JPH0249019B2 - HANDOTAISOCHINOSEIZOHOHO - Google Patents

HANDOTAISOCHINOSEIZOHOHO

Info

Publication number
JPH0249019B2
JPH0249019B2 JP1300482A JP1300482A JPH0249019B2 JP H0249019 B2 JPH0249019 B2 JP H0249019B2 JP 1300482 A JP1300482 A JP 1300482A JP 1300482 A JP1300482 A JP 1300482A JP H0249019 B2 JPH0249019 B2 JP H0249019B2
Authority
JP
Japan
Prior art keywords
substrate
region
layer
silicon dioxide
element formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1300482A
Other languages
Japanese (ja)
Other versions
JPS58131748A (en
Inventor
Junji Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1300482A priority Critical patent/JPH0249019B2/en
Publication of JPS58131748A publication Critical patent/JPS58131748A/en
Publication of JPH0249019B2 publication Critical patent/JPH0249019B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は集積回路装置(以下ICと略記)の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for manufacturing an integrated circuit device (hereinafter abbreviated as IC).

(b) 技術の背景 IC技術に於いて素子間を分離する技術は、バ
イポーラ型ICのみならず、MIS型ICにおいても
重要である。
(b) Technical background In IC technology, the technology to isolate elements is important not only for bipolar ICs but also for MIS ICs.

最近、ICの集積度の向上に伴つて微少な面積
で分離領域を形成する技術が求められているが、
従来の局部酸化やV溝形成を基本とする技術で
は、この様な要求には応じきれなくなつている。
Recently, with the increase in the degree of integration of ICs, there has been a need for technology to form isolation regions in minute areas.
Conventional techniques based on local oxidation and V-groove formation are no longer able to meet these demands.

一方、電子ビーム露光技術やリアクテイブ・イ
オン・エツチング技術の発達によつて、比較的厚
い絶縁体層の微細パターンの形成が可能となり、
しかもの端面が略垂直に形成されるようになつて
たので、このようにして形成した絶縁体層パター
ンの間に単結晶半導体層をエピタキシヤル成長さ
せて素子形成領域とし、はじめの絶縁体層を分離
領域とする事が考えられるが、この方法では次に
記す様な問題が起こる。
On the other hand, with the development of electron beam exposure technology and reactive ion etching technology, it has become possible to form fine patterns on relatively thick insulating layers.
Moreover, since the end faces of the semiconductor layer were formed almost vertically, a single crystal semiconductor layer was epitaxially grown between the insulator layer patterns formed in this way to form an element formation region, and the first insulator layer It is conceivable to use the area as a separation area, but this method causes the following problems.

(C) 従来技術と問題点 第1図及び第2図は上記の領域にMOSトラン
ジスタを形成した状態を示すもので、第2図a,
bは夫々第1図に於けるA−A′,B−B′断面を
示している。1は高濃度P型シリコン(Si)基板
であり、二酸化珪素2に囲まれた単結晶領域3
(低濃度P型Si)にMOSトランジスタが形成され
ており、4,5,6は夫々MOSトランジスタの
ソース、ドレイン、ゲートである。
(C) Prior art and problems Figures 1 and 2 show the state in which MOS transistors are formed in the above regions.
b shows cross sections taken along lines A-A' and B-B' in FIG. 1, respectively. 1 is a highly concentrated P-type silicon (Si) substrate with a single crystal region 3 surrounded by silicon dioxide 2.
A MOS transistor is formed in (low concentration P-type Si), and 4, 5, and 6 are the source, drain, and gate of the MOS transistor, respectively.

素子形成領域3が低濃度であるため、第2図b
でゲート6の下部にあつて二酸化珪素2に接する
素子領域3の部分(−で示された部分)、即ち第
1図ではソース、ドレインにはさまれたP-領域
で二酸化珪素2に接する部分(−で示された部
分)にN型チヤネルが寄生的に発生する。このN
型チヤネルによつてソース/ドレイン間が接続さ
れると形成されたMOSトランジスタの特性が劣
化し、ICの機能が実現されないことになる。
Since the element formation region 3 has a low concentration, FIG.
The part of the device region 3 that is below the gate 6 and in contact with the silicon dioxide 2 (the part indicated by -), that is, the part in contact with the silicon dioxide 2 in the P - region sandwiched between the source and drain in FIG. An N-type channel is parasitically generated in the area (portion indicated by -). This N
If the source/drain is connected by a type channel, the characteristics of the formed MOS transistor will deteriorate, and the IC function will not be realized.

寄生チヤネルの発生を防ぐには、第1図のB−
B′断面に対応する第3図に示すように当該領域
7の不純物濃度を高くすればよいが、上記のよう
に素子形成領域をエピタキシヤル成長で形成する
場合には、二酸化珪素に接する領域7のみを高濃
度に成長させる実用的な方法は従来知られていな
い。
To prevent the occurrence of parasitic channels, follow B- in Figure 1.
As shown in FIG. 3 corresponding to cross-section B', the impurity concentration in the region 7 may be increased, but when forming the element forming region by epitaxial growth as described above, the region 7 in contact with silicon dioxide Until now, there is no known practical method for growing only this to a high concentration.

(d) 発明の目的 本発明の目的は選択的エピタキシヤル成長領域
の側面部分を高濃度に形成し、それによつて領域
間分離の新規な形成方法を提供せんとするもので
ある。
(d) Object of the Invention The object of the present invention is to provide a novel method for forming region isolation by forming side portions of selective epitaxial growth regions with high concentration.

(e) 発明の構成 この目的は本発明により単結晶基板表面上に素
子形成領域に対応する略垂直な側面の開口部を有
する絶縁体層を被着する工程、基板表面の上方か
ら斜め方向で少なくとも開口部における絶縁体側
面及び半導体基板表面に−導電型の不純物イオン
の注入を行なう工程、基板上の素子形成領域に注
入イオンと同一導電型の半導体層をエピタキシヤ
ル成長させる工程、絶縁体層側面及び基板表面に
接するエピタキシヤル成長層面を注入イオンの拡
散により、高濃度化する工程を少なくとも有する
ことを特徴とする半導体装置の製造方法によつて
達成される。
(e) Structure of the Invention The object of the present invention is to deposit an insulating layer on the surface of a single-crystal substrate with an opening in a substantially perpendicular side corresponding to an element formation region. A step of implanting impurity ions of a negative conductivity type into the side surface of the insulator and the surface of the semiconductor substrate at least in the opening, a step of epitaxially growing a semiconductor layer of the same conductivity type as the implanted ions in an element formation region on the substrate, and an insulator layer. This is achieved by a method for manufacturing a semiconductor device, which includes at least the step of increasing the concentration of the epitaxially grown layer surface in contact with the side surface and the substrate surface by diffusion of implanted ions.

(f) 発明の実施例 第4図に本発明の一実施例を示す。図において
a〜dはソース、ドレイン、ゲートの位置関係が
明白となるように第1図のA−A′断面に対応し、
eは第3図の如くB−B′断面に対応する。
(f) Embodiment of the invention FIG. 4 shows an embodiment of the invention. In the figure, a to d correspond to the A-A' cross section in Figure 1 so that the positional relationship of the source, drain, and gate is clear.
e corresponds to the BB' cross section as shown in FIG.

まず、高濃度P型Si基板11の表面に比較的厚
い二酸化珪素12(例えば1μm)を全面に被着
し、その上にフオトレジスト層13を選択的に被
着形成する。該フオトレジスト層をマスクとし
て、リアクテイブ・イオン・エツチングにより二
酸化珪素をパターンニングする。リアクテイブ・
イオン・エツチングには横方向エツチングが殆ど
起こらないという特徴があるので、微細パターン
であつても二酸化珪素層は略垂直な側面を持つこ
とになる(第4図a)。
First, a relatively thick layer of silicon dioxide 12 (for example, 1 μm) is deposited on the entire surface of a high concentration P-type Si substrate 11, and a photoresist layer 13 is selectively deposited thereon. Using the photoresist layer as a mask, silicon dioxide is patterned by reactive ion etching. reactive
Since ion etching has the characteristic that almost no lateral etching occurs, the silicon dioxide layer will have substantially vertical sides even if it is a fine pattern (FIG. 4a).

次に該Si基板表面に、斜め方向から硼素イオン
(B+)の注入を行う。これによつて第4図bに
示すようにSi基板内だけではなく二酸化珪素層側
面にも硼素イオンが注入される。該硼素イオン注
入は前記フオトレジスト層を除去する前に実施し
てもよい。
Next, boron ions (B+) are implanted into the surface of the Si substrate from an oblique direction. As a result, boron ions are implanted not only into the Si substrate but also into the side surfaces of the silicon dioxide layer, as shown in FIG. 4b. The boron ion implantation may be performed before removing the photoresist layer.

注入方向の基板法線からの傾きは、例えば15度
といつた値であるが、これは装置による制約が無
ければもつと大きい値であつても差支えない。傾
ける方向は全方向であり、これはSi基板を回転す
ることによつて実現される。また注入エネルギー
は、注入されたイオンが表面近傍で最大の分布を
もつように選ばれ、ドーズ量は1012/cm2乃至
1013/cm2である。
The inclination of the injection direction from the substrate normal is, for example, a value of 15 degrees, but it may be a larger value if there are no restrictions imposed by the apparatus. The tilting direction is omnidirectional, and this is achieved by rotating the Si substrate. In addition, the implantation energy is selected so that the implanted ions have the maximum distribution near the surface, and the dose is 10 12 /cm 2 to
10 13 /cm 2 .

以上の処理が行なわれたSi基板上に、第1図A
−A′断面に対応する第4図cに示すようにオー
トドーピングにより低濃度P型Si層14がエピタ
キシヤル成長される。この時二酸化珪素層の側面
に注入されていた硼素イオンがエピタキシヤル成
長領域に拡散し、該領域側面に高濃度P型領域1
5が形成される。
On the Si substrate that has undergone the above treatment,
As shown in FIG. 4c corresponding to the -A' cross section, a low concentration P-type Si layer 14 is epitaxially grown by autodoping. At this time, the boron ions implanted into the side surface of the silicon dioxide layer diffuse into the epitaxial growth region, forming a highly doped P-type region 1 on the side surface of the region.
5 is formed.

このエピタキシヤル成長は減圧CVD法によつ
て行なわれる、その条件は圧力45Torr.、基板温
度1080℃、原料ガスSiH2CI2+H2である。この条
件下ではSi基板上にはエピタキシヤル成長層は毎
分0.1μmの速度で成長し、二酸化珪素上には成長
しない。
This epitaxial growth is performed by a low pressure CVD method, and the conditions are a pressure of 45 Torr., a substrate temperature of 1080° C., and a raw material gas of SiH 2 CI 2 +H 2 . Under these conditions, the epitaxial growth layer grows on the Si substrate at a rate of 0.1 μm per minute, but does not grow on the silicon dioxide.

硼素イオンの拡散による高濃度P型領域の形成
をより確実にするには、別に熱処理工程をもうけ
ることが有効である。
In order to more reliably form the high-concentration P-type region through the diffusion of boron ions, it is effective to provide a separate heat treatment step.

このようにして形成したエピタキシヤル成長領
域に第4図dに示すように、ゲート電極をマスク
としてソース及びドレイン領域が形成される。
As shown in FIG. 4D, source and drain regions are formed in the epitaxial growth region thus formed using the gate electrode as a mask.

この場合の不純物濃度は、例えば NORTH−HOLLAND PUBLISHING
COMPANY−AMSTERDAM1981年発行の
「ION IMPLANTATION EQUIPMENT
AND TECHNIQUES」の176頁Fig1の
「Relation of various application fields in
semiconductor device processiong and the
required ion dose」等で周知の如く、例えば砒
素イオンAs+のドーズ量は略1015〜1016であり、
先に打込まれた硼素イオンのドーズ量より大であ
るので、図の如くP+領域をもN型となし、ソー
ス・ドレイン領域は二酸化珪素12に接し、Nチ
ヤネルMOSトランジスタが形成される。
In this case, the impurity concentration is, for example, NORTH−HOLLAND PUBLISHING
COMPANY−AMSTERDAM “ION IMPLANTATION EQUIPMENT” published in 1981
"Relation of various application fields in
semiconductor device processing and the
For example, the dose of arsenic ion As + is approximately 10 15 to 10 16 , as is well known in ``required ion dose''.
Since the dose is larger than that of the previously implanted boron ions, the P + region is also made N type as shown in the figure, and the source and drain regions are in contact with silicon dioxide 12, forming an N channel MOS transistor.

第4図eは第1図のB−B′断面に対応するも
のであり、ソースとドレインに挟まれた領域にお
いて二酸化珪素に接する部分が高濃度領域である
P+となつており、この部分がチヤンネルカツト
の効果を有す。なおこの場合第4図dにおけるソ
ース、ドレイン領域の下方にあつて二酸化珪素に
接する部分のP+領域はチヤンネルカツトの効果
とは無関係である。
Figure 4e corresponds to the B-B' cross section in Figure 1, and the region between the source and drain and in contact with silicon dioxide is a high concentration region.
P + , and this part has a channel cut effect. In this case, the P + region below the source and drain regions and in contact with silicon dioxide in FIG. 4d is unrelated to the effect of the channel cut.

以上、実施例によつて本発明の説明を行なつた
が、二酸化珪素パターンの最少寸法は電子線露光
或いはX線露光によれば0.2μmを容易に実現する
ことができる。さらにそれ以下も可能であるが、
極端に狭くするとエピタキシヤル成長領域間の寄
生容量が大となるので余り得策にはならない。
The present invention has been described above with reference to Examples, and the minimum dimension of the silicon dioxide pattern can easily be 0.2 μm by electron beam exposure or X-ray exposure. Even less is possible, but
If it is made extremely narrow, the parasitic capacitance between the epitaxial growth regions will increase, which is not a good idea.

また減圧CVDは、この発明の実施には80Torr.
以下の圧力が適しており、原料ガスへのドーピン
グも必要に応じて行なわれる。上記実施例では、
溝部へのSiの充填に減圧CVD法を用いたが、他
の方法、例えばアモルフアスSiの垂直蒸着/リフ
トオフ/ビームアニールによる単結晶化等の方法
によつてもよい。
In addition, reduced pressure CVD is required to carry out this invention at a pressure of 80 Torr.
The following pressures are suitable, and the source gas is doped as necessary. In the above example,
Although the low pressure CVD method was used to fill the grooves with Si, other methods such as single crystallization using vertical evaporation/lift-off/beam annealing of amorphous Si may also be used.

(g) 発明の効果 本発明によれば極めて微細な領域にソース・ド
レイン間の如き領域の分離が可能となり、ICの
集積度を大幅に高めることができる。
(g) Effects of the Invention According to the present invention, it is possible to separate regions such as between a source and a drain in an extremely fine region, and the degree of integration of an IC can be greatly increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図a,bは従来技術の問題点を
示す図、第3図は本発明の目的を示す図、第4図
a〜eは本発明の一実施例を示す図であつて、図
に於いて、1,11はSi基板、2,12は二酸化
珪素、3は素子形成領域、4,5,6は夫々
MOSトランジスタのソース、ドレイン、ゲート、
7,15,15′は高濃度P型領域、14は低濃
度P型領域、13はフオトレジストである。
Figures 1 and 2a and 2b are diagrams showing problems in the prior art, Figure 3 is a diagram showing the object of the present invention, and Figures 4a to 4e are diagrams showing an embodiment of the present invention. In the figure, 1 and 11 are Si substrates, 2 and 12 are silicon dioxide, 3 is an element formation region, and 4, 5, and 6 are respectively
MOS transistor source, drain, gate,
7, 15, and 15' are high concentration P type regions, 14 is a low concentration P type region, and 13 is a photoresist.

Claims (1)

【特許請求の範囲】[Claims] 1 単結晶基板表面上に素子形成領域に対応する
略垂直な側面の開口部を有する絶縁体層を被着す
る工程、基板表面の上方から斜め方向で少なくと
も開口部における絶縁体側面及び半導体基板表面
に−導電型の不純物イオンの注入を行なう工程、
基板上の素子形成領域に注入イオンと同一導電型
の半導体層をエピタキシヤル成長させる工程、絶
縁体層側面及び基板表面に接するエピタキシヤル
成長層面を注入イオンの拡散により、高濃度化す
る工程を少なくとも有することを特徴とする半導
体装置の製造方法。
1. A step of depositing an insulating layer having an opening with a substantially vertical side surface corresponding to the element formation region on the surface of a single crystal substrate, a step of depositing an insulating layer having an opening with a substantially vertical side surface corresponding to the element formation region, and forming the insulator side surface and the semiconductor substrate surface at least in the opening in an oblique direction from above the substrate surface. - a step of implanting conductive type impurity ions;
At least a step of epitaxially growing a semiconductor layer of the same conductivity type as the implanted ions in the element formation region on the substrate, and a step of increasing the concentration of the epitaxially grown layer in contact with the side surfaces of the insulating layer and the surface of the substrate by diffusion of the implanted ions. A method for manufacturing a semiconductor device, comprising:
JP1300482A 1982-01-29 1982-01-29 HANDOTAISOCHINOSEIZOHOHO Expired - Lifetime JPH0249019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1300482A JPH0249019B2 (en) 1982-01-29 1982-01-29 HANDOTAISOCHINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1300482A JPH0249019B2 (en) 1982-01-29 1982-01-29 HANDOTAISOCHINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS58131748A JPS58131748A (en) 1983-08-05
JPH0249019B2 true JPH0249019B2 (en) 1990-10-26

Family

ID=11821026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300482A Expired - Lifetime JPH0249019B2 (en) 1982-01-29 1982-01-29 HANDOTAISOCHINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0249019B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010034A (en) * 1989-03-07 1991-04-23 National Semiconductor Corporation CMOS and bipolar fabrication process using selective epitaxial growth scalable to below 0.5 micron
FR2774509B1 (en) * 1998-01-30 2001-11-16 Sgs Thomson Microelectronics METHOD FOR DEPOSITING A REGION OF SINGLE CRYSTAL SILICON
US6143073A (en) * 1998-11-19 2000-11-07 Heraeus Shin-Etsu America Methods and apparatus for minimizing white point defects in quartz glass crucibles
JP2002026274A (en) 2000-05-01 2002-01-25 Mitsubishi Electric Corp Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS58131748A (en) 1983-08-05

Similar Documents

Publication Publication Date Title
US4749441A (en) Semiconductor mushroom structure fabrication
US4686758A (en) Three-dimensional CMOS using selective epitaxial growth
US4717681A (en) Method of making a heterojunction bipolar transistor with SIPOS
US5283456A (en) Vertical gate transistor with low temperature epitaxial channel
EP0227085A2 (en) A method of manufacturing IGFETs having minimal junction depth using epitaxial recrystallization
JPH0582439A (en) Manufacture of semiconductor device with grown layer on insulating layer and mos semiconductor device
US4808546A (en) SOI process for forming a thin film transistor using solid phase epitaxy
US4992846A (en) Polycrystalline silicon active layer for good carrier mobility
JPH05198543A (en) Manufacture of semiconductor device and semiconductor substrate
US5106768A (en) Method for the manufacture of CMOS FET by P+ maskless technique
US4716128A (en) Method of fabricating silicon-on-insulator like devices
JPS61177770A (en) Manufacture of semiconductor having complementary area
JP2633873B2 (en) Method for manufacturing semiconductor BiCMOS device
JPH0249019B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPH0582441A (en) Silicon carbide bipolar semiconductor device and its manufacture
EP0233791A2 (en) Insulated gate field effect transistor and method of manufacture thereof
JPH0113210B2 (en)
JPS6094778A (en) Field effect transistor and manufacture thereof
KR930001558B1 (en) Manufacturing method of bipolar transistor
JPH0362015B2 (en)
JPS59138377A (en) Metal insulator semiconductor transistor and manufacture thereof
JPH0547797A (en) Fabrication of field effect transistor
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH10177956A (en) Method for manufacturing semiconductor and semiconductor device
JPS59105367A (en) Manufacture of metal oxide semiconductor type transistor