JPS6024055A - Manufacture of complementary type semiconductor device - Google Patents

Manufacture of complementary type semiconductor device

Info

Publication number
JPS6024055A
JPS6024055A JP58132610A JP13261083A JPS6024055A JP S6024055 A JPS6024055 A JP S6024055A JP 58132610 A JP58132610 A JP 58132610A JP 13261083 A JP13261083 A JP 13261083A JP S6024055 A JPS6024055 A JP S6024055A
Authority
JP
Japan
Prior art keywords
region
type
substrate
well region
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58132610A
Other languages
Japanese (ja)
Other versions
JPH0527264B2 (en
Inventor
Kazuhiko Hashimoto
一彦 橋本
Kazuyoshi Shinada
品田 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58132610A priority Critical patent/JPS6024055A/en
Publication of JPS6024055A publication Critical patent/JPS6024055A/en
Publication of JPH0527264B2 publication Critical patent/JPH0527264B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Abstract

PURPOSE:To obtain a complementary type device having high latch-up resistant performance and degree of integration by a method wherein an insulating film is applied on a first conduction type semiconductor substrate, the substrate is exposed through selective etching, a second conduction type impurity region is formed to the exposed substrate, a semiconductor layer is grown selectively in an epitaxial manner, an impurity is diffused from the semiconductor layer through heat treatment and a well region is shaped. CONSTITUTION:A fixed number of thick field oxide films 32 are formed on the surface of an N type Si substrate 31, and P type impurity ions in high concentration are implanted into an N channel forming region to form an implantation region 33. The upper section of the region 33 is buried with a P type well region 34 and a section between other films 32 with an N type region 36 through a selective epitaxial method while a P<+> type well region 35, impurity concentration therein is increased slowly in the depth direction, is formed under the heat treating region 34 at that time. N<+> type source and drain regions 39 and 40 are shaped in the region 34 and a gate electrode 38 is further formed through a gate oxide film 37 through a normal method, and the same structure is also formed in the region 36 as a P channel.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は相補型半導体装置の製゛造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing a complementary semiconductor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の相補型MO8半導体装置(以下、CMO8と略す
)は第1図に示す構造を有している。すなわち、図中1
はNWシリコン基板であシ、この基板1にはPWウェル
領域2が選択的に設けられている。ウェル領域2以外の
基板1表面には互いに電気的に分離されたP+型ンース
・ドレイン領域364が設けられておシ、これらソース
・ドレイン領域3,4間の基板1上にはダート酸化膜6
を介してダート電極6が設けられている。こうしたP十
型ソース・ドレイン領域3゜4、ダート酸化膜5、ダー
ト電極6等にょシPチャネルMO8)ランジスタが構成
されている。
A conventional complementary MO8 semiconductor device (hereinafter abbreviated as CMO8) has a structure shown in FIG. In other words, 1 in the figure
is a NW silicon substrate, and a PW well region 2 is selectively provided on this substrate 1. P+ type source/drain regions 364 electrically isolated from each other are provided on the surface of the substrate 1 other than the well region 2, and a dirt oxide film 6 is formed on the substrate 1 between these source/drain regions 3 and 4.
A dart electrode 6 is provided through the . These P type source/drain regions 3.4, dirt oxide film 5, dirt electrode 6, etc. constitute a P channel MO transistor.

一方、前記P型ウェル領域20表面には互いに電気的に
分離されたN+型ソース・ドレイン領域7.8が設けら
れ、これらソース・ドレイン領域7″、8間のウェル領
域2上にはダート酸化膜9を介してダート電極10が設
けられている。
On the other hand, N+ type source/drain regions 7.8 are provided on the surface of the P-type well region 20 and are electrically isolated from each other. A dirt electrode 10 is provided with the membrane 9 interposed therebetween.

こうしたn十型ソース・ドレイン領域11 B、fト酸
化膜9、ダート電極10等によシNチャネルMO8)ラ
ンジスタが構成されてbる。このような0MO8で形成
された回路は最も単純なインバータ回路とな)、各トラ
ンジスタのダート電極6.10はアルミニウム配線等で
結線されて入力vin側となり、P+型、継型のドレイ
ン領域4.8間もアルミニウム配線等で結線され、出力
V。utとなる。また、PチャネルMO8)ランジスタ
のP中型ソース領域3と基板バイアス電位印加用の図示
しないN十型領域とはアルミニウム配線等によシ箪源V
DDに接続されている。更に、NチャネルMO8)ラン
ジスタの1型ソース領域7と電位印加用の図示しないP
十型領域とはアルミニウム配線等によシ基準電源V8a
に接続されている。
An N-channel MO transistor is formed by the n-type source/drain regions 11B, the oxide film 9, the dirt electrodes 10, etc. The circuit formed with such 0MO8 is the simplest inverter circuit), the dirt electrodes 6.10 of each transistor are connected with aluminum wiring etc. and become the input vin side, and the P+ type, joint type drain region 4. 8 is also connected with aluminum wiring, etc., and the output is V. It becomes ut. In addition, the P medium-sized source region 3 of the P-channel MO8) transistor and the N-type region (not shown) for applying a substrate bias potential are connected to a source V using aluminum wiring or the like.
Connected to DD. Furthermore, a type 1 source region 7 of the N-channel MO transistor 8) and a P (not shown) for applying a potential are added.
The 10-shaped area refers to the reference power supply V8a, which is caused by aluminum wiring, etc.
It is connected to the.

上述した従来の0MO8ではP型ウェル領域2は1〜1
0にΩのシート抵抗値を有するため、寄生サイリスタが
ターンオンする、いわゆるラッチアップ現象を容易に引
き起こすため、素子性能を著しく劣化させる。
In the conventional 0MO8 described above, the P-type well region 2 is 1 to 1
Since it has a sheet resistance value of 0Ω, it easily causes a so-called latch-up phenomenon in which a parasitic thyristor turns on, which significantly deteriorates device performance.

このラッチアップ現象はP型ウェル領域2の層抵抗を下
げることによシ防止することができる。P型ウェル領域
の層抵抗を下げるにはその接合深さくXρを深く、濃度
を高くすることが最も簡便である。しかしながら、xj
を深くするとXJの制御性が悪くなるため、高集積化の
傾向に反する結果となる。また、濃度を高くするとソー
ス・ドレイン領域との接合容量が増加することから高性
能化の障害となる。
This latch-up phenomenon can be prevented by lowering the layer resistance of the P-type well region 2. In order to lower the layer resistance of the P-type well region, it is easiest to increase the junction depth Xρ and increase the concentration. However, xj
If the depth is increased, the controllability of the XJ deteriorates, resulting in a result that goes against the trend toward higher integration. Furthermore, when the concentration is increased, the junction capacitance with the source/drain regions increases, which becomes an obstacle to high performance.

そこで、こうした欠点を解消するために、第2図に示す
ような構造の0MO8が提案されている( D、E、E
str@ich at al、、Int、Electr
on DevicesMeeting Teeh、Dl
g、P、230,1978 )。
Therefore, in order to eliminate these drawbacks, 0MO8 with the structure shown in Figure 2 has been proposed (D, E, E
str@ich at al,, Int, Electr
on DevicesMeeting Teeh,Dl
g, P, 230, 1978).

すなわち、図中11はN型シリコン基板であシ、この基
板11にはN−型エピタキシャル層12が被覆されてい
る。この基板1ノとN−型エピタキシャル層12の界面
付近にはP+型埋込み層13が選択的に設けられている
。前記エピタキシャル層12表面とP+型埋込み層13
との間にはP型ウェル領域14が設けられでいる。そし
て、前記N″″型エピタキシャル層12表面にはP生型
ソース・ドレイン領域15.16が互いに電気的に分離
されて設けられている。これらP+中型ソースドレイン
領域15.16間のエピタキシャル層12上にはダート
酸化膜11f介してダート電極18が設けられている。
That is, in the figure, reference numeral 11 denotes an N-type silicon substrate, and this substrate 11 is coated with an N-type epitaxial layer 12. A P+ type buried layer 13 is selectively provided near the interface between the substrate 1 and the N- type epitaxial layer 12. The surface of the epitaxial layer 12 and the P+ type buried layer 13
A P-type well region 14 is provided between the two. P type source/drain regions 15 and 16 are provided on the surface of the N″″ type epitaxial layer 12 and are electrically isolated from each other. A dirt electrode 18 is provided on the epitaxial layer 12 between these P+ medium-sized source/drain regions 15 and 16 via a dirt oxide film 11f.

また、前記ウェル領域14にはN中型ソース・ドレイン
領域19.20が互いに電気的に分離されて設けられて
いる。これら1型ソース・ドレイン領域19.20間の
ウェル領域14上にはe−)酸化膜21を介してダート
電極22が設けられている。こうした構造の0MO8に
よれば、低濃度のP型ウェル領域14を高濃度のP+型
埋込み層13上に設けているので、比較的高抵抗のP型
ウェル領域14にその底面のP+型埋込み層13が並列
に結合される構造となシ、その結果、P型ウェル領域1
4の層抵抗を低減できる。
Further, in the well region 14, N medium-sized source/drain regions 19 and 20 are provided so as to be electrically isolated from each other. A dart electrode 22 is provided on the well region 14 between these type 1 source/drain regions 19 and 20 with an oxide film 21 interposed therebetween. According to the 0MO8 having such a structure, since the low concentration P type well region 14 is provided on the high concentration P+ type buried layer 13, the relatively high resistance P type well region 14 has a P+ type buried layer on the bottom surface. 13 are coupled in parallel, as a result, the P-type well region 1
4 layer resistance can be reduced.

しかしながら、P型ウェル領域14の側面にはP+型埋
込み層が存在せず、依然として高抵抗のままであるため
、P型ウェル領域14の側面を通るラッチアップパスに
対処できない欠点を有する。
However, since there is no P+ type buried layer on the side surface of the P-type well region 14 and the resistance remains high, it has the disadvantage that it cannot deal with a latch-up path passing through the side surface of the P-type well region 14.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものであシ、耐う、
チアラグ性能が著しく向上し、しかも集積度の高い相補
型半導体装置を製造し得る方法を提供しようとするもの
である。
The present invention has been made in view of the above circumstances.
The present invention aims to provide a method for manufacturing a complementary semiconductor device with significantly improved chia-lag performance and a high degree of integration.

〔発明の概要〕[Summary of the invention]

本発明の相補型半導体装置の製造方法は、第1導電型の
半導体基板上に絶縁膜を形成し、選択エツチングして基
板を露出させ、その一部に第2導電型の高濃度不純物領
域を形成した後、露出した基板上に半導体層を選択的に
エピタキシャル成長させ、更に熱処理によシ前記不純物
領域から不純物を拡散させてウェル領域を形成すること
を骨子とするものである。
In the method for manufacturing a complementary semiconductor device of the present invention, an insulating film is formed on a semiconductor substrate of a first conductivity type, the substrate is exposed by selective etching, and a high concentration impurity region of a second conductivity type is formed in a part of the insulating film. After the semiconductor layer is formed, a semiconductor layer is selectively epitaxially grown on the exposed substrate, and the impurity is further diffused from the impurity region by heat treatment to form a well region.

こうした方法によれば、ウェル領域側面を通るラッチア
、f/4スをなくシ、寄生タテ型バイポーラトランジス
タについては実効的に不純物濃度を高くすることができ
るので、7jチアッゾが生じにくい相補型半導体装置を
製造することができる。
According to this method, it is possible to eliminate the latch and f/4 waves passing through the side surface of the well region, and to effectively increase the impurity concentration of the parasitic vertical bipolar transistor, thereby making it possible to improve the complementary semiconductor device in which 7j chiazo is less likely to occur. can be manufactured.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第3図(IL)〜(、)及び第
4図(、)〜(c)’e参照して説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 3(IL)-(,) and FIGS. 4(-)-(c)'e.

実施何重 まず、N型シリコン基板31表面に厚さ1.5〜2μm
の熱酸化膜を形成した後、その−都合写真蝕刻法によシ
選択的にエツチングしてフィールド酸化膜32を形成し
、基板31の一部を露出させる(第3図(、)図示)。
First, a layer of 1.5 to 2 μm thick is applied to the surface of the N-type silicon substrate 31.
After forming a thermal oxide film, a field oxide film 32 is formed by selectively etching the field oxide film 32 by photolithography, and a part of the substrate 31 is exposed (as shown in FIG. 3).

次に、Nチャネルトランジスタ形成予定部に選択的に加
速エネルギ 40keV以上、ドース量lXl0〜5X
1015crn−2の条件でゾロンをイオン注入して高
濃度ゾロン含有領域33を形成する(同図(b)図示)
。次いで、選択エピタキシャル成長技術(例えば、N、
Endo et al、*Int、E1ectron 
Device MeetingTeeh、Dig−P、
241−1982 ) t”用い、1000℃。
Next, selectively apply an acceleration energy of 40 keV or more to a portion where an N-channel transistor is to be formed, and a dose of 1X10 to 5X.
Zolon is ion-implanted under the condition of 1015 crn-2 to form a high concentration solon-containing region 33 (as shown in FIG. 3(b)).
. Then selective epitaxial growth techniques (e.g. N,
Endo et al, *Int, E1ectron
Device Meeting Teeh, Dig-P,
241-1982) at 1000°C.

50 Torr= 51)12Ct2:H2:HCt=
0.4:98.6 : 1の条件で約5分間、露出した
基板31上に選択的に前記フィールド酸化膜32と等し
い膜厚に々るまで単結晶シリコン層をエピタキシャル成
長させる。つづいて、1000℃の窒素算囲気中で30
0分間熱処理を行ない、前記高濃度ゾロン含有領域33
からその上の単結晶シリコン層ヘポロンを拡散させてP
型ウェル領域34とその下のP+型埋込み層35を形成
する。また、基板31上の単結晶シリコン層はN型単結
晶シリコ7層36となる。また、P型ウェル領域34の
不純物濃度は表面で低く、深さ方向に徐々に高くなって
いく(同図(C)図示)。次いで、P型ウェル領域34
及びN型単結晶シリコ7層36上にそれぞれダート酸化
膜37 m 37 k介して、r−ト電極38.38f
形成する。つづいて、P型ウェル領域34に選択的にN
型不純物k、N型単結晶シリコ7層36に選択的にP型
不純物をそれぞれイオン注入した後、熱処理してN+ 
iンースのドレイン領域39.40及びP中型ンース・
ドレイン領域41.42’ff形成する(同図(d)図
示)。次いで全面にCVD酸化膜4371隼1mした後
、コンタクトホール44を開孔する。つツuて、全面に
At膜全全蒸着た後、ノやターニングしてAt配線45
を形成し、CMO8’t”製造する(同図(、)図示)
50 Torr= 51) 12Ct2:H2:HCt=
A single crystal silicon layer is selectively epitaxially grown on the exposed substrate 31 under conditions of 0.4:98.6:1 for about 5 minutes until it reaches a thickness equal to that of the field oxide film 32. Next, 30 minutes in a nitrogen atmosphere at 1000°C.
After performing heat treatment for 0 minutes, the high concentration solone containing region 33
Diffusion of the single crystal silicon layer Hepolon on top of P
A type well region 34 and a P+ type buried layer 35 thereunder are formed. Further, the single crystal silicon layer on the substrate 31 becomes an N-type single crystal silicon 7 layer 36. Further, the impurity concentration of the P-type well region 34 is low at the surface and gradually increases in the depth direction (as shown in FIG. 3C). Next, the P-type well region 34
and an r-total electrode 38.38f on the N-type single crystal silicon 7 layer 36 via dirt oxide films 37m and 37k, respectively.
Form. Next, N is selectively applied to the P-type well region 34.
After selectively ion-implanting K-type impurities and P-type impurities into the N-type single crystal silicon 7 layer 36, heat treatment is performed to form N+
The drain region of the I source is 39.40 and the drain region of the P medium source is
Drain regions 41 and 42'ff are formed (as shown in the same figure (d)). Next, a CVD oxide film 4371 of 1 m long is deposited on the entire surface, and then a contact hole 44 is opened. After fully depositing the At film on the entire surface, turning is performed to form the At wiring 45.
and produce CMO8't'' (shown in the same figure (, )).
.

しかして、上記方法によれば、第3図(b)図示の工程
でフィールド酸化膜32t−形成し、Nチャネルトラン
ジスタ形成領域に選択的にゾロンをイオン注入して高濃
度ゾロン含有領域33を形成した後、同図(C)図示の
工程で選択エピタキシャル成長及び熱処理によシP型ウ
ェル領域34を形成しているので、このP型ウェル領域
34はその側面がフィールド酸化膜32に囲まれ、その
底面にP+型埋込み領域35が形成された構造となって
いる。したがって、製造される0MO8はP型りエル領
域34の側面を通るラツチア、7’ d’スが原理的に
あシえず、また寄生タテ型バイポーラトランジスタにつ
いては実効的に不純物濃度が高くなシ、ゲインが低くな
るので、ラッチアップが極めて生じにくくなる。また、
素子特性は半導体層の不純物濃度が低いほど優れている
が、上記実施例の方法によればウェル領域34について
表面濃度を低く、深さ方向に徐々に高くなるという理想
的不純物分布を得ることができるため、素子特性は従来
技術と比較して著しく向上する。更に、従来技術では5
〜10μmの深いPN接合により、p、Wウェル領域と
基板とを分離しているため、製造時における制御性を考
慮して分離領域に余裕をとる必要があシ、集積度があが
らないという欠点を持っていたのに対し、本発明方法に
よれば、P型ウェル領域34と?lJ単結晶シリコン層
36がフィールド酸化膜32f:介して分離することが
でき、これらの分離余裕は加工精度のみによって決定さ
れるので集積度を飛躍的に向上することができる。
According to the above method, the field oxide film 32t- is formed in the step shown in FIG. After that, a P-type well region 34 is formed by selective epitaxial growth and heat treatment in the step shown in FIG. It has a structure in which a P+ type buried region 35 is formed on the bottom surface. Therefore, in the manufactured 0MO8, the lattice and 7'd' waves passing through the side surface of the P-type reel region 34 cannot be avoided in principle, and the parasitic vertical bipolar transistor is effectively made of silicon with a high impurity concentration. , since the gain is low, latch-up is extremely unlikely to occur. Also,
The device characteristics are better as the impurity concentration of the semiconductor layer is lower, but according to the method of the above embodiment, it is not possible to obtain an ideal impurity distribution in which the surface concentration of the well region 34 is low and gradually increases in the depth direction. Therefore, the device characteristics are significantly improved compared to the conventional technology. Furthermore, in the conventional technology, 5
Since the p- and W-well regions and the substrate are separated by a ~10 μm deep PN junction, it is necessary to leave room for the separation region in consideration of controllability during manufacturing, and the disadvantage is that the degree of integration cannot be increased. However, according to the method of the present invention, the P-type well region 34 and ? The IJ single-crystal silicon layer 36 can be separated through the field oxide film 32f, and since the separation margin for these is determined only by the processing accuracy, the degree of integration can be dramatically improved.

なお、ウェル領域の側面を素子分離絶縁膜で囲んだ構造
の0MO8は、例えばシリコン基板の一部を選択的にエ
ツチングして溝を形成した後、この溝に絶縁膜を埋込む
という方法も考えられるが、溝内に完全に密着した状態
で、絶縁膜を埋込むことが困難であシ、特に溝の面積が
広い場合には独々の問題が生じるので好ましい方法とは
いえない。
For 0MO8, which has a structure in which the sides of the well region are surrounded by an element isolation insulating film, it is also possible to consider a method in which, for example, a part of the silicon substrate is selectively etched to form a groove, and then an insulating film is buried in this groove. However, it is difficult to embed the insulating film in the trench in a state in which it is in complete contact with the trench, and problems of its own arise especially when the trench has a large area, so this method cannot be said to be a preferable method.

実施例2 まず、N型シリコン基板51表面に厚さ1.5〜2μm
の熱酸化膜を形成した後、その一部を写真蝕刻法によシ
選択的にエツチングしてフィールド酸化膜52を形成し
、基板5ノの一部を露出させる(第4図(、)図示)。
Example 2 First, a layer with a thickness of 1.5 to 2 μm is formed on the surface of an N-type silicon substrate 51.
After forming a thermal oxide film, a part of it is selectively etched by photolithography to form a field oxide film 52, exposing a part of the substrate 5 (as shown in FIG. 4(a)). ).

次に、Nチャネルトランジスタ形成予定部に選択的に加
速エネルギー40 keV以上、ドーズ量1×1015
〜5×11015C””の条件で献ロンをイオン注入し
て高濃度ポロン含有領域53を形成する。つづいてPチ
ャネルトランジスタ形成予定部に選択的に加速エネルギ
ー40 keV以上、ドーズ量1×10〜5×10 α
 の条件でリンをイオン注入して高濃度リン含有領域5
4を形成する(同図(b)図示)。
Next, selectively apply an acceleration energy of 40 keV or more to a portion where an N-channel transistor is to be formed, and a dose of 1×1015.
A high-concentration poron-containing region 53 is formed by ion-implanting poron under conditions of ˜5×110 15 C''. Next, selectively apply an acceleration energy of 40 keV or more to the area where the P-channel transistor is to be formed, at a dose of 1 x 10 to 5 x 10 α.
High-concentration phosphorus-containing region 5 is formed by ion-implanting phosphorus under the following conditions.
4 (as shown in FIG. 4(b)).

次いで、上記実施例1と同様に選択エピタキシャル技術
を用い、露出した基板3ノ上に選択的に前記フィールド
酸化膜32と等しい膜厚になルマで単結晶シリコン層を
エピタキシャル成長させる。つづいて、1000℃の窒
素芽囲気中で300分間熱処理を行ない、前記高濃度ボ
ロン含有領域53と高濃度リン含有領域54からそれぞ
れボロンとリンを拡散させることによシ、P型ウェル領
域55とその下のP+型埋込み領域56、N型単結晶7
937層52とその下の炉型埋込み領域58をそれぞれ
形成する(同図(C)図示)0以下、上記実施例1と同
様にP型ウェル領域55にNチャネルトランジスタを、
N型単結晶シリコン層にPチャネルトランジスタをそれ
ぞれ形成し、CMO8’i製造する◎しかして、上記実
施例2の方法でも実施例1と同様な効果を得ることがで
きる。また、N型単結晶シリコ7層57についてもその
不純物濃度を表面で低く、深さ方向に徐々に高くなると
いう分布にすることができるので、素子特性を一層向上
することができる。
Next, using the selective epitaxial technique as in Example 1, a single crystal silicon layer is selectively epitaxially grown on the exposed substrate 3 by luma to a thickness equal to that of the field oxide film 32. Subsequently, heat treatment is performed for 300 minutes in a nitrogen atmosphere at 1000° C. to diffuse boron and phosphorus from the high-concentration boron-containing region 53 and the high-concentration phosphorus-containing region 54, respectively, thereby forming a P-type well region 55. Below that, P+ type buried region 56, N type single crystal 7
Form the 937 layer 52 and the furnace-type buried region 58 thereunder (as shown in FIG.
P-channel transistors are formed in each N-type single crystal silicon layer and CMO8'i is manufactured.However, the method of the second embodiment described above can also obtain the same effect as the first embodiment. Further, since the impurity concentration of the N-type single crystal silicon 7 layer 57 can be distributed such that it is low at the surface and gradually increases in the depth direction, the device characteristics can be further improved.

なお、実施例1及び2と同様な構造のCMO8″f:製
造するには、例えば第3図(、)図示゛の工程と同様に
N型シリコン基板上にフィールド酸化膜を形成した後、
選択エピタキシャル技術を用いて露出した基板上に単結
晶シリコン層を形成し、更に、Nチャネルトランジスタ
形成予定部にP型不純物を、Pチャネルトランジスタ形
成予定部にN型不純物をそれぞれイオン注入し、熱処理
するという方法でもよい。
In addition, to manufacture a CMO8''f having the same structure as in Examples 1 and 2, for example, after forming a field oxide film on an N-type silicon substrate in the same manner as in the process shown in FIG.
A single crystal silicon layer is formed on the exposed substrate using selective epitaxial technology, and then P-type impurities are ion-implanted into the area where the N-channel transistor is to be formed, and N-type impurity is ion-implanted into the area where the P-channel transistor is to be formed, followed by heat treatment. You can also do this.

こうした方法によれば、上記実施例1及び2とはP型ウ
ェル領域及びN型単結晶シリコン層の不純物9度分布が
若干具なったものとなるが、上記実施例1及び2とほぼ
同様の効果を得ることができる。
According to this method, the impurity 9 degree distribution in the P-type well region and the N-type single crystal silicon layer is slightly different from that in Examples 1 and 2, but it is almost the same as in Examples 1 and 2. effect can be obtained.

また、上記実施例1及び2ではN型シリコン基板にP型
ウェル領域を形成したが、これに限らずP型シリコン基
板にN型ウェル領域を形成する場合でも同様に適用でき
ることは勿論である。不純物についてもN型不純物とし
てアンチモン、砒素等を用いても同様の効果が得られる
・また、上記実施例1及び2では不純物全ドープするの
にイオン注入を用いたが、これに限らず拡散源塗布法等
の従来技術を用いてもその作用効果は変らない。
Further, in Examples 1 and 2, the P-type well region is formed on the N-type silicon substrate, but the present invention is not limited to this, and the present invention can of course be similarly applied to the case where the N-type well region is formed on the P-type silicon substrate. Similar effects can be obtained by using antimony, arsenic, etc. as N-type impurities.In addition, in Examples 1 and 2 above, ion implantation was used to fully dope the impurities, but this is not limited to this. Even if conventional techniques such as coating methods are used, the effects remain the same.

また、上記実施例1及び2では素子分離用の絶縁膜とし
て二酸化珪素を用いたが、これに限らず、絶縁物であれ
ばよく、窒化珪素、真性珪素あるいはこれらと二酸化珪
素の積層構造でもその作用効果は変わらない。
In addition, in Examples 1 and 2 above, silicon dioxide was used as the insulating film for element isolation, but it is not limited to this, and any insulating material may be used, such as silicon nitride, intrinsic silicon, or a laminated structure of these and silicon dioxide. The effect remains unchanged.

更に、上記実施例1及び2では形成する単結晶シリコン
層の厚さは1.5〜2.0μmが最適であったが、プロ
セス設計を最適化すれば、0.6〜3.0μmでも作用
効果は変わらない。また、不純物全イオン注入した後の
熱処理も、単結晶シリコン中の不純物の再分布が主な目
的であるので、熱処理温度島時間)雰囲気を変えても、
最適化すれば作用効果は変わらない。
Furthermore, in Examples 1 and 2 above, the optimal thickness of the single crystal silicon layer to be formed was 1.5 to 2.0 μm, but if the process design is optimized, a thickness of 0.6 to 3.0 μm can also be used. The effect remains the same. In addition, the main purpose of heat treatment after all impurity ion implantation is to redistribute impurities in single crystal silicon, so even if the heat treatment temperature (temperature, time) and atmosphere are changed,
If you optimize it, the effect will not change.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の相補型半導体装置の製造方法
によれば、相補型半導体装置の耐うッチア、ゾ性能を著
しく向上し、しかも高集積化できる等顕著な効果を奏す
るものて、ある。
As described in detail above, according to the method for manufacturing a complementary semiconductor device of the present invention, there are remarkable effects such as significantly improving the chia and zo performance of the complementary semiconductor device and enabling high integration. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ従来のCMO8の断面図、
第3図(、)〜(、)は本発明の実施例1におけるCM
O8の製造方法を示す断面図、第4図(、)〜(c)は
本発明の実施例2におけるCMO8の製造方法を示す断
面図である。 31.51・・・N型シリコン基板、32.52・・・
フィールド酸化7g、3g、1;3・・・高濃度ゾロン
含有領域、34.55・・・P型ウェル領域、35.5
6・・・P十型埋込み領域、36.57・・・N型単結
晶シリコン層、37・・・ダート酸化膜、38・−ダー
ト電極、39.40・・・継型ンース・トレイン領域、
41.42・・・P十型ンース・ドレイン領域、43・
・・CVD酸化膜、44・・・コンタクトホール、45
・・・At配線、54・・・高濃度リン含有領域、58
・・・N十型埋込み領域。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図
Figures 1 and 2 are cross-sectional views of a conventional CMO8, respectively.
Figure 3 (,) to (,) are CMs in Example 1 of the present invention.
4(a) to 4(c) are cross-sectional views showing a method for manufacturing CMO8 in Example 2 of the present invention. 31.51...N-type silicon substrate, 32.52...
Field oxidation 7g, 3g, 1; 3... High concentration zolon containing region, 34.55... P-type well region, 35.5
6...P ten-shaped buried region, 36.57...N-type single crystal silicon layer, 37...dirt oxide film, 38--dart electrode, 39.40...joint-type second train region,
41.42...P ten type drain region, 43.
...CVD oxide film, 44...contact hole, 45
...At wiring, 54...High concentration phosphorus containing region, 58
...N-type embedded area. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板表面に絶縁膜を形成し、
該絶縁膜の一部を選択的に除去して前記基板を露出させ
る工程と、露出した基板のうち一部の表面−領域に選択
的に第2導電型の高濃度不純物領域を形成する工程と、
露出した基板上に選択的に半導体層をエピタキシャル成
長させる工程と、熱処理によシ前記不純物領域から不純
物を拡散させて第2導電型のウェル領域を形成する工程
とを具備したことを特徴とする相補型半導体装置の製造
方法。
(1) forming an insulating film on the surface of a first conductivity type semiconductor substrate;
selectively removing a portion of the insulating film to expose the substrate; and selectively forming a second conductivity type high concentration impurity region on a portion of the surface of the exposed substrate. ,
A complementary method comprising the steps of selectively epitaxially growing a semiconductor layer on the exposed substrate, and diffusing impurities from the impurity region by heat treatment to form a well region of a second conductivity type. A method for manufacturing a type semiconductor device.
(2) ウェル領域の不純物濃度を表面で低く、深部で
高くすることを特徴とする特許請求の範囲第1項記載の
相補型半導体装置の製造方法。
(2) A method for manufacturing a complementary semiconductor device according to claim 1, characterized in that the impurity concentration of the well region is low at the surface and high at the deep part.
JP58132610A 1983-07-20 1983-07-20 Manufacture of complementary type semiconductor device Granted JPS6024055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132610A JPS6024055A (en) 1983-07-20 1983-07-20 Manufacture of complementary type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132610A JPS6024055A (en) 1983-07-20 1983-07-20 Manufacture of complementary type semiconductor device

Publications (2)

Publication Number Publication Date
JPS6024055A true JPS6024055A (en) 1985-02-06
JPH0527264B2 JPH0527264B2 (en) 1993-04-20

Family

ID=15085351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132610A Granted JPS6024055A (en) 1983-07-20 1983-07-20 Manufacture of complementary type semiconductor device

Country Status (1)

Country Link
JP (1) JPS6024055A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289358A (en) * 1988-09-27 1990-03-29 Nec Corp Complementary mis integrated circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146342A (en) * 1975-06-02 1976-12-15 Monsanto Co Corrosion inhibitor
JPS5310984A (en) * 1976-07-17 1978-01-31 Mitsubishi Electric Corp Complementary type mos integrated circuit
JPS5378183A (en) * 1976-12-22 1978-07-11 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS5493981A (en) * 1978-01-09 1979-07-25 Toshiba Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146342A (en) * 1975-06-02 1976-12-15 Monsanto Co Corrosion inhibitor
JPS5310984A (en) * 1976-07-17 1978-01-31 Mitsubishi Electric Corp Complementary type mos integrated circuit
JPS5378183A (en) * 1976-12-22 1978-07-11 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS5493981A (en) * 1978-01-09 1979-07-25 Toshiba Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289358A (en) * 1988-09-27 1990-03-29 Nec Corp Complementary mis integrated circuit

Also Published As

Publication number Publication date
JPH0527264B2 (en) 1993-04-20

Similar Documents

Publication Publication Date Title
JPH11214684A (en) Semiconductor device and its manufacture
JPH0461127A (en) Manufacture of semiconductor device
EP0134504A1 (en) A C-MOS device and process for manufacturing the same
JPS58501848A (en) High-density CMOS device with conductively interconnected wells and method of manufacturing the same
JPS5880851A (en) Semiconductor device and method of producing same
JPH10209453A (en) Semiconductor device and its manufacture
JPS59208851A (en) Semiconductor device and manufacture thereof
JPH0831542B2 (en) Method for manufacturing BiCMOS field effect transistor
JP2914293B2 (en) Method for manufacturing semiconductor device
JPS6024055A (en) Manufacture of complementary type semiconductor device
JPS6360549B2 (en)
JP2002359367A (en) Semiconductor substrate, its manufacturing method and semiconductor device
JP3097095B2 (en) Method for manufacturing semiconductor device
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPH0575041A (en) Cmos semiconductor device
JPH0249019B2 (en) HANDOTAISOCHINOSEIZOHOHO
JP3089755B2 (en) Semiconductor integrated circuit device
JP2713940B2 (en) Semiconductor device
KR940001257B1 (en) Method of making semiconductor device
JPS5955053A (en) Semiconductor integrated circuit device and manufacture thereof
JPS6074664A (en) Manufacture of complementary type mos semiconductor device
JP2892436B2 (en) Method for manufacturing semiconductor device
JPS6255310B2 (en)
JPS63144567A (en) Manufacture of semiconductor device
JPS6266678A (en) Manufacture of semiconductor device