JPS59138377A - Metal insulator semiconductor transistor and manufacture thereof - Google Patents

Metal insulator semiconductor transistor and manufacture thereof

Info

Publication number
JPS59138377A
JPS59138377A JP1132083A JP1132083A JPS59138377A JP S59138377 A JPS59138377 A JP S59138377A JP 1132083 A JP1132083 A JP 1132083A JP 1132083 A JP1132083 A JP 1132083A JP S59138377 A JPS59138377 A JP S59138377A
Authority
JP
Japan
Prior art keywords
insulator
source
film
region
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1132083A
Other languages
Japanese (ja)
Inventor
Masao Fukuma
福間 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1132083A priority Critical patent/JPS59138377A/en
Publication of JPS59138377A publication Critical patent/JPS59138377A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To obtain an MIS transistor having the small junction capacitance of the source and drain regions and small short channel effect by a method wherein an insulator is buried under a gate insulation film via a semiconductor layer, and the source and drain regions are provided shallowly on this insulator and deeply at the part without the insulator on both sides of said layer. CONSTITUTION:A groove sufficiently deep from the surface is bored at the center of a P type Si substrate 11, and, while filling there, an SiO2 film 12 is adhered over the entire surface. Next, the film 12 is left only in the groove, a polycrystalline Si is grown over the entire surface by removing the other part, and the Si is changed into a single crystal 13 by laser annealing. Thereafter, a P type region 16 of a small diameter is diffusion-formed by being positioned on the film 12 in the single crystal region 13. The gate insulation film 14 is adhered over the entire surface including said region and made to correspond to the region 16, and the gate electrode 15 composed of polycrystalline Si is provided. Then, phosphorus ions are implanted through the film 14, thus forming the source and drain regions 17 shallowly at the upper surface end part of the film 12, and deeply at the other part on both sides of the region 16, respectively.

Description

【発明の詳細な説明】 本発明は、ソースφドレインの接合容量が少なく、短チ
ヤネル効果も弱くかつソース・ドレインによる寄生抵抗
も小さい構造のMISトランジスタとその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a MIS transistor having a structure in which the junction capacitance of the source φ drain is small, the short channel effect is weak, and the parasitic resistance due to the source and drain is small, and a method for manufacturing the same.

MOSトランジスタの微細化の指標としては、い当りの
ソース・ドレインの拡散層容量は増加する。
As an indicator of miniaturization of MOS transistors, the capacitance of the source/drain diffusion layer increases.

又″、スケーリング則に従った浅いソース・ドレイン拡
散層は、不純物の溶解度限界あるいは、移動度の低下に
よってシート抵抗の増加、すなわち寄生抵抗の増加につ
ながる。これらは高性能LSIを実現する上で好ましく
ない現象であり、今までにも種々の解決法が提案されて
来た。その最も一般的な例が、低濃度基板上にMOSト
ランジスタを作成し、チャネルドープによって間両1圧
(VT)をコントロールしようというものである。この
方法は比較的簡便に接合容量を低下でき、特に短チャネ
ルに於てはパンチスルー防止用の深いチャネルドープと
VTコントロール用の浅いチャネルドープを組み合わせ
ることで良い結果が得られている。
In addition, shallow source/drain diffusion layers that follow the scaling law lead to an increase in sheet resistance, that is, an increase in parasitic resistance, due to the solubility limit of impurities or a decrease in mobility. This is an undesirable phenomenon, and various solutions have been proposed up to now.The most common example is to create a MOS transistor on a lightly doped substrate, and then increase the voltage between the two voltages (VT) by doping the channel. This method can reduce the junction capacitance relatively easily, and especially in short channels, good results can be obtained by combining deep channel doping for punch-through prevention and shallow channel doping for VT control. is obtained.

しかし、この方法でもやはり短チヤネル化に限界があり
、例えば実効チャネル長が1μm近くにもなるとパンチ
スルー防止用の深いチャネルドープを相当量打し込まな
ければならず、接合容量は大きくなる。才た浅いソース
・ドレイン拡散層のによる寄生抵抗も、短チャネルにな
る程、無視し得外は6)後者の底面は低濃度の基板に接
しており妾合容量は充分小さく取れる。さら(こ浅いソ
ース・ドレイン層4だけでMIS  )ランジスタを形
成した場合に比べると、寄生の直列抵抗を小さくするこ
とも可能である。しかし第1図に示した構造でも、極短
チャネルに於ては深いソース・ドレイン層間のパンチス
ルーを防ぐためには、チャネルドープをある程度深く形
成しなくてはならないので、基板効果は太き(なりトラ
ンジスタの相互コンダクタンスgmは低下するという欠
点がある。また深さの異なる2種類のソース・ドレイン
層を形成する必要があり工程も複雑であるという欠点も
ある。
However, even with this method, there is a limit to shortening the channel. For example, when the effective channel length approaches 1 μm, a considerable amount of deep channel doping must be implanted to prevent punch-through, and the junction capacitance increases. The parasitic resistance due to shallow source/drain diffusion layers can also be ignored as the channel becomes shorter. 6) The bottom surface of the latter is in contact with the lightly doped substrate, and the coupling capacitance can be kept sufficiently small. Furthermore, it is also possible to reduce the parasitic series resistance (compared to the case where a MIS transistor is formed using only the shallow source/drain layer 4). However, even with the structure shown in Figure 1, in order to prevent punch-through between the deep source and drain layers in an extremely short channel, the channel doping must be formed deep to some extent, so the substrate effect becomes thicker. There is a disadvantage that the mutual conductance gm of the transistor is reduced.There is also a disadvantage that it is necessary to form two types of source/drain layers with different depths, and the process is complicated.

本発明の目的は、ソース・ドレイン層の接″合容量を実
用上充分低くおさえ、短チヤネル効果を小さくかつソー
ス・ドレイン層の寄生抵抗の小さいMIS  )ランジ
スタと、この様なMIS )ランジスタを簡便にしかも
確実に実現し得る製造方法を提供することにある。
The purpose of the present invention is to suppress the junction capacitance of the source/drain layer to a sufficiently low level for practical use, to reduce the short channel effect, and to provide a MIS transistor with low parasitic resistance in the source/drain layer, and to easily manufacture such a MIS) transistor. The object of the present invention is to provide a manufacturing method that can be realized reliably.

本発明によれば半導体基板上に形成されるMI8トラン
ジスタにおいて、ゲート絶縁膜の下に半導体層をはさん
で絶縁体が埋められ、しかも該絶縁体はソース及びドレ
イン層の少なくとも一方に揺回じかそれ以上に深いこと
を特徴とするMIDトランジスタが得られる。
According to the present invention, in an MI8 transistor formed on a semiconductor substrate, an insulator is buried under the gate insulating film with a semiconductor layer sandwiched therebetween, and the insulator is wrapped around at least one of the source and drain layers. A MID transistor is obtained which is characterized by a depth of at least 100 mm or more.

更に本発明によれば半導体基板表面の所望の部分にみぞ
分離法あるいは選択酸化法を用いて絶縁体を形成し、次
いで前記基板表面全体に前記基板と同種の多結晶もしく
は非晶質の半導体薄膜を成長し、電子ビームあるいはレ
ーザビームを照射することによって前記半導体薄膜を単
結晶化し、次いで前記絶縁体上の半導体薄膜の表面にゲ
ート絶縁膜を形成し、次いで該ゲート絶縁膜上にゲート
電極を形成し、次いでソース及びドレイン層を前記絶縁
体上及びそれにつらなる領域にわたって形成することを
特徴とするMIS トランジスタの製造方法が得られる
Furthermore, according to the present invention, an insulator is formed on a desired portion of the surface of a semiconductor substrate using a groove separation method or a selective oxidation method, and then a polycrystalline or amorphous semiconductor thin film of the same type as the substrate is formed over the entire surface of the substrate. The semiconductor thin film is grown into a single crystal by irradiation with an electron beam or a laser beam, a gate insulating film is formed on the surface of the semiconductor thin film on the insulator, and then a gate electrode is formed on the gate insulating film. There is obtained a method for manufacturing an MIS transistor, characterized in that a source and a drain layer are formed on the insulator and over a region connected thereto.

以下、第2図(a)〜(d)の一連の工程図を用いて本
発明の典型的な一実施例につきその構造及び製造方法に
ついて説明する。以下の説明では、説明の便宜上シリコ
ンのNチャネルMO8l−ランジスタについて述べるが
、PチャネルMos トランジスタのみならず他の種類
の半導体及び他の種類のゲ板11の表面に、スパッタエ
ツチング法により巾1.5μm深さ2.5μmのみぞを
堀りその後CVD5iO。
Hereinafter, the structure and manufacturing method of a typical embodiment of the present invention will be explained using a series of process diagrams shown in FIGS. 2(a) to 2(d). In the following description, a silicon N-channel MO8l-transistor will be described for convenience of explanation, but not only P-channel Mos transistors but also other types of semiconductors and other types of gate plates 11 are etched by sputter etching to a width of 1.5 mm. Dig a groove with a depth of 5 μm and 2.5 μm, then CVD5iO.

膜12を厚さ約5oooλ堆積しみそを埋めた所である
This is the place where the film 12 was deposited to a thickness of about 500λ and the holes were filled.

この時みぞの上面に於けるCVD Sin、面の形状は
、堆積条件を選べはほぼフラットにすることが可能であ
る。
At this time, the shape of the CVD Sin surface on the upper surface of the groove can be made almost flat if the deposition conditions are selected.

第2図(b)ハC(7) CVD S io、膜12を
5oooλエツチングし、埋め込みSin、領域以外の
シリコン面を露出させその後CVDポリシリコン膜を厚
さ約350OA全面に堆積した後、レーザーアニール法
にょりこれを単結晶化して厚さ約300OAのシリコン
膜13を形成した所である。単結晶化はSi 基板上の
ポリシリコンから始まり埋め込みSin、12上のポリ
シリコンも容易に単結晶化できる。単結晶化には電子ビ
ームアニールを用いてもよい。
FIG. 2(b) C(7) CVD Sio, film 12 is etched by 500λ to expose the silicon surface other than the buried sin region, and then a CVD polysilicon film is deposited on the entire surface to a thickness of about 350 OA, and then laser etched. This is made into a single crystal using an annealing method to form a silicon film 13 having a thickness of about 300 OA. Single crystallization begins with polysilicon on the Si substrate, and polysilicon on the buried Si substrate 12 can also be easily single crystallized. Electron beam annealing may be used for single crystallization.

第2図(C)は全面にゲート酸化膜14を厚さ200A
成長させ、適当なチャネルドープによりp型R16を形
成した後ゲートポリシリコン膜I5を形成しこれをマス
クとしてリンをドーズR5X 10′6/crrL2だ
けイオン注入してソース・ドレイン層17を形作った所
である。このとき埋め込みsio、12の上のソース・
ドレイン層の厚みはその部分の単結晶シリコに薄膜厚(
:3000^)に等しく、それ以外のシリコン基板上の
ソース・ドレイン層の厚みは約7000^となる。従っ
てどちらの領域の不純物量(単位面積当り)も同じであ
るか、濃度の違いによりシリコン基板上のソース・ドレ
イン層の抵抗はかなり低くすることができる。
FIG. 2(C) shows a gate oxide film 14 with a thickness of 200A over the entire surface.
After growing and forming a p-type R16 by appropriate channel doping, a gate polysilicon film I5 was formed, and using this as a mask, phosphorus was ion-implanted at a dose of R5X 10'6/crrL2 to form a source/drain layer 17. It is. At this time, the embedded sio, the source above 12
The thickness of the drain layer is determined by the thin film thickness (
:3000^), and the thickness of the other source/drain layers on the silicon substrate is approximately 7000^. Therefore, the resistance of the source/drain layer on the silicon substrate can be made considerably low by either having the same amount of impurity (per unit area) in both regions or by having a difference in concentration.

第2図(d)はさらに厚さ約500OAのCXID5I
02膜をたい積し、コンタクト用のスルーホールをあけ
た後メタル配線を施した所である。この第2図fd)が
本発明の構造の典型的な1例である。
Figure 2(d) shows CXID5I with a thickness of approximately 500OA.
After depositing the 02 film and drilling through holes for contacts, metal wiring was applied. This figure (fd) in FIG. 2 is a typical example of the structure of the present invention.

本発明の構造によるMOS  I−ランジスタは、低濃
度基板上に形成されているので本質的にソース・ドレイ
ン層の接合容量は少ない。それにもかかわらず埋め込み
の絶縁体がソース・ドレイン間のパンチスルーを有効に
防いでおり短チヤネル化に適している。又、真のチャネ
ル領域16はしきい値電圧vTを考慮した上でパンチス
ルーを防止する様に高濃度にしても、容量の増加は無視
できる。さらにシリコン基板上の深いソース・ドレイン
層によって、例えば浅いソース・ドレイン層だけで形成
されるMOS  トランジスタに比べると畜生抵抗は小
さくなっている。
Since the MOS I-transistor having the structure of the present invention is formed on a low concentration substrate, the junction capacitance between the source and drain layers is essentially small. Nevertheless, the buried insulator effectively prevents punch-through between the source and drain, making it suitable for shortening the channel. Furthermore, even if the true channel region 16 is highly doped to prevent punch-through in consideration of the threshold voltage vT, the increase in capacitance can be ignored. Furthermore, due to the deep source/drain layers on the silicon substrate, the resistance is lower than, for example, a MOS transistor formed with only shallow source/drain layers.

従って本発明の構造を用いれば、高性能のサブミクロン
チャネルMO8FETを容易にしかも確実(実現するこ
とが可能である。
Therefore, by using the structure of the present invention, it is possible to easily and reliably realize a high-performance submicron channel MO8FET.

本発明の製造方法によれば、バンチスルー防止用絶縁体
をMOS l−ランジスタのゲート直下のみに胛め込む
ことが可能であり、さらに深さの異なるソース・ドレイ
ン層を同時に1回のイオン注入Iこよって形成でき、上
記構造を作る上で卓絶した効果を発揮するものである。
According to the manufacturing method of the present invention, it is possible to embed the bunch-through prevention insulator only directly under the gate of the MOS l-transistor, and furthermore, it is possible to implant source and drain layers of different depths simultaneously in one ion implantation. It can be formed by I and exhibits an outstanding effect in producing the above structure.

以上の説明では説明の便宜上典型的でしかも簡単な一実
施例についてのみ述べて来たが、本発明はこの様な実施
例についてのみ限定されるものではない。例えば第2図
に於ける埋め込み絶縁体の形成にはいわゆるLOCO8
酸化法(選択酸化法)を用いても良くこれも当然本発明
に含まれる。また前記実施例では絶縁体の底面はシリコ
ン基板上のソース・ドレイン層の底面より2.1μm 
だけ深いところにある。これはパンチスルーを防ぐため
に深くしであるわけであるが、この深さはシリコン基板
更に一般に半導体基板の不純物プロファイルに応じて変
えることができる。例えば絶縁体の底面に接する部分の
シリコン基板に基板より高濃度に不純物(NチャネルM
O8FETならボロンなどのp型不純物)をドープして
おけば絶縁体の深さは浅くできしかもソース・ドレイン
層の寄生容量を少ないままに保つことかできる。ただし
絶縁があまり浅(なってはパンチスルーを防げなくなる
から、絶縁体の底面が半導体基板上のソース・ドレイン
j−の底面とほぼ同じ平面にくるところが限度である。
In the above description, only one typical and simple embodiment has been described for convenience of explanation, but the present invention is not limited to such an embodiment. For example, in the formation of the buried insulator in Fig. 2, so-called LOCO8 is used.
An oxidation method (selective oxidation method) may also be used, and this is naturally included in the present invention. Further, in the above embodiment, the bottom surface of the insulator is 2.1 μm from the bottom surface of the source/drain layer on the silicon substrate.
It's just deep down. This depth is deep to prevent punch-through, but this depth can vary depending on the impurity profile of the silicon substrate, and more generally of the semiconductor substrate. For example, the portion of the silicon substrate in contact with the bottom surface of the insulator is doped with impurities (N-channel M
In the case of an O8FET, by doping with a p-type impurity such as boron, the depth of the insulator can be made shallow, and the parasitic capacitance of the source and drain layers can be kept small. However, if the insulation is too shallow, punch-through cannot be prevented, so the limit is that the bottom surface of the insulator is approximately on the same plane as the bottom surface of the source/drain j- on the semiconductor substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための比較の対象とし
た従来構造のMOS トランジスタの模式的断面図であ
る。第2図は、本発明の構造及び製造方法の典型的実施
例を主要断面図を示しながら製造工程を追って示したも
のである。 図中の記号はそれぞれ次のものを示している。 l・・・シリコン基板 2・・・ゲートポリシリコン膜 3・・・ゲート酸化膜 4・・・浅いソース・ドレイン層 5・・・深いソース・ドレイン層 6・・・浅いソース・ドレインと深いンースードレイン
が重なった部分 7・・・メタル配線 8・・・チャネルドープ領域 11・・・シリコン基板 !6・・・チャネルドープ領域 ’18.’J、・CVD 5t02膜 、:) 19−′・・メタル配線 垢1口 ?イ弓  2  Bンコ   (Cツ ノ5
FIG. 1 is a schematic cross-sectional view of a MOS transistor with a conventional structure used for comparison to explain the present invention in detail. FIG. 2 shows a typical embodiment of the structure and manufacturing method of the present invention, showing the main sectional views and following the manufacturing process. The symbols in the figure indicate the following. l...Silicon substrate 2...Gate polysilicon film 3...Gate oxide film 4...Shallow source/drain layer 5...Deep source/drain layer 6...Shallow source/drain and deep... Overlapping part 7 of pseudo drains...Metal wiring 8...Channel doped region 11...Silicon substrate! 6...Channel doped region '18. 'J,・CVD 5t02 film, :) 19-'・1 piece of metal wiring scum? Iyumi 2 Bkonko (C horn 5

Claims (1)

【特許請求の範囲】 1、半導体基板上に形成されるMIS  )ランジスタ
において、ゲート絶縁膜の下に半導体層をはさんで絶縁
体が埋められ、しかも該絶縁体はソース及びドレイン層
の少なくとも一方に接し、前記絶縁体上のソース及びド
レイン層の深さが前記絶縁゛体上にない部分のソース及
びドレイン層より浅く、しかも前記絶縁体の深さが前記
絶縁体上にない部分のソース及びドレイン層の深さと同
じかそれ以上に深いことを特徴とするMIS トランジ
スタ。 21 半導体基板表面の所望の部分にみぞ分離法、ある
いは選択酸化法を用いて絶縁体を形成し、次いで前記基
板表面全体に前記基板と同種の多結晶もしくは非晶質の
半導体薄膜を成長し、電子ヒームあるいはレーザビーム
を照射することによって前記半導体薄膜を単結晶化し、
次いで前記絶縁体上の半導体薄膜の表面にゲート絶縁膜
を形成し、次いで該ゲート絶縁膜上にゲート電極を形成
し、次いでソース及びドレイン層を前記絶縁体上及びそ
れにつらなる領域にわたって形成することを特徴とする
MIS )ランジスタの製造方法。
[Claims] 1. MIS formed on a semiconductor substrate) In a transistor, an insulator is buried under a gate insulating film with a semiconductor layer sandwiched therebetween, and the insulator is embedded in at least one of the source and drain layers. , the depth of the source and drain layers on the insulator is shallower than the source and drain layers on the portions not on the insulator, and the depth of the insulator is shallower than the source and drain layers on the portions not on the insulator. A MIS transistor characterized by being as deep as or deeper than the drain layer. 21 forming an insulator on a desired portion of the surface of a semiconductor substrate using a groove separation method or a selective oxidation method, then growing a polycrystalline or amorphous semiconductor thin film of the same type as the substrate over the entire surface of the substrate; Single crystallizing the semiconductor thin film by irradiating it with an electron beam or a laser beam,
Next, a gate insulating film is formed on the surface of the semiconductor thin film on the insulator, a gate electrode is formed on the gate insulating film, and then a source and a drain layer are formed on the insulator and over a region connected thereto. Features of MIS) Method for manufacturing transistors.
JP1132083A 1983-01-28 1983-01-28 Metal insulator semiconductor transistor and manufacture thereof Pending JPS59138377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1132083A JPS59138377A (en) 1983-01-28 1983-01-28 Metal insulator semiconductor transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1132083A JPS59138377A (en) 1983-01-28 1983-01-28 Metal insulator semiconductor transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59138377A true JPS59138377A (en) 1984-08-08

Family

ID=11774727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1132083A Pending JPS59138377A (en) 1983-01-28 1983-01-28 Metal insulator semiconductor transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59138377A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936354A (en) * 1994-12-26 1997-02-07 Hyundai Electron Ind Co Ltd Transistor and its preparation
FR2791181A1 (en) * 1999-03-19 2000-09-22 France Telecom NOVEL METAL GRID TRANSISTOR AND UNDERGROUND CHANNEL, COUNTER-DOPING, AND MANUFACTURING METHOD
KR100403010B1 (en) * 1996-06-12 2004-05-24 마츠시타 덴끼 산교 가부시키가이샤 Semiconductor device, semiconductor integrated device, and manufacturing method of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538077A (en) * 1976-07-09 1978-01-25 Matsushita Electric Ind Co Ltd Field effect transistor and its production
JPS57176757A (en) * 1981-04-22 1982-10-30 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538077A (en) * 1976-07-09 1978-01-25 Matsushita Electric Ind Co Ltd Field effect transistor and its production
JPS57176757A (en) * 1981-04-22 1982-10-30 Nec Corp Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936354A (en) * 1994-12-26 1997-02-07 Hyundai Electron Ind Co Ltd Transistor and its preparation
KR100403010B1 (en) * 1996-06-12 2004-05-24 마츠시타 덴끼 산교 가부시키가이샤 Semiconductor device, semiconductor integrated device, and manufacturing method of semiconductor device
FR2791181A1 (en) * 1999-03-19 2000-09-22 France Telecom NOVEL METAL GRID TRANSISTOR AND UNDERGROUND CHANNEL, COUNTER-DOPING, AND MANUFACTURING METHOD
WO2000057482A1 (en) * 1999-03-19 2000-09-28 France Telecom Novel transistor with metal gate and buried counter-doped channel and method for making same

Similar Documents

Publication Publication Date Title
US4463492A (en) Method of forming a semiconductor device on insulating substrate by selective amorphosization followed by simultaneous activation and reconversion to single crystal state
US5426062A (en) Method for forming a silicon on insulator device
JP5220257B2 (en) CMOS vertical replacement gate (VRG) transistor
US6147383A (en) LDD buried channel field effect semiconductor device and manufacturing method
US6303412B1 (en) Methods of forming semiconductor-on-insulator substrates and devices and structures formed thereby
JPH0355984B2 (en)
JPH05183159A (en) Semiconductor device and fabrication thereof
US4507846A (en) Method for making complementary MOS semiconductor devices
US4786955A (en) Semiconductor device with source and drain depth extenders and a method of making the same
JPS626671B2 (en)
US4462151A (en) Method of making high density complementary transistors
US4470191A (en) Process for making complementary transistors by sequential implantations using oxidation barrier masking layer
JPH07153952A (en) Semiconductor device and manufacture thereof
JPH04276662A (en) Manufacture of semiconductor device
JPS59138377A (en) Metal insulator semiconductor transistor and manufacture thereof
KR100408000B1 (en) Method for Forming Semiconductor Device
JP2793141B2 (en) Method of manufacturing semiconductor device having trench element isolation film
JPH0738095A (en) Semiconductor device and its manufacturing method
JPS63211762A (en) Insulated-gate semiconductor device and manufacture thereof
JPH0491481A (en) Mis field effect transistor
JPH0395937A (en) Soi type semiconductor device and manufacture thereof
KR950003900B1 (en) Semiconductor device manufacturing method for soi structure
JPH0334655B2 (en)
JPS61101082A (en) Manufacture of semiconductor device
KR100305205B1 (en) Method for manufacturing semiconductor device