JPS6159543B2 - - Google Patents
Info
- Publication number
- JPS6159543B2 JPS6159543B2 JP261079A JP261079A JPS6159543B2 JP S6159543 B2 JPS6159543 B2 JP S6159543B2 JP 261079 A JP261079 A JP 261079A JP 261079 A JP261079 A JP 261079A JP S6159543 B2 JPS6159543 B2 JP S6159543B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- type
- region
- layer
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 15
- 230000005669 field effect Effects 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 14
- 229920005591 polysilicon Polymers 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
Description
【発明の詳細な説明】
本発明は絶縁ゲート型電界効果トランジスタ
(以下IGFETと略記す)に関し、特にデユアルゲ
ート型のIGFETに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate field effect transistor (hereinafter abbreviated as IGFET), and particularly to a dual gate IGFET.
デユアルゲート型のIGFETはラジオ受信機等
の中間周波数信号を扱う例えば周波数変換回路
や、また変調回路等に用いられることが多く、そ
の構造を第1図に示す。図において、例えばP型
半導体基板1にN型のソース及びドレイン領域2
及び4が形成され、その中間にN型の島領域3が
設けられており、ソース領域と島領域との間のチ
ヤンネル領域上にゲート絶縁膜5を介して第1の
ゲート電極G1が形成されている。また、ドレイ
ン領域と島領域との間のチヤンネル領域上にもゲ
ート絶縁膜6を介して第2のゲート電極G2が形
成されている。 Dual-gate IGFETs are often used in frequency conversion circuits and modulation circuits that handle intermediate frequency signals in radio receivers, etc., and their structure is shown in FIG. In the figure, for example, an N-type source and drain region 2 is formed on a P-type semiconductor substrate 1.
and 4 are formed, an N-type island region 3 is provided in the middle thereof, and a first gate electrode G 1 is formed on the channel region between the source region and the island region with a gate insulating film 5 interposed therebetween. has been done. Further, a second gate electrode G 2 is also formed on the channel region between the drain region and the island region with the gate insulating film 6 interposed therebetween.
かかる構造においては、高周波動作の限界を定
める第1のIGFETのチヤンネル長を短くし、第
2のIGFETのチヤンネル長は長くして突き抜け
による耐圧低下を防止するようになされる。 In such a structure, the channel length of the first IGFET, which defines the limit of high-frequency operation, is shortened, and the channel length of the second IGFET is lengthened to prevent a drop in breakdown voltage due to punch-through.
しかしながら、かかる平面構造ではチヤンネル
長の制御が困難であり、シヨートチヤンネルとす
るにも限度があり、更にはトランジスタのいわゆ
るgmを大とするには大面積を必要とし、その結
果歩留りの低下をもたらす。 However, with such a planar structure, it is difficult to control the channel length, and there is a limit to the short channel.Furthermore, increasing the so-called gm of a transistor requires a large area, resulting in a decrease in yield. bring.
本発明の目的はシヨートチヤンネル化が容易で
かつ大面積を要することなくgmを大きくし高ド
レイン耐圧を有するデユアルゲート型のIGFET
を提供することである。 The purpose of the present invention is to develop a dual-gate IGFET that is easy to short channel, has a large gm without requiring a large area, and has a high drain breakdown voltage.
The goal is to provide the following.
以下本発明について図面を参照しつつ説明す
る。 The present invention will be explained below with reference to the drawings.
第2図乃至第7図は本発明の1実施例の装置の
製造工程順における断面図であり、Nチヤンネル
型のIGFETの場合について示すが、Pチヤンネ
ル型のIGFETについても同様に適用可能である
ことは明白である。 Figures 2 to 7 are cross-sectional views in the order of manufacturing steps of a device according to an embodiment of the present invention, and are shown in the case of an N-channel type IGFET, but the same can be applied to a P-channel type IGFET. That is clear.
先ず第2図に示す如く、N型半導体基板10を
準備し、この基板10の1主面上にP型層11、
N型層12、P型層13及びN型層14をこの順
に順次エピタキシヤル成長法等により形成する。
その際N型層12及び14にはリン等のN型不純
物を高濃度に拡散しておく。 First, as shown in FIG. 2, an N-type semiconductor substrate 10 is prepared, and a P-type layer 11,
The N-type layer 12, the P-type layer 13, and the N-type layer 14 are formed in this order by epitaxial growth or the like.
At this time, an N-type impurity such as phosphorus is diffused into the N-type layers 12 and 14 at a high concentration.
次に、第3図に示すように、各半導体層11〜
14をそれぞれ貫通しかつ基板10へ達する例え
ばV字状凹部15及び16を形成すべく異方性エ
ツチングを施す。しかる後に全面に拡散用マスク
となるべき酸化膜17を被着形成して、一方の凹
部16の表面の酸化膜を選択的にエツチング除去
し、例えばボロン拡散を施して、第4図に示す如
く、互いに分離していたP型のエピタキシヤル半
導体層11及び12を連結させる構造としてチヤ
ンネルストツパの機能をもたせる。しかる後に拡
散マスクである酸化膜17を除去して第5図の構
造を得る。 Next, as shown in FIG.
Anisotropic etching is performed to form, for example, V-shaped recesses 15 and 16, which extend through the substrate 14 and reach the substrate 10, respectively. Thereafter, an oxide film 17 serving as a diffusion mask is formed on the entire surface, and the oxide film on the surface of one of the recesses 16 is selectively etched away, and boron diffusion is performed, for example, as shown in FIG. The structure connects the P-type epitaxial semiconductor layers 11 and 12, which were separated from each other, to function as a channel stopper. Thereafter, the oxide film 17 serving as a diffusion mask is removed to obtain the structure shown in FIG.
次に、他の凹部15内においてデユアルゲート
構造を作るのであるが、この場合の製造工程の1
例を第6図A〜Eに示す。先ず、全面に酸化膜1
8を形成してV字状凹部15の表面のみの酸化膜
を選択的に除去し、この凹部15の表面にゲート
絶縁膜19を被着形成する。そしてV字状凹部内
にポリシリコン(多結晶シリコン)20を形成し
て第1ゲートとなるべき部分のみを残して他を除
去するA。 Next, a dual gate structure is created in the other recess 15, but one of the manufacturing steps in this case is
Examples are shown in Figures 6A-E. First, oxide film 1 is applied to the entire surface.
8 is formed, the oxide film only on the surface of the V-shaped recess 15 is selectively removed, and a gate insulating film 19 is formed on the surface of the recess 15. Then, in step A, polysilicon (polycrystalline silicon) 20 is formed in the V-shaped recess, leaving only the portion that will become the first gate and removing the rest.
再びV字状凹部上に酸化膜を設け、先に形成し
たポリシリコン20と連結させる部分の酸化膜に
開口を穿ち、その後再度ポリシリコンを形成すれ
ば当該開口を通して上層のポリシリコンが下層の
ポリシリコン20とを連結するから、上層ポリシ
リコンのうちこの連結部分を残して他の部分を除
き、しかる後に酸化膜を形成する。そして第2の
ゲートを形成するために、N型層13の表面を被
う酸化膜を除いてそこにゲート絶縁膜21を被着
するB。 An oxide film is again provided on the V-shaped recess, an opening is made in the oxide film in the part to be connected to the previously formed polysilicon 20, and then polysilicon is formed again. Since this will be connected to silicon 20, this connecting part of the upper polysilicon layer will be left and the other parts will be removed, and then an oxide film will be formed. Then, in order to form a second gate, the oxide film covering the surface of the N-type layer 13 is removed and a gate insulating film 21 is deposited thereon.
しかる後に全面にポリシリコン22を再び形成
してC後、第1ゲート用のポリシリコン20の連
結のための開口を当該ポリシリコン22に穿ち、
全面に酸化膜23を設け、当該開口部内の酸化膜
を除いて、下層のポリシリコン20のゲート導出
用電極配線層となるポリシリコン24を形成する
D。この上層ポリシリコン24を選択的にエツチ
ングして、Eに示すように第1及び第2のゲート
電極構造が形成されることになる。 After that, polysilicon 22 is again formed on the entire surface, and an opening for connecting the polysilicon 20 for the first gate is bored in the polysilicon 22,
An oxide film 23 is provided on the entire surface, and a polysilicon 24 is formed, except for the oxide film in the opening, to form a polysilicon 24 that will become an electrode wiring layer for leading out the gate of the polysilicon 20 in the lower layer. This upper polysilicon layer 24 is selectively etched to form first and second gate electrode structures as shown in E.
そして、第7図に示す如く、最上層のN型層1
4からソース電極Sをポリシリコン20から第1
ゲート電極G1を、ポリシリコン22から第2ゲ
ート電極G2を更にN型基板10からドレイン電
極をそれぞれ取り出してデユアルゲート型
IGFETとなる。 Then, as shown in FIG. 7, the uppermost N-type layer 1
4 to the source electrode S from polysilicon 20 to the first
The gate electrode G 1 is taken out from the polysilicon 22, the second gate electrode G 2 is taken out from the N-type substrate 10, and the drain electrode is taken out from the N-type substrate 10 to form a dual gate type.
It becomes an IGFET.
尚、チヤンネルストツパ領域としての凹部16
(第5図参照)の表面における高濃度のP型領域
から電極25を取り出し、回路の最低電位、例え
ば零電位としてチヤンネルストツパ機能をより有
効とすることができる。 Note that the recess 16 serves as a channel stopper area.
The channel stopper function can be made more effective by taking out the electrode 25 from the highly-concentrated P-type region on the surface (see FIG. 5) and setting it at the lowest potential of the circuit, for example, zero potential.
第8図乃至第11図は本発明の他の実施例の装
置を得るための製造工程順の断面図であり、同様
にNチヤンネル型IGFETの場合について説明す
るがこれに限定されるものではないことは勿論で
ある。 FIGS. 8 to 11 are cross-sectional views of the manufacturing process order for obtaining a device according to another embodiment of the present invention, and similarly, the case of an N-channel type IGFET will be explained, but the invention is not limited thereto. Of course.
先ず、第8図に示す如く、N型半導体基板10
の1主面にP型のエピタキシヤル半導体層11を
形成し、この1主面において選択的にN型の高濃
度不純物領域12を拡散して形成する。再びこの
主面上にP型のエピタキシヤル半導体層13を成
長しめることにより、N型領域12を埋め込み層
とし、このエピダキシヤル層13の1主面におい
てN型の高濃度不純物領域14を拡散して形成す
る。 First, as shown in FIG. 8, an N-type semiconductor substrate 10 is
A P-type epitaxial semiconductor layer 11 is formed on one main surface of the substrate, and an N-type high concentration impurity region 12 is selectively diffused and formed on this one main surface. By growing the P-type epitaxial semiconductor layer 13 again on this main surface, the N-type region 12 is used as a buried layer, and the N-type high concentration impurity region 14 is diffused in one main surface of this epitaxial layer 13. Form.
しかる後に第10図の如く、これらN型領域1
2,14及びP型エピタキシヤル層11,13を
貫通しかつ基板10へ達するV字状凹部15を異
方性エツチングにより設ける。そして第6図A〜
Eによる方法を用いてデユアルゲート構造を得
て、最終的に第11図に示す如きIGFET装置を
得ることができる。 After that, as shown in FIG.
A V-shaped recess 15 is formed by anisotropic etching, penetrating the P-type epitaxial layers 11, 13 and reaching the substrate 10. And Figure 6 A~
A dual gate structure can be obtained using the method according to E, and finally an IGFET device as shown in FIG. 11 can be obtained.
尚、上記各実施例においては、凹部をV字状と
したがこれに限らず種々の形状とすることができ
る。 In each of the above embodiments, the concave portion is V-shaped, but the concave portion is not limited to this and may have various shapes.
このように、本発明の構造によれば、エピタキ
シヤル成長層の幅やN型不純物の拡散深さにより
チヤンネル長が決定されることになるので、その
制御が極めて容易であり、エピタキシヤル層の幅
を薄くすることによりシヨートチヤンネル化が実
現できる。またチヤンネル面が凹部面に沿い形成
されているからチツプ面積を拡大することなく高
gm化が達成され、歩留低下が著しく抑圧可能と
なる。 As described above, according to the structure of the present invention, the channel length is determined by the width of the epitaxial growth layer and the diffusion depth of the N-type impurity, so it is extremely easy to control it, and A short channel can be realized by reducing the width. In addition, since the channel surface is formed along the concave surface, the chip area can be increased without increasing the chip area.
GM has been achieved, and yield decline can be significantly suppressed.
更には縦型構造となるので、基板中をドレイン
電流が流れ、よつてドレイン耐圧が大となりうる
利点もある。 Furthermore, since it has a vertical structure, the drain current flows through the substrate, which has the advantage that the drain breakdown voltage can be increased.
第1図は従来のデユアルゲートIGFETの断面
図、第2図乃至第7図は本発明の1実施の装置の
製造工程順における断面図、第8図乃至第11図
は本発明の他の実施例の装置の製造工程順におけ
る断面図である。
主要部分の符号の説明 10…半導体基板、1
1,13…P型半導体層、12,14…N型半導
体層、19,21…ゲート絶縁膜、20,22…
ゲート電極。
FIG. 1 is a sectional view of a conventional dual-gate IGFET, FIGS. 2 to 7 are sectional views of a device according to one embodiment of the present invention in the order of manufacturing steps, and FIGS. 8 to 11 are sectional views of another embodiment of the present invention. FIG. 3 is a cross-sectional view of the example device in the order of manufacturing steps. Explanation of symbols of main parts 10...Semiconductor substrate, 1
1, 13... P-type semiconductor layer, 12, 14... N-type semiconductor layer, 19, 21... gate insulating film, 20, 22...
gate electrode.
Claims (1)
上に形成された第2導電型の第1の半導体層と、
前記第1の半導体層上に形成された前記第1導電
型の第1の半導体領域と、前記第1の半導体領域
上に形成された前記第2導電型の第2の半導体層
と、前記第2の半導体層上に形成された前記第1
導電型の第2の半導体領域と、これら第1及び第
2の半導体層、更には前記第1及び第2の半導体
領域のすべてを貫通しかつ前記半導体基板へ達す
る凹部と、前記凹部表面において前記第1及び第
2の半導体層の露出面をそれぞれ被つて設けられ
たゲート絶縁膜を介して被着された第1及び第2
のゲート電極とを有し、前記半導体基板及び前記
第2の半導体領域をそれぞれドレイン及びソース
領域とすることを特徴とする絶縁ゲート型電界効
果トランジスタ。1 a first conductivity type semiconductor substrate; a second conductivity type first semiconductor layer formed on the semiconductor substrate;
a first semiconductor region of the first conductivity type formed on the first semiconductor layer; a second semiconductor layer of the second conductivity type formed on the first semiconductor region; the first semiconductor layer formed on the second semiconductor layer;
a second semiconductor region of a conductive type, a recess penetrating through the first and second semiconductor layers, and further through all of the first and second semiconductor regions and reaching the semiconductor substrate; The first and second semiconductor layers are deposited through a gate insulating film provided to cover the exposed surfaces of the first and second semiconductor layers, respectively.
an insulated gate field effect transistor, wherein the semiconductor substrate and the second semiconductor region serve as a drain and a source region, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP261079A JPS5595366A (en) | 1979-01-13 | 1979-01-13 | Insulated-gate field-effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP261079A JPS5595366A (en) | 1979-01-13 | 1979-01-13 | Insulated-gate field-effect transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5595366A JPS5595366A (en) | 1980-07-19 |
JPS6159543B2 true JPS6159543B2 (en) | 1986-12-17 |
Family
ID=11534157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP261079A Granted JPS5595366A (en) | 1979-01-13 | 1979-01-13 | Insulated-gate field-effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5595366A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0287751U (en) * | 1988-12-21 | 1990-07-11 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4326332A (en) * | 1980-07-28 | 1982-04-27 | International Business Machines Corp. | Method of making a high density V-MOS memory array |
GB2089119A (en) * | 1980-12-10 | 1982-06-16 | Philips Electronic Associated | High voltage semiconductor devices |
US4571512A (en) * | 1982-06-21 | 1986-02-18 | Eaton Corporation | Lateral bidirectional shielded notch FET |
US4622569A (en) * | 1984-06-08 | 1986-11-11 | Eaton Corporation | Lateral bidirectional power FET with notched multi-channel stacking and with dual gate reference terminal means |
US5204281A (en) * | 1990-09-04 | 1993-04-20 | Motorola, Inc. | Method of making dynamic random access memory cell having a trench capacitor |
-
1979
- 1979-01-13 JP JP261079A patent/JPS5595366A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0287751U (en) * | 1988-12-21 | 1990-07-11 |
Also Published As
Publication number | Publication date |
---|---|
JPS5595366A (en) | 1980-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0355984B2 (en) | ||
JPH0365025B2 (en) | ||
US4751561A (en) | Dielectrically isolated PMOS, NMOS, PNP and NPN transistors on a silicon wafer | |
JPH0923011A (en) | Semiconductor device and its manufacture | |
US5100814A (en) | Semiconductor device and method of manufacturing the same | |
JPS63157475A (en) | Semiconductor device and manufacture thereof | |
JPS6159543B2 (en) | ||
JPS62126675A (en) | Semiconductor device and manufacture thereof | |
JPS59208851A (en) | Semiconductor device and manufacture thereof | |
JPS6152591B2 (en) | ||
JPH03262154A (en) | Manufacture of bicmos type semiconductor integrated circuit | |
JPS59168675A (en) | Manufacture of semiconductor device | |
JPH067596B2 (en) | Method for manufacturing semiconductor device | |
JPS63131584A (en) | Manufacture of cut type insulated-gate electrostatic induction transistor | |
JPH06181312A (en) | Manufacture of semiconductor device | |
JPH04269835A (en) | Semiconductor device with trench type electrode and its manufacture | |
JPS60211867A (en) | Semiconductor device and manufacture thereof | |
JPH07193086A (en) | Junction-type field effect semiconductor device and its manufacture | |
JPS59144168A (en) | Bipolar mos semiconductor device and manufacture thereof | |
JP3260009B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0575033A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPH0521446A (en) | Semiconductor device and its manufacture | |
JPS60150643A (en) | Complementary semiconductor device and manufacture thereof | |
JPH05206157A (en) | Bipolar transistor and manufacture thereof, and semiconductor device provided with bipolar transistor and mos transistor and manufacture thereof | |
JPH0330307B2 (en) |