JP2508218B2 - Complementary MIS integrated circuit - Google Patents

Complementary MIS integrated circuit

Info

Publication number
JP2508218B2
JP2508218B2 JP63242760A JP24276088A JP2508218B2 JP 2508218 B2 JP2508218 B2 JP 2508218B2 JP 63242760 A JP63242760 A JP 63242760A JP 24276088 A JP24276088 A JP 24276088A JP 2508218 B2 JP2508218 B2 JP 2508218B2
Authority
JP
Japan
Prior art keywords
well
conductivity
type
type semiconductor
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63242760A
Other languages
Japanese (ja)
Other versions
JPH0289358A (en
Inventor
晃 玉越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP63242760A priority Critical patent/JP2508218B2/en
Publication of JPH0289358A publication Critical patent/JPH0289358A/en
Application granted granted Critical
Publication of JP2508218B2 publication Critical patent/JP2508218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補型MIS集積回路に関し、特にCMOS集積回
路に関する。
The present invention relates to complementary MIS integrated circuits, and more particularly to CMOS integrated circuits.

〔従来の技術〕[Conventional technology]

P型半導体にNウェルを形成した場合の従来例を第4
図に示す。図中4はP-型半導体基板、5は基板中に設け
られたNウェルで、この領域にP+拡散層1−1,1−2及
び上部に設けられたポリシリコンからなるゲート電極3
−2でpMOSトランジスタを設ける。2−3はN+拡散層
で、Nウェル5にウェル電位を与えるものである。2−
1,2−2は半導体基板5に直接設けられたN+拡散層でnMO
Sトランジスタのソース・ドレイン領域である。1−3
はP+拡散層であり、P-型半導体基板4に基板電位を与え
るものである。
Fourth conventional example in which N well is formed in P type semiconductor
Shown in the figure. In the figure, 4 is a P type semiconductor substrate, 5 is an N well provided in the substrate, P + diffusion layers 1-1 and 1-2 in this region and a gate electrode 3 made of polysilicon provided above
A pMOS transistor is provided at -2. Reference numeral 2-3 is an N + diffusion layer for applying a well potential to the N well 5. 2-
1, 2-2 are N + diffusion layers directly provided on the semiconductor substrate 5 and nMO
These are the source / drain regions of the S transistor. 1-3
Is a P + diffusion layer for applying a substrate potential to the P type semiconductor substrate 4.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

第4図に示される従来のCMOS集積回路では、P+拡散層
1−1,1−2、Nウェル5,P-型半導体基板4で形成され
る寄生のバーティカルトランジスタQ2及び、N+拡散層2
−2、P-型半導体基板4、Nウェル5による寄生のラテ
ラルトランジスタQ1が形成されている。そして、上述の
寄生バイポーラトランジスタに対してある量のトリガー
電流が流入するとQ2とQ1の間に正帰還が生じ、Nウェル
5の側面または底面を通してN+拡散層2−3とP+拡散層
1−3間に電流が流れラッチアップを起す。
In the conventional CMOS integrated circuit shown in FIG. 4, the P + diffusion layers 1-1 and 1-2, the parasitic vertical transistor Q2 formed by the N well 5, and the P type semiconductor substrate 4 and the N + diffusion layer are formed. Two
-2, P - type semiconductor substrate 4, and N well 5 form a parasitic lateral transistor Q1. When a certain amount of trigger current flows into the above-mentioned parasitic bipolar transistor, positive feedback occurs between Q2 and Q1, and the N + diffusion layer 2-3 and the P + diffusion layer 1 pass through the side surface or the bottom surface of the N well 5. Current flows between -3 and causes latch-up.

ラッチアップを起こす原因の1つとして、基板電位を
与えるP+拡散層1−3とP-型半導体基板4間の寄生抵抗
Rが存在すると、基板電位が十分に抑えられず、N+拡散
層2−2からP-型半導体基板へ、トリガーにより電子が
流入されやすくなり、ラテラルトランジスタQ1を動作さ
せることがあげられる。そして、Q1の動作により、Nウ
ェルに電子が注入され、ウェル電位が降下されることに
より、バーティカルトランジスタQ2を動作させQ1とQ2間
に正帰還を生じさせる。
As one of the causes of latch-up, if there is a parasitic resistance R between the P + diffusion layer 1-3 that gives a substrate potential and the P type semiconductor substrate 4, the substrate potential cannot be suppressed sufficiently and the N + diffusion layer is not suppressed. Electrons can easily flow into the P type semiconductor substrate from 2-2 by the trigger, and the lateral transistor Q1 can be operated. Then, due to the operation of Q1, electrons are injected into the N well and the well potential is lowered, thereby operating the vertical transistor Q2 and causing positive feedback between Q1 and Q2.

このように従来のCMOS集積回路は、ラッチアップ耐量
が低いという欠点がある。
As described above, the conventional CMOS integrated circuit has a drawback of low latch-up resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の相補型MIS集積回路は、第1導電型半導体基
板に設けられた第2導電型ウェルを備えてなる相補型MI
S集積回路において、前記第2導電型ウェルはその側面
及び底面がそれぞれ絶縁層及び高濃度第1導電型半導体
層で絶縁されているというものである。
A complementary MIS integrated circuit according to the present invention is a complementary MI that comprises a second conductivity type well provided in a first conductivity type semiconductor substrate.
In the S integrated circuit, the side surface and the bottom surface of the second conductivity type well are insulated by an insulating layer and a high-concentration first conductivity type semiconductor layer, respectively.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の主要部を示す半導体
チップの断面図である。
FIG. 1 is a sectional view of a semiconductor chip showing a main part of a first embodiment of the present invention.

この実施例は、P-型半導体基板4に設けられたNウェ
ル5を備えてなるCMOS集積回路において、Nウェル5は
その側面及び底面がそれぞれ酸化シリコンで充填された
分離溝6(絶縁層)及びP+型半導体層7で絶縁されてい
るというものである。
In this embodiment, in a CMOS integrated circuit including an N well 5 provided on a P type semiconductor substrate 4, a separation groove 6 (insulating layer) in which the side surface and the bottom surface of the N well 5 are filled with silicon oxide, respectively. And is insulated by the P + type semiconductor layer 7.

次に、この実施例の製造方法について説明する。 Next, the manufacturing method of this embodiment will be described.

第2図(a)〜(c)は第1の実施例の製造方法を説
明するための工程順に配置した半導体チップの断面図で
ある。
2A to 2C are cross-sectional views of semiconductor chips arranged in the order of steps for explaining the manufacturing method of the first embodiment.

まず、第2図(a)に示すように、シリコンからなる
P-型半導体基板4を、ウェル領域を形成するため、表面
から約5μmの深さまで選択的にエッチングする。そし
てこの領域にボロンなどのP型イオンの打込みを行ない
イオン注入層7°を形成する。注入量1013cm-2ぐらいで
ある。次に第2図(b)に示すように、前述のエッチン
グした部分に選択的にN-型半導体層をエピタキシャル成
長させてNウェル5を形成し、素子分離用のフィールド
絶縁層8を形成する。そして、Nウェル5とP-型半導体
基板4との境界部分に溝を形成し、ゲート酸化膜9を形
成するため基板表面を熱酸化する。このとき溝側面も熱
酸化膜で覆われるが溝を熱酸化膜で充填しきれない場合
は、CVD法で酸化シリコン膜を選択成長させて分離溝6
を形成する。次に、第1図に示すように、多結晶シリコ
ン膜を全面形成させた後パターニングしてゲート電極3
−1,3−2を形成する。更にその直下のゲート酸化膜も
エッチングすることにより、基板面を露出させ、フィー
ルド絶縁膜8及びゲート電極3−1,3−2をマスクにし
て、Asイオンとボロンイオンをそれぞれ選択的に打込む
ことによりN+拡散層2−1〜2−3とP+拡散層1−1〜
1−3を形成する。
First, as shown in FIG. 2 (a), it is made of silicon.
The P type semiconductor substrate 4 is selectively etched to a depth of about 5 μm from the surface to form a well region. Then, P-type ions such as boron are implanted in this region to form an ion implantation layer 7 °. The injection volume is about 10 13 cm -2 . Next, as shown in FIG. 2B, an N type semiconductor layer is selectively epitaxially grown on the above-mentioned etched portion to form an N well 5, and a field insulating layer 8 for element isolation is formed. Then, a groove is formed at the boundary between the N well 5 and the P type semiconductor substrate 4, and the surface of the substrate is thermally oxidized to form the gate oxide film 9. At this time, the side surface of the groove is also covered with the thermal oxide film, but if the groove cannot be completely filled with the thermal oxide film, the silicon oxide film is selectively grown by the CVD method to form the separation groove 6
To form. Next, as shown in FIG. 1, a polycrystalline silicon film is formed on the entire surface and then patterned to form a gate electrode 3
-1,3-2 is formed. Further, the gate oxide film immediately below the gate oxide film is also etched to expose the substrate surface, and As ions and boron ions are selectively implanted using the field insulating film 8 and the gate electrodes 3-1 and 3-2 as masks. As a result, the N + diffusion layers 2-1 to 2-3 and the P + diffusion layers 1-1 to
Form 1-3.

Nウェル5の側面は酸化シリコンで充填された分離溝
6で十分に絶縁され、又底部にはP+型半導体層7があり
寄生NPNトランジスタ(Q1)の増幅率αが小さくなるの
で、ラッチアップ耐量が改善される。
The side surface of the N well 5 is sufficiently insulated by the isolation trench 6 filled with silicon oxide, and the P + type semiconductor layer 7 is present at the bottom, so that the amplification factor α of the parasitic NPN transistor (Q1) becomes small, so that latch up The tolerance is improved.

第3図は本発明の第2の実施例の主要部を主す半導体
チップの断面図である。
FIG. 3 is a cross-sectional view of a semiconductor chip mainly including a main part of the second embodiment of the present invention.

P+型半導体層7の上部にNウェル5及びP型半導体層
10が形成され、Nウェル5にpMOSトランジスタ、P型半
導体層10にnMOSトランジスタが形成されている。この実
施例はNウェル5だけでなくP型半導体層10もまたP-
半導体基板4の上にP+型半導体層7の形成後、エピタキ
シャル成長により形成される。本実施例ではP+型半導体
層が基板全面に形成されているため基板の低抵抗化が一
層大きくなり、ラッチアップにより強くなる利点があ
る。
An N well 5 and a P-type semiconductor layer are formed on the P + -type semiconductor layer 7.
10 are formed, and a pMOS transistor is formed in the N well 5 and an nMOS transistor is formed in the P type semiconductor layer 10. In this embodiment, not only the N well 5 but also the P type semiconductor layer 10 is formed on the P type semiconductor substrate 4 by epitaxial growth after forming the P + type semiconductor layer 7. In this embodiment, since the P + type semiconductor layer is formed on the entire surface of the substrate, there is an advantage that the resistance of the substrate is further lowered and the resistance is increased by the latch-up.

以上の説明において、導電型を逆にしてもそのまま成
立つ。又、MOSトランジスタに限らず、MNOS等のMISトラ
ンジスタを用いてもよいことは改めて詳細に説明するま
でもないことである。
In the above description, the same holds true even if the conductivity type is reversed. Needless to say, the MIS transistor such as MNOS may be used instead of the MOS transistor.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、ウェルの側面には絶
縁層、ウェルの底面には基板と同電型の高濃度低抵抗層
が設けられているため寄生サイリスタ回路に正帰還が発
生することを妨げ相補型MIS集積回路のラッチアップ耐
量が改善される効果がある。
As described above, according to the present invention, since the insulating layer is provided on the side surface of the well and the high-concentration low-resistance layer of the same electric type as the substrate is provided on the bottom surface of the well, positive feedback occurs in the parasitic thyristor circuit. This has the effect of improving the latch-up resistance of the complementary MIS integrated circuit.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例の主要部を示す半導体チ
ップの断面図、第2図(a)〜(c)は第1の実施例の
製造方法を説明するための工程順に配置した半導体チッ
プの断面図、第3図及び第4図はそれぞれ第2の実施例
及び従来例の主要部を示す半導体チップの断面図であ
る。 1−1〜1−3…P+拡散層、2−1〜2−3…N+拡散
層、3−1,3−2…ゲート電極、4…P-型半導体基板、
5…Nウェル、6…分離溝、7…P+型半導体層、8…フ
ィールド絶縁膜、9…ゲート酸化膜、10…P型半導体
層。
FIG. 1 is a sectional view of a semiconductor chip showing a main part of a first embodiment of the present invention, and FIGS. 2A to 2C are arranged in the order of steps for explaining a manufacturing method of the first embodiment. FIGS. 3 and 4 are sectional views of the semiconductor chip showing the main parts of the second embodiment and the conventional example, respectively. 1-1 to 1-3 ... P + diffusion layer, 2-1 to 2-3 ... N + diffusion layer, 3-1, 3-2 ... Gate electrode, 4 ... P type semiconductor substrate,
5 ... N well, 6 ... Isolation trench, 7 ... P + type semiconductor layer, 8 ... Field insulating film, 9 ... Gate oxide film, 10 ... P type semiconductor layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型半導体基板に設けられた第2導
電型ウェル及び前記半導体基板の表面部に選択的に設け
られた所定厚さのフィールド絶縁膜を備えてなる相補型
MIS集積回路において、前記第2導電型ウェルはその側
面及び底面のそれぞれ全面に接する、前記フィールド絶
縁膜の底面より深くにまで達する絶縁性の分離溝及び高
濃度第1導電型半導体層で絶縁され、前記第2導電型ウ
ェルの表面部の前記フィールド絶縁膜で区画された領域
に設けられたウェル電位供給用の高濃度第2導電型拡散
層を有し、前記第2導電型ウェルは前記高濃度第1導電
型半導体層に接する第2導電型エピタキシャル層であ
り、前記分離溝はその側面及び底面に接する酸化シリコ
ン膜のみで埋められていることを特徴とする相補型MIS
集積回路。
1. A complementary type comprising a second conductivity type well provided in a first conductivity type semiconductor substrate and a field insulating film having a predetermined thickness selectively provided on a surface portion of the semiconductor substrate.
In the MIS integrated circuit, the second-conductivity-type well is insulated by a high-concentration first-conductivity-type semiconductor layer and an insulating isolation groove that is in contact with the entire side surface and bottom surface of the well and extends deeper than the bottom surface of the field insulating film. , A high-concentration second-conductivity-type diffusion layer for supplying a well potential, which is provided in a region defined by the field insulating film on the surface of the second-conductivity-type well, The complementary MIS, which is a second-conductivity-type epitaxial layer in contact with the first-concentration-concentration semiconductor layer and in which the isolation trench is filled only with a silicon oxide film in contact with the side and bottom surfaces thereof.
Integrated circuit.
JP63242760A 1988-09-27 1988-09-27 Complementary MIS integrated circuit Expired - Lifetime JP2508218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242760A JP2508218B2 (en) 1988-09-27 1988-09-27 Complementary MIS integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63242760A JP2508218B2 (en) 1988-09-27 1988-09-27 Complementary MIS integrated circuit

Publications (2)

Publication Number Publication Date
JPH0289358A JPH0289358A (en) 1990-03-29
JP2508218B2 true JP2508218B2 (en) 1996-06-19

Family

ID=17093863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242760A Expired - Lifetime JP2508218B2 (en) 1988-09-27 1988-09-27 Complementary MIS integrated circuit

Country Status (1)

Country Link
JP (1) JP2508218B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134627A (en) * 2000-10-23 2002-05-10 Sharp Corp Semiconductor device and its manufacturing method
JP6355311B2 (en) * 2013-10-07 2018-07-11 キヤノン株式会社 Solid-state imaging device, manufacturing method thereof, and imaging system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378183A (en) * 1976-12-22 1978-07-11 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS6024055A (en) * 1983-07-20 1985-02-06 Toshiba Corp Manufacture of complementary type semiconductor device
JPS61242064A (en) * 1985-04-19 1986-10-28 Toshiba Corp Manufacture of complementary type semiconductor device

Also Published As

Publication number Publication date
JPH0289358A (en) 1990-03-29

Similar Documents

Publication Publication Date Title
JP3431467B2 (en) High voltage semiconductor device
US4805008A (en) Semiconductor device having MOSFET and deep polycrystalline silicon region
JPH0315346B2 (en)
JP2019201119A (en) Semiconductor integrated circuit and method for manufacturing the same
JPH0618255B2 (en) Semiconductor device
JPH04239760A (en) Manufacture of semiconductor device
JP2508218B2 (en) Complementary MIS integrated circuit
JPH0783113B2 (en) Semiconductor device
JP2000068372A (en) Semiconductor device and manufacture thereof
JPS6255309B2 (en)
EP0386779B1 (en) MOS field-effect transistor having a high breakdown voltage
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
JP2001060634A (en) Semiconductor device and manufacture thereof
JP2750924B2 (en) Complementary field effect element and method of manufacturing the same
JP2808882B2 (en) Insulated gate bipolar transistor
JP2721155B2 (en) Semiconductor device
US6337252B1 (en) Semiconductor device manufacturing method
JPH1098183A (en) Semiconductor device and manufacture thereof
JPH11345889A (en) Semiconductor device and manufacture thereof
JPS6235666A (en) Mos transistor
JPH079974B2 (en) Manufacturing method of complementary semiconductor device
JP3300238B2 (en) Semiconductor device and manufacturing method thereof
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS63293938A (en) Semiconductor integrated circuit device
JPH0321055A (en) Semiconductor integrated circuit device and manufacture of the same