varying gate dielectric thickness
US4951102A (en) * 1988-08-24 1990-08-21 Harris Corporation Trench gate VCMOS
US4992390A (en) * 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
US5032529A (en) * 1988-08-24 1991-07-16 Harris Corporation Trench gate VCMOS method of manufacture
US5034785A (en) * 1986-03-24 1991-07-23 Siliconix Incorporated Planar vertical channel DMOS structure
JPH0482275A (en) * 1990-01-31 1992-03-16 Res Dev Corp Of Japan Semiconductor device and manufacture thereof
WO2000014809A1 (en) * 1998-09-09 2000-03-16 Hitachi, Ltd. Static induction transistor and its manufacturing method, and power converter
US6878993B2 (en) 2002-12-20 2005-04-12 Hamza Yilmaz Self-aligned trench MOS junction field-effect transistor for high-frequency applications
JP2014241435A (en) * 2008-05-20 2014-12-25 ローム株式会社 Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368178A (en) * 1976-11-30 1978-06-17 Handotai Kenkyu Shinkokai Fet transistor
JPS5599772A (en) * 1979-01-24 1980-07-30 Semiconductor Res Found Electrostatic induction type thyristor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368178A (en) * 1976-11-30 1978-06-17 Handotai Kenkyu Shinkokai Fet transistor
JPS5599772A (en) * 1979-01-24 1980-07-30 Semiconductor Res Found Electrostatic induction type thyristor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252969A (en) * 1985-08-30 1987-03-07 Nippon Texas Instr Kk Insulated gate field effect semiconductor device
JPS62272570A (en) * 1986-03-24 1987-11-26 シリコニクス インコ−ポレイテツド Planar vertical channel dmos structure
US5034785A (en) * 1986-03-24 1991-07-23 Siliconix Incorporated Planar vertical channel DMOS structure
US4914058A (en) * 1987-12-29 1990-04-03 Siliconix Incorporated Grooved DMOS process with varying gate dielectric thickness
US4951102A (en) * 1988-08-24 1990-08-21 Harris Corporation Trench gate VCMOS
US5032529A (en) * 1988-08-24 1991-07-16 Harris Corporation Trench gate VCMOS method of manufacture
US4992390A (en) * 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
JPH0482275A (en) * 1990-01-31 1992-03-16 Res Dev Corp Of Japan Semiconductor device and manufacture thereof
WO2000014809A1 (en) * 1998-09-09 2000-03-16 Hitachi, Ltd. Static induction transistor and its manufacturing method, and power converter
US6878993B2 (en) 2002-12-20 2005-04-12 Hamza Yilmaz Self-aligned trench MOS junction field-effect transistor for high-frequency applications
JP2014241435A (en) * 2008-05-20 2014-12-25 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPH06101566B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
US7161213B2 (en) Low threshold voltage PMOS apparatus and method of fabricating the same
JP3462301B2 (en) Semiconductor device and manufacturing method thereof
JP3435173B2 (en) Semiconductor device
JP2994670B2 (en) Semiconductor device and manufacturing method thereof
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
CN107425057B (en) Semiconductor structure including transistor having gate electrode region in substrate and method of forming the same
JP3455452B2 (en) Semiconductor device and manufacturing method thereof
JPH0294477A (en) Semiconductor device and manufacture thereof
US6358783B1 (en) Semiconductor device and method of manufacturing the same
JPH07183469A (en) Semiconductor device and method of operating semiconductor device
JPS60226185A (en) Semiconductor device
JPH0237777A (en) Vertical type field-effect transistor
JPH06268215A (en) Mis type semiconductor device
JPH04264776A (en) Semiconductor device
JPS60247974A (en) Semiconductor device
JPH0465549B2 (en)
JP3221901B2 (en) Semiconductor device
JP3526127B2 (en) Method for manufacturing MOS transistor
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH05243274A (en) Vertical mosfet
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
KR100521994B1 (en) Trench gate type MOS transistor and its manufacturing method
CN117672954A (en) Semiconductor structure and forming method thereof
JPS6153773A (en) Semiconductor device and production thereof
CN117672955A (en) Semiconductor structure and forming method thereof