JPS60150643A - Complementary semiconductor device and manufacture thereof - Google Patents

Complementary semiconductor device and manufacture thereof

Info

Publication number
JPS60150643A
JPS60150643A JP59005704A JP570484A JPS60150643A JP S60150643 A JPS60150643 A JP S60150643A JP 59005704 A JP59005704 A JP 59005704A JP 570484 A JP570484 A JP 570484A JP S60150643 A JPS60150643 A JP S60150643A
Authority
JP
Japan
Prior art keywords
conductivity type
impurity
groove
region
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59005704A
Other languages
Japanese (ja)
Inventor
Yoshihide Nagakubo
長久保 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59005704A priority Critical patent/JPS60150643A/en
Publication of JPS60150643A publication Critical patent/JPS60150643A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Abstract

PURPOSE:To realize a semiconductor device of enhanced integration that is completely free of latchup by a method wherein an elements-isolating insulator is buried inside a groove and high-density impurity regions are formed in contact with each other in the vicinity of the bottoms of neighboring grooves. CONSTITUTION:An impurity of the second conductivity type is introduced selectively into a portion 33 of a semiconductor substrate 31 of the first conductivity type. Anisotropic etching is performed to selectively affect the substrate 31 for the formation of grooves 35. Next, an impurity of the first or second conductivity type is introduced into the bottoms of the grooves 35. The impurity is diffused by thermal treatment for the formation of element-forming regions of the first and second conductivity types and of high-density impurity regions 39 of the first or second conductivity type that are in contact with each other in the vicinity of the bottoms of neighboring grooves 35. Further, an insulating material 41 is buried inside the grooves 35 for the isolation of elements for the formation of a MOS element with a chennel of the second conductivity type in the element region of the first conductivity type and a MOS element with a channel of the first conductivity type in the element region of the second conductivity type.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は相補型半導体装置及びその製造方法に関し、特
に相補型半導体装置の素子分離技術に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a complementary semiconductor device and a method for manufacturing the same, and particularly to an element isolation technique for a complementary semiconductor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、半導体装置の素子分離法としては窒化シリコン膜
を耐酸化性マスクとして利用する選択酸化法(Loeo
s法)が最も一般的に使用されている。この方法で相補
型MO8(0MO8)半導体装置の素子分離を行なうと
第1図に示すようになる。図中1は例えばn型シリコン
基板であシ、この基板ノ表面にはp8!!ウェル領域2
が選択的に設けられている。ウェル領域2以外の基板ノ
とウェル領域2との間の表面には窒化シリコン膜をマス
クとする選択酸化法にょシフイールド酸化膜3.・・・
が形成さ水ている。ウェル領域2以外の基板ノ上にはダ
ート酸化膜41を介してダート電極51が形成され、基
板JH面にはゲート電極6!をマスクとするイオン注入
にょシル+型ソース、ドレイン領域6,7が形成されて
おシ、これらによってpチャネルMO8)ランジスタが
構成されている。ウェル領域2上にはゲート酸化膜4!
を介して電極5zが形成され、ウェル領域2表面にはゲ
ート電極52をマスクとするイオン注入によシn+型ソ
ース、ドレイン領域8,9が形成されておシ、これらに
よってnチャネルMO8)ランシスター氷構成されてい
る。
Conventionally, as an element isolation method for semiconductor devices, a selective oxidation method (Loeo
s method) is the most commonly used. When elements of a complementary MO8 (0MO8) semiconductor device are separated using this method, the result is as shown in FIG. In the figure, 1 is, for example, an n-type silicon substrate, and the surface of this substrate is p8! ! Well area 2
is provided selectively. A field oxide film 3 is formed using a selective oxidation method using a silicon nitride film as a mask on the surface between the substrate and the well region 2 other than the well region 2. ...
There is water forming. A dirt electrode 51 is formed on the substrate other than the well region 2 via a dirt oxide film 41, and a gate electrode 6! is formed on the JH surface of the substrate. By ion implantation using the mask as a mask, + type source and drain regions 6 and 7 are formed, thereby forming a p-channel MO transistor (8). There is a gate oxide film 4 on the well region 2!
An electrode 5z is formed through the well region 2, and n+ type source and drain regions 8 and 9 are formed on the surface of the well region 2 by ion implantation using the gate electrode 52 as a mask. Sister ice consists.

しかし、0MO8においてはラッチアッグを防止するた
めに、n+型不純物領域とp+型不純物領域との間に一
定以上の間隔金膜ける必要があシ、選択ば化法(Loc
os法)を用いた場合ウェル領域2を分離するだめのフ
ィールド酸化膜3の幅は通常6μm以上となっている。
However, in 0MO8, in order to prevent latch-ag, it is necessary to place a gold film at a certain distance or more between the n+ type impurity region and the p+ type impurity region.
When using the method (OS method), the width of the field oxide film 3 used to separate the well regions 2 is usually 6 μm or more.

このため、素子の高集積化に対して大きな障害となって
いる。
This poses a major obstacle to higher integration of elements.

そこで、第2図(、)〜(c)に示すような素子分離技
術が提案されている。まず、例えばn型シリコン基板1
ノの一部に選択的にウェル領域形成のために例えばボロ
ンをイオン注入し、ボロンイオン注入層12を形成した
後、異方性エツチングによシ基板1ノの一部を選択的に
エツチングして深い溝13.・・・を形成する(第2図
(&)図示)。次いで、熱処理を行ない前記がロンイオ
ン注入層ノ2のボロンを拡散させてp型つェル領域J4
を形成する。つづいて、全面に例えばCVD 11!化
膜を堆積した後、全面エッチバックして前記溝ノ3.・
・・内にのみCVD酸化膜15.・・・を埋設し素子分
離を行なう(同図(b)図示)。次いで、通常の工程に
従い、ウェル領域J4以外の基板J’l上にケ゛−ト酸
化膜j 6 s を介してダート電極17.を形成し、
ダート電極17.をマスクとするイオン注入によhp+
型ソース、ドレイン領域18.19を形成する。また、
ウェル領域14上にダート酸化膜76、を介してダート
電極17gを形成し、ゲート電極172をマスクとする
イオン注入によpn+W7−ス、ドレイン領域20.2
1を形成する。
Therefore, element isolation techniques as shown in FIGS. 2(,) to (c) have been proposed. First, for example, an n-type silicon substrate 1
For example, boron is ion-implanted to form a well region selectively in a part of the substrate 1 to form a boron ion-implanted layer 12, and then a part of the substrate 1 is selectively etched by anisotropic etching. Deep groove13. ... is formed (as shown in FIG. 2). Next, heat treatment is performed to diffuse the boron in the ion-implanted layer No. 2 to form a p-type well region J4.
form. Next, for example, CVD 11! After depositing the chemical film, the entire surface is etched back to form the groove 3.・
...CVD oxide film only inside 15. . . . is buried to perform element isolation (as shown in FIG. 3(b)). Next, according to a normal process, a dirt electrode 17. form,
Dart electrode 17. hp+ by ion implantation using as a mask
Type source and drain regions 18 and 19 are formed. Also,
A dirt electrode 17g is formed on the well region 14 via the dirt oxide film 76, and pn+W7- source and drain regions 20.2 are formed by ion implantation using the gate electrode 172 as a mask.
form 1.

なお、−CVD酸化膜25.・・・の代わシにm1s。Note that -CVD oxide film 25. m1s instead of...

・・・内に例えば熱ば化膜を介して多結晶シリコン膜を
埋設することによ多素子分離を行なう場合もある。
. . . For example, multi-element isolation may be performed by embedding a polycrystalline silicon film through a thermally evaporated film.

第2図(c)図示のCMO8半導体装置では深い溝J3
w・・・内に埋設されたCVD酸化膜15.・・・によ
ってn十型不純物領域とp生型不純物領域との間隔が実
効的に長くなっているので、耐うッチア、f性能を確実
に向上することができ、CVD酸化膜15.・・・の幅
を約1μmとすることができるので素子の高集積化にと
って有利となる。
In the CMO8 semiconductor device shown in FIG. 2(c), there is a deep groove J3.
CVD oxide film 15 buried in w... . . . effectively increases the distance between the n-type impurity region and the p-type impurity region, so that the resistance to tchia and f performance can be reliably improved, and the CVD oxide film 15. ... can be made approximately 1 μm wide, which is advantageous for higher integration of elements.

しかし、n+型不純物領域とp+型不純物領域との間の
抵抗が大きく、完全にラッチアラ7’;1−とすること
はできない。上記抵抗を低減するニハエビタキシャルウ
ェI・を用い、高濃度の埋込み層を形成して溝内の絶縁
物がこの埋込み層に達するようにするか、あるいはウェ
ル領域の不純物濃度を高くすることが考えられる。しか
し、前者の手段では高濃度の埋込み層を制御性よく形成
することが困禰であシ、またエピタキシャルウェハが高
価なのでコスト面でも問題がおる。一方、後肴の手段で
はウェル領域を高濃度にしすぎると、基板表面の素子特
性に影響するので、表面付近の濃度を低下させるために
逆導電型イオンのカウンターイオン注入等が必要となシ
、工程の煩雑化、制御性の低下、コストアップ等問題が
多い。
However, the resistance between the n+ type impurity region and the p+ type impurity region is large, and it is not possible to completely latch the transistor 7';1-. It is possible to use the above-mentioned Nihaevitaxial wafer I to reduce the resistance and form a buried layer with high concentration so that the insulator in the trench reaches this buried layer, or to increase the impurity concentration in the well region. Conceivable. However, with the former method, it is difficult to form a buried layer of high concentration with good controllability, and since the epitaxial wafer is expensive, there are also problems in terms of cost. On the other hand, in the latter method, if the concentration in the well region is too high, it will affect the device characteristics on the substrate surface, so counter ion implantation of opposite conductivity type ions is required to lower the concentration near the surface. There are many problems such as complicated processes, decreased controllability, and increased costs.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものであシ、エビク
キシャルウエバを使用することなく、基板及びウェル領
域の濃度を通常の濃度としたままで、完全にラッチアッ
プフリーでしかも果績度の向上した相補型半導体装置と
その製造方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and is completely latch-up-free, without using an ubiquitous substrate, while keeping the concentration of the substrate and well region at the normal concentration. The present invention aims to provide a complementary semiconductor device with improved performance and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本願紀1の発明の相補型半導体装置は、1g1導電型の
半導体基板に形成された溝の内部に埋設された素子分離
用の絶縁物(例えば酸化膜あるいは酸化膜を介した多結
晶シリコン膜)と、隣接する溝の底部近傍で互いに接し
て形成された第1又は第2導電型の晶a度不純物領域と
、前記絶縁物によシ分離して形成された第1及び第24
電型の素子領域と、前記第1導電型の素子領域に形成さ
れた第2導電型チヤ栖のMO8素子と、前記第1導電屋
の素子姐域に形成された第XS電型チャネルのMO8素
子とを具備したことを特徴とするものである。
The complementary semiconductor device of the invention of No. 1 of the present application has an insulator for element isolation (for example, an oxide film or a polycrystalline silicon film with an oxide film interposed therebetween) buried inside a groove formed in a semiconductor substrate of 1g1 conductivity type. and first or second conductivity type crystal a impurity regions formed in contact with each other near the bottoms of adjacent trenches, and first and twenty-fourth crystal impurity regions formed separately by the insulator.
an MO8 element of a second conductivity type channel formed in the element region of the first conductivity type, and an MO8 element of a second conductivity type channel formed in the element region of the first conductivity type. The device is characterized by comprising a device.

このような相補型半導体装置によれば、寄生サイリスク
が形成されても高濃度不純物領域(埋込み低抵抗層)に
よって電流増幅率を低下させることができるので、完全
にラッチアップを防止することができる。
According to such a complementary semiconductor device, even if a parasitic silicon risk is formed, the current amplification factor can be reduced by the high concentration impurity region (buried low resistance layer), so latch-up can be completely prevented. .

また、本願第2の発明の相補型半導体装置の製造方法は
、第1導電型の半導体基板の一部に選択的に第24電型
の不純物を導入する工程と、異方性エツチングによシ基
板の一部を選択的にエツチングして溝を形成する工程と
、該溝の底部に第1又は第2導電型の不純物を導入する
工程と、熱処理によシネ細物を拡散させて第1及び第2
導電型の素子領域を形成するとともに隣接する溝の底部
近傍で互いに嬢する第1又は第24電型の高濃度不pr
jll物領域を形成する工程と、前記溝内部に素子分離
用の絶縁物を埋設する工程と、前記嬉1導電製の素子領
域に第2導電型チヤネルのMO8素子を、前記第24電
型の素子領域に第1導電型チヤネルのMO8累予金子れ
ぞれ形成、する工程とを具備したことを特徴とするもの
である。
Further, the method for manufacturing a complementary semiconductor device according to the second invention of the present application includes a step of selectively introducing an impurity of a 24th conductivity type into a part of a semiconductor substrate of a first conductivity type, and an anisotropic etching. A step of selectively etching a part of the substrate to form a groove, a step of introducing an impurity of a first or second conductivity type into the bottom of the groove, and a step of diffusing a cine fine substance by heat treatment to form a first conductivity type impurity. and second
High-concentration impurity impurities of the first or 24th conductivity type that form element regions of the conductivity type and are separated from each other near the bottoms of adjacent grooves.
a step of forming a conductive region, a step of embedding an insulator for element isolation in the trench, and a step of embedding an MO8 element of the second conductivity type channel in the element region made of the first conductivity; The present invention is characterized by comprising a step of forming MO8 graded metals of the first conductivity type channels in the element region.

このような方法によれば極めて制御性よく高濃度不純物
領域を形成することができ、しかも低コストで本願第1
の発明の相補型半導体装置を製造することができる。
According to such a method, a highly-concentrated impurity region can be formed with extremely good controllability, and at low cost.
A complementary semiconductor device according to the invention can be manufactured.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第3図(、)〜(f)を参照し
て説明する。
Embodiments of the present invention will be described below with reference to FIGS. 3(a) to 3(f).

まず、p型シリコン基板3ノ表面に膜厚500^の熱酸
化膜32を形成する。次に、図示しないホトレジストパ
ターンをマスクとして基板3ノの一部に選択的にnウェ
ル形成のためのり/をイオン注入し、リンイオン注入層
33を形成する。つづいて、前記ホトレジストツクター
ンを除去した後、全面に膜厚1μmのCVD酸化膜34
を堆積する。つづいて、図示しないホトレジストパター
ンをマスクとしてCVD酸化膜34及び熱酸化膜32の
一部を選択的にエツチングした後、前記ホトレジストツ
クターンを除去する(2)3図(、)図示)。
First, a thermal oxide film 32 having a thickness of 500^ is formed on the surface of the p-type silicon substrate 3. Next, using a photoresist pattern (not shown) as a mask, ions of glue for forming an n-well are selectively implanted into a part of the substrate 3 to form a phosphorus ion-implanted layer 33. Subsequently, after removing the photoresist cutter, a CVD oxide film 34 with a thickness of 1 μm is formed on the entire surface.
Deposit. Subsequently, after selectively etching a portion of the CVD oxide film 34 and thermal oxide film 32 using a photoresist pattern (not shown) as a mask, the photoresist pattern is removed (2) (as shown in FIG. 3).

次いで、CVD酸化膜34のノやターンをマスクとして
異方性エツチングによシ基板3ノをエツチングし、深さ
5μmの溝35.・・・t5μm間隔で形成する。つづ
いて、1000℃で熱酸化を行ない韓35.・・・の内
面に膜厚約1000℃の熱酸化膜36を形成する(同図
(b)図示)。
Next, using the grooves and turns of the CVD oxide film 34 as a mask, the substrate 3 is etched by anisotropic etching to form grooves 35 with a depth of 5 μm. ... formed at intervals of t5 μm. Next, thermal oxidation was performed at 1000°C and the temperature was 35. A thermal oxide film 36 having a thickness of about 1000° C. is formed on the inner surface of the semiconductor device (as shown in FIG. 3(b)).

次いで、ポロンをドーズ量3 X 10”a++−2の
条件でイオン注入し、溝35.・・・の底部にポロンイ
オン注入層37.・・・を形成する(同図(C)図示)
Next, poron is ion-implanted at a dose of 3 x 10"a++-2 to form a poron ion-implanted layer 37 at the bottom of the groove 35 (as shown in FIG. 3C).
.

次いで、CVD酸化膜34.・・・、基板31表面の熱
酸化膜32及び溝35.・・・内面の熱酸化膜36をエ
ツチングした後、nウェル形成のためのウェルドライブ
インを例えば1200℃の高温熱処理で5時間行ない、
深さ3μmのnウェル領域38を形成する。これと同時
に溝35.・・・底部のがロンイオン注入層37.・・
・のボロンも拡散してp+型不純物領域(埋込み低抵抗
層)39が形成される。このp+型不純物領域39は隣
接する溝36.・・・底部のp+型不純物領域が互いに
接して連続的な構造となっている。つづいて、熱酸化に
よシ溝35.・・・内面を含む基板3ノ表面に膜厚約5
00Xの熱酸化膜40を形成する(同図(d)図示)。
Next, CVD oxide film 34. . . . thermal oxide film 32 and grooves 35 on the surface of the substrate 31. After etching the thermal oxide film 36 on the inner surface, a well drive-in for forming an n-well is performed for 5 hours at a high temperature of 1200° C., for example.
An n-well region 38 with a depth of 3 μm is formed. At the same time, groove 35. . . . The bottom part is the Ron ion implantation layer 37.・・・
The boron of * is also diffused to form a p+ type impurity region (buried low resistance layer) 39. This p+ type impurity region 39 is connected to the adjacent trench 36. ...The p+ type impurity regions at the bottom are in contact with each other to form a continuous structure. Next, the thermal oxidation groove 35. ...Film thickness of approximately 5 on the surface of the substrate 3 including the inner surface
A thermal oxide film 40 of 00X is formed (as shown in FIG. 4(d)).

次いで、全面に多結晶シリコン膜を堆積した後、表面の
平坦化を行ない、溝35.・・・内部にのみ多結晶シリ
コン膜41.・・・を埋設して素子分離を行なう(同図
(−)図示)。
Next, after depositing a polycrystalline silicon film over the entire surface, the surface is planarized and grooves 35. ...Polycrystalline silicon film 41 only inside. . . . is buried to perform element isolation (as shown in the figure (-)).

次いで、周知の技術によりn型ウェル領域38以外の基
板3ノ及びn型つェル頭域38上にそれぞれダート酸化
膜42+ 、422を介してダート電極431+432
を形成する。つづいて、ダート電極431 をマスクと
してウェル領域38以外の基板3ノに選択的に例えば砒
素をイオン注入することによりn+型ソース、ドレイン
領域44.45を形成する。つづいて、ダート電極43
2をマスクとしてウェル領域38に選択的に例えばピロ
ンをイオン注入することによりp十型ノース、ドレイン
領域46.47を形成する。つづいて、全面に層間絶縁
膜48を堆積した後、コンタクトホール49.・・・を
開孔し、更に全面にA7膜を蒸着した後、パターニング
して配線50.・・・を形成し、0MO8を製造する(
同図(f)図示)。
Then, using a well-known technique, dirt electrodes 431+432 are formed on the substrate 3 other than the n-type well region 38 and on the n-type well head region 38 via dirt oxide films 42+ and 422, respectively.
form. Subsequently, using the dirt electrode 431 as a mask, ions of, for example, arsenic are selectively implanted into the substrate 3 other than the well region 38, thereby forming n+ type source and drain regions 44 and 45. Next, the dart electrode 43
By selectively ion-implanting, for example, pyrons, into the well region 38 using No. 2 as a mask, p-type north and drain regions 46 and 47 are formed. Subsequently, after depositing an interlayer insulating film 48 on the entire surface, contact holes 49. . . . After opening a hole and depositing an A7 film on the entire surface, patterning is performed to form wiring 50. ... to produce 0MO8 (
Figure (f) shown).

しかして、第3図(f)図示の0MO8によれば溝35
、・・・底部にp+型不純物領域39が連続的に形成さ
れているので、PNPN又はNPNPのサイリスタが形
成されても、p+型不純物領域39が低抵抗であること
から電流増幅率βが低下し、完全にラッチアップを防止
することができる。
According to 0MO8 shown in FIG. 3(f), the groove 35
,...Since the p+ type impurity region 39 is continuously formed at the bottom, even if a PNPN or NPNP thyristor is formed, the current amplification factor β decreases because the p+ type impurity region 39 has a low resistance. This completely prevents latch-up.

また、本発明方法によれば、エピタキシャルウェハを使
用したり、ウェル領域の濃度を高くすることなくラッチ
アップを防止することができ、コスト的に有利であシ、
シかもp生型不純物領域(埋込み低抵抗層)39は溝3
5.・・・の深さ、不純物量、熱処理時間だけで制御す
ることができ、制御性が極めてよいので、素子特性が劣
化することもない。
Further, according to the method of the present invention, latch-up can be prevented without using an epitaxial wafer or increasing the concentration of the well region, which is advantageous in terms of cost.
In addition, the p-type impurity region (buried low resistance layer) 39 is in the groove 3.
5. ... can be controlled simply by the depth of the impurities, the amount of impurities, and the heat treatment time, and the controllability is extremely good, so that the device characteristics do not deteriorate.

なお、上記実施例では溝35.・・・の深さを5μm1
溝35.・・・の間隔を5μmとしているが、こnに限
らず、溝35.・・・の間隔は溝35.・・・の深さの
2倍以下であればよい。
Note that in the above embodiment, the groove 35. The depth of ... is 5 μm1
Groove 35. Although the interval between the grooves 35. The interval between... is groove 35. It suffices if the depth is less than twice the depth of...

また、第3図(c)の工程で溝35.・・・の底部にボ
ロンをイオン注入する際、溝35.・・・の内面には熱
酸化膜36を形成しているが、このように上記イオン注
入時には少なくとも溝35.・・・内面の側壁に酸化膜
又は窒化シリコン膜を形成しておき、溝35.・・・底
部以外に不純物が導入されにくくなるようにしておくこ
とが望ましい。
Further, in the step of FIG. 3(c), the groove 35. When boron ions are implanted into the bottom of the groove 35. A thermal oxide film 36 is formed on the inner surface of the groove 35. . . . An oxide film or a silicon nitride film is formed on the inner sidewall, and the groove 35. ...It is desirable to make it difficult for impurities to be introduced into areas other than the bottom.

また、上記実施例では溝35.・・・の内部に熱酸化膜
40を介して多結晶シリコン膜4ノを埋設したが、これ
に限らず例えばCVD d化膜を埋設してもよい。
Further, in the above embodiment, the groove 35. Although the polycrystalline silicon film 4 is buried inside the thermal oxide film 40, the present invention is not limited to this, and for example, a CVD oxidized film may be buried.

更に、上記実施例では埋込み低抵抗層をpmの高濃度不
純物領域で形成しているが、nm。
Furthermore, in the above embodiment, the buried low resistance layer is formed of a pm high concentration impurity region, but it is formed of a nm high concentration impurity region.

高濃度不純物領域で形成しても同様の効果を得ることが
できる。
A similar effect can be obtained by forming a high concentration impurity region.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、集積度が高く、シか
も完全にラッチアップフリーな相補型半導体装置及びこ
うした相補型半導体装置を制御性よく、低コストで製造
し得る方法を提供できるものである。
As detailed above, according to the present invention, it is possible to provide a complementary semiconductor device with a high degree of integration and completely latch-up-free, and a method for manufacturing such a complementary semiconductor device with good controllability and at low cost. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の選択酸化法を用いて製造された0MO3
の断面図、第2図(、)〜(C)は従来の他の素子分離
技術を用いた0MO8の製造方法を示す断面図、第3図
(a)〜(f)は本発明の実施例における0MO8の製
造方法を示す断面図である。 3ノ・・・p型シリコン基板、32,36,40・・・
熱酸化膜、33・・・リンイオン注入層、34・・・C
VD酸化膜、35・・・溝、37・・・ボロンイオン注
入層、38・・・n型ウェル領域、39・・・p+型稿
物領域、4ノ・・・多結晶シリコン膜、42.+42り
・・・ダート酸化膜、431+432”’ダート電極、
44 、45・・・n十mソース、ドレイン領域、46
.47・・・p十型ノース、ドレイン領域、48・・・
層間絶縁膜、49・・・コンタクトホール、50・・・
配緋。 第2図 第3図 (a) 第3図 (C) 第3図 (e)
Figure 1 shows 0MO3 produced using the conventional selective oxidation method.
2(a) to 2(C) are sectional views showing a method of manufacturing 0MO8 using other conventional element isolation techniques, and FIGS. 3(a) to 3(f) are cross-sectional views showing an example of the present invention. It is a sectional view showing a manufacturing method of 0MO8 in. 3...p-type silicon substrate, 32, 36, 40...
Thermal oxide film, 33... Phosphorus ion implantation layer, 34...C
VD oxide film, 35... Groove, 37... Boron ion implantation layer, 38... N type well region, 39... P+ type draft region, 4... Polycrystalline silicon film, 42. +42ri...dirt oxide film, 431+432'''dart electrode,
44, 45... n0m source, drain region, 46
.. 47...p type 10 north, drain region, 48...
Interlayer insulating film, 49... contact hole, 50...
Scarlet. Figure 2 Figure 3 (a) Figure 3 (C) Figure 3 (e)

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板に形成された溝の内部に
埋設された素子分離用の絶縁物と、隣接する溝の底部近
傍で互いに接して形成された第1又は第2導電型の高濃
度不純物領域と、前記絶縁物によシ分離して形成された
第1及び第2導電型の素子領域と、前記第1導電型の素
子領域に形成された第24電型チヤネルのMO8素子と
、前記第2導電型の素子領域に形成された第1導電型チ
ヤネルのMO8素子とを具備したことを特徴とする相補
型半導体装置。
(1) An insulator for element isolation buried inside a groove formed in a semiconductor substrate of a first conductivity type, and an insulator of a first conductivity type or a second conductivity type formed in contact with each other near the bottom of an adjacent groove. A high concentration impurity region, first and second conductivity type element regions formed separately by the insulator, and a 24th conductivity type channel MO8 element formed in the first conductivity type element region. and an MO8 element of a first conductivity type channel formed in the element region of the second conductivity type.
(2)隣接する溝の間隔が溝の深さの2倍以下であるこ
とを特徴とする特許請求の範囲第1項記載の相補型半導
体装置。
(2) The complementary semiconductor device according to claim 1, wherein the interval between adjacent grooves is not more than twice the depth of the grooves.
(3)第1導電型の半導体基板の一部に選択的に第2導
電型の不純物を導入する工程と、異方性エツチングによ
シ基板の一部を選択的にエツチングして溝を形成する工
程と、該溝の底部に第1又は第2導電型の不純物を導入
するlc程と、熱処理によシネ鈍物を拡散させて第1及
び第2導電型の素子領域を形成するとともに隣接する溝
の底部近傍で互いに接する第1又は第2導電型の高濃度
不純物領域を形成する工程と、前記溝内部に素子分離用
の絶縁物を埋設する工程と、前記第1導電型の素子領域
に第2導電型チヤネルのMO8素子を、前記第2導電型
の素子領域に第1導電型チヤネルのMO8素子をそれぞ
れ形成する工程とを具備したことを特徴とする相補型半
導体装置の製造方法。
(3) A step of selectively introducing a second conductivity type impurity into a part of the first conductivity type semiconductor substrate, and selectively etching a part of the substrate by anisotropic etching to form a groove. a step of introducing an impurity of the first or second conductivity type into the bottom of the groove, and a step of diffusing the cine dull material by heat treatment to form element regions of the first and second conductivity types, and forming adjacent regions. a step of forming high concentration impurity regions of a first or second conductivity type that contact each other near the bottom of the trench, a step of burying an insulator for element isolation inside the trench, and a step of burying an element region of the first conductivity type. A method for manufacturing a complementary semiconductor device, comprising: forming an MO8 element of a second conductivity type channel, and forming an MO8 element of a first conductivity type channel in the element region of the second conductivity type.
(4)溝の底部に第1又は第24電型の不純物を導入す
る際、少なくとも溝の側壁に酸化膜又は窒化膜を形成し
ておくことを特徴とする特許請求の範囲第3項記載の相
補型半導体装置の製造方法。
(4) An oxide film or a nitride film is formed on at least the side walls of the trench when introducing the first or 24th type impurity into the bottom of the trench. A method for manufacturing a complementary semiconductor device.
JP59005704A 1984-01-18 1984-01-18 Complementary semiconductor device and manufacture thereof Pending JPS60150643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59005704A JPS60150643A (en) 1984-01-18 1984-01-18 Complementary semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59005704A JPS60150643A (en) 1984-01-18 1984-01-18 Complementary semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60150643A true JPS60150643A (en) 1985-08-08

Family

ID=11618498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59005704A Pending JPS60150643A (en) 1984-01-18 1984-01-18 Complementary semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60150643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250662A (en) * 1986-04-24 1987-10-31 Agency Of Ind Science & Technol Complementary type semiconductor device
JPS6476764A (en) * 1987-09-18 1989-03-22 Nec Corp Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250662A (en) * 1986-04-24 1987-10-31 Agency Of Ind Science & Technol Complementary type semiconductor device
JPS6476764A (en) * 1987-09-18 1989-03-22 Nec Corp Manufacture of semiconductor device
JPH0581173B2 (en) * 1987-09-18 1993-11-11 Nippon Electric Co

Similar Documents

Publication Publication Date Title
US6642581B2 (en) Semiconductor device comprising buried channel region
US5455190A (en) Method of making a vertical channel device using buried source techniques
JPH0355984B2 (en)
JPH03145759A (en) Manufacture of semiconductor device
JPS6219061B2 (en)
JPH07176640A (en) Fabrication of semiconductor device
US5191401A (en) MOS transistor with high breakdown voltage
JP3186421B2 (en) Method for manufacturing semiconductor device
JPH0459774B2 (en)
JPH0557741B2 (en)
JPH09102503A (en) Semiconductor device and its manufacture
JPH07106412A (en) Semiconductor device and fabrication thereof
WO2006082618A1 (en) Semiconductor device and method for manufacturing the same
JPS60150644A (en) Complementary semiconductor device and manufacture thereof
JPH07169867A (en) Semiconductor and its manufacture
JPH01130542A (en) Semiconductor device having interelement isolation region and manufacture thereof
JPH10335660A (en) Semiconductor device and manufacture thereof
JPS60150643A (en) Complementary semiconductor device and manufacture thereof
EP0386779B1 (en) MOS field-effect transistor having a high breakdown voltage
JPH0738095A (en) Semiconductor device and its manufacturing method
JP2508218B2 (en) Complementary MIS integrated circuit
JPH0491481A (en) Mis field effect transistor
JPH07254645A (en) Fabrication of semiconductor device
JPH06112481A (en) Manufacture of mos transistor
JPS60150642A (en) Complementary semiconductor device and manufacture thereof