JPS6050063B2 - Complementary MOS semiconductor device and manufacturing method thereof - Google Patents

Complementary MOS semiconductor device and manufacturing method thereof

Info

Publication number
JPS6050063B2
JPS6050063B2 JP57146409A JP14640982A JPS6050063B2 JP S6050063 B2 JPS6050063 B2 JP S6050063B2 JP 57146409 A JP57146409 A JP 57146409A JP 14640982 A JP14640982 A JP 14640982A JP S6050063 B2 JPS6050063 B2 JP S6050063B2
Authority
JP
Japan
Prior art keywords
conductivity type
region
recess
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57146409A
Other languages
Japanese (ja)
Other versions
JPS5935463A (en
Inventor
吉秀 長久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57146409A priority Critical patent/JPS6050063B2/en
Publication of JPS5935463A publication Critical patent/JPS5935463A/en
Publication of JPS6050063B2 publication Critical patent/JPS6050063B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は相補型MOS半導体装置及ひその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a complementary MOS semiconductor device and a method for manufacturing the same.

〔発明の技術的背景〕[Technical background of the invention]

従来の相補型MOS半導体装置、例えばCMSOインバ
ータは第1図に示す如き構造を有している。
A conventional complementary MOS semiconductor device, such as a CMSO inverter, has a structure as shown in FIG.

すなわち、図中1はp型シリコン基板であり、この基板
1にはnウェル領域2が選択的に設けられている。nウ
ェル領域2以外の基板1表面には互に電気的に分離され
たn+型のソース、ドレイン領域3,4が設けられ、こ
れらソース、ドレイン領域3,4間の基板1上にはゲー
ト酸化膜5を介してゲート電極6が設けられている。こ
うした耐型ソース、ドレイン領域3,4、ゲート酸化膜
5、ゲート電極6等によりnチャンネルMOSトランジ
スタが構成されている。一方、前記nウェル領域2表面
には互いに電気的に分離されたp+型ソース、ドレイン
領域7,8が設けられ、これらp+型ソース、ドレイン
領域7,8間のウェル領域2上にはゲート酸化膜9を介
してゲ.ート電極10が設けられている。こうしたp+
型ソース、ドレイン領域7,8、ゲート酸化膜9、ゲー
ト電極10等によりpチャンネルMOSトランジスタが
構成されている。また、各トランジスタのゲート領域6
,10はアルミニウム配線等で.結線され入力■Inと
なり、n+型、p+型のドレイン領域4,8間もアルミ
ニウム配線等で結線されて出力■0utとなる。更に、
P+型ソース領域7はアルミニウム配線等により電源■
DDに接続されており、n+型ソース領域3はアルミニ
ウム配線等に・より基準電源■Ssに接続されている。
〔背景技術の問題点〕 上述したCMOSインバータは消費電力が少ない等種々
の利点を有する一方て構造上及び製造方法上以下のよう
な問題点がある。
That is, 1 in the figure is a p-type silicon substrate, and an n-well region 2 is selectively provided in this substrate 1. N+ type source and drain regions 3 and 4 electrically isolated from each other are provided on the surface of the substrate 1 other than the n well region 2, and gate oxide is formed on the substrate 1 between these source and drain regions 3 and 4. A gate electrode 6 is provided with the film 5 interposed therebetween. An n-channel MOS transistor is constituted by the type-resistant source and drain regions 3 and 4, gate oxide film 5, gate electrode 6, and the like. On the other hand, p+ type source and drain regions 7 and 8 which are electrically isolated from each other are provided on the surface of the n well region 2, and a gate oxide is formed on the well region 2 between these p+ type source and drain regions 7 and 8. Ge. via membrane 9. A gate electrode 10 is provided. These p+
A p-channel MOS transistor is constituted by source and drain regions 7 and 8, a gate oxide film 9, a gate electrode 10, and the like. In addition, the gate region 6 of each transistor
, 10 is aluminum wiring, etc. The input is connected by a wire to become an input ``In'', and the n+ type and p+ type drain regions 4 and 8 are also connected by aluminum wiring or the like to become an output ``0ut''. Furthermore,
The P+ type source region 7 is connected to the power source by aluminum wiring, etc.
DD, and the n+ type source region 3 is connected to a reference power source Ss by aluminum wiring or the like.
[Problems of Background Art] While the above-described CMOS inverter has various advantages such as low power consumption, it has the following problems in terms of structure and manufacturing method.

(1)各トランジスタが平面的に構成されているので大
幅に集積度を向上させることが困難てある。
(1) Since each transistor is configured in a planar manner, it is difficult to significantly improve the degree of integration.

(Ii)微細化しようとすると、ショートチャンネル効
果のためパンチスルーが起こるという欠点がある。
(Ii) When miniaturization is attempted, there is a drawback that punch-through occurs due to the short channel effect.

(IiO寄生バイポーラトランジスタが形成されるため
、動作時にラッチアップ現象が起こり、素子ノ が破壊
されるおそれがある。
(Since an IiO parasitic bipolar transistor is formed, a latch-up phenomenon may occur during operation, and the device may be destroyed.

(Iv) ゲート電極が基板表面から突出して平坦でな
いため、微細な配線形成が困難ある。
(Iv) Since the gate electrode protrudes from the substrate surface and is not flat, it is difficult to form fine wiring.

(V)各トランジスタのチャンネル長は多結晶シリコン
ゲートの場合にはゲート電極の幅によつて決定されるが
、微細な素子になると接合深さとの関係からチャンネル
長にバラツキが生じ易い。
(V) The channel length of each transistor is determined by the width of the gate electrode in the case of a polycrystalline silicon gate, but in the case of a fine element, variations in channel length tend to occur due to the relationship with the junction depth.

〔発明の目的〕[Purpose of the invention]

本発明はパンチスルー現象、ラッチアップ現象゛がなく
、飛躍的に集積度を向上し得る相補型MOS半導体装置
及びこのような相補型MOS半導体装置の微細な配線形
成が容易で、チャンネル長を良好に制御し得る製造方法
を提供することを目的とするものである。
The present invention provides a complementary MOS semiconductor device which is free from punch-through phenomenon and latch-up phenomenon and can dramatically improve the degree of integration, and which facilitates the formation of fine wiring for such a complementary MOS semiconductor device and has a good channel length. The purpose of this invention is to provide a manufacturing method that can be controlled in a controlled manner.

〔発明の概要〕[Summary of the invention]

本願第1の発明の相補型MOS半導体装置は、第1導電
型の半導体基板(例えはp型シリコン基板)と、この基
板表面に選択的に設けられた第2導電型のウェル領域(
n型ウェル領域)と、このウェル領域表面及びその上に
絶縁膜をはさんて積層状に形成された第1導電型(p+
型)のソース、ドレイン領域と、前記基板表面及びその
上に絶縁膜をはさんて積層状に形成された第2導電型(
n+型)のソース、ドレイン領域と、これら第1導電型
のソース、ドレイン領域と第2導電型のソース、ドレイ
ン領域との間に位置する凹部内の両側面に形成されたチ
ャンネル領域となる半導体層及びその表面に被覆された
ゲート絶縁膜と、前記凹部内にゲート絶縁膜を介して埋
込まれるとともに前記基板及びウェル領域と絶縁された
ゲート電極とを具備したことを特徴とするものである。
A complementary MOS semiconductor device according to a first aspect of the present invention includes a semiconductor substrate of a first conductivity type (for example, a p-type silicon substrate) and a well region of a second conductivity type selectively provided on the surface of the substrate (
an n-type well region), a first conductivity type (p+
a second conductivity type (type) formed in a stacked manner by sandwiching source and drain regions of the substrate surface and an insulating film thereon;
n+ type) source and drain regions, and a semiconductor serving as a channel region formed on both sides of a recess located between the first conductivity type source and drain regions and the second conductivity type source and drain regions. The method is characterized by comprising a layer, a gate insulating film coated on the surface thereof, and a gate electrode embedded in the recess via the gate insulating film and insulated from the substrate and well region. .

こうした構造によれば飛躍的に高集積化することができ
、パンチスルー現象、ラッチアップ現象がなくなる。ま
た、本願第2の発明の相補型MOS半導体装置の製造方
法は、第1導電型の半導体基板(例えばp型シリコン基
板)表面に選択的に第2導電型のウェル領域(n型ウェ
ル領域)を形成する工程と、この第2導電型のウェル領
域内に第1導電型9の不純物領域(例えばp+型ドレイ
ン領域)を、前記基板表面に第2導電型の不純物領域(
例ええば酎型ドレイン領域)を夫々形成する工程と、全
面に絶縁膜を堆積した後、更に前記第1及び第2導電型
の少なくとも一部上に対応する絶縁膜上1に半導体膜を
形成する工程と、この半導体膜内に前記第1導電型不純
物領域(p+型ドレイン領域)に対向して積層状に第1
導電型の領域(p+型ソース領域)を、前記第2導電型
不純物領域(n+型ドレイン領域)に対向して積層状に
第2導1電型の領域(n+型ソース領域)を夫々形成す
る工程と、これらp+型及びn+型のソース領域の間の
半導体膜、前記絶縁膜及びウェル領域の深さより深い基
板表面に亘つて順次エッチング除去し、凹部を形成する
工程と、この凹部内に前記基板表2面のp+型及び酎型
のドレイン領域が少なくとも露出するように絶縁体を埋
込む工程と、前記p+型のソース、ドレイン領域領域が
露出する一側面並びにこの一側面に対向し、前記n+型
のソース、ドレイン領域が露出する凹部内の他側面に2
夫々半導体層からなるチャンネル領域を形成した後、こ
の半導体層表面にゲート絶縁膜を形成する工程と、前記
凹部内にゲート絶縁膜を介してゲート電極を埋込む工程
とを具備したことを特徴とするものてある。
With such a structure, it is possible to dramatically increase integration, and punch-through and latch-up phenomena are eliminated. Further, in the method for manufacturing a complementary MOS semiconductor device according to the second invention of the present application, a well region of a second conductivity type (an n-type well region) is selectively formed on the surface of a semiconductor substrate of a first conductivity type (for example, a p-type silicon substrate). forming an impurity region of the first conductivity type 9 (for example, a p+ type drain region) in the well region of the second conductivity type, and forming an impurity region of the second conductivity type (for example, a p+ type drain region) on the surface of the substrate.
For example, after forming an insulating film on the entire surface (for example, forming a dowel-shaped drain region) and depositing an insulating film on the entire surface, a semiconductor film is further formed on the insulating film 1 corresponding to at least a portion of the first and second conductivity types. step, and a first conductivity type impurity region (p+ type drain region) is formed in a stacked manner in this semiconductor film, facing the first conductivity type impurity region (p+ type drain region).
forming a conductivity type region (p+ type source region) and a second conductivity type region (n+ type source region) in a stacked manner so as to face the second conductivity type impurity region (n+ type drain region); a step of sequentially etching away the semiconductor film between the p+ type and n+ type source regions, the insulating film, and the substrate surface deeper than the depth of the well region to form a recess; and a step of forming a recess in the recess. a step of embedding an insulator so that at least the p+ type and shochu-type drain regions on two surfaces of the substrate are exposed; 2 on the other side of the recess where the n+ type source and drain regions are exposed.
The method is characterized by comprising the steps of forming a gate insulating film on the surface of the semiconductor layer after forming channel regions each made of a semiconductor layer, and embedding a gate electrode in the recess via the gate insulating film. There are things to do.

こうした方法によれば、pチャンネル及びnチャンネル
の各トランジスタのチャンネル長が絶縁膜の厚さて決定
され、チャンネル長の制御がきわめて良好に行え、また
微細な配線形式も容易となる。
According to this method, the channel length of each of the p-channel and n-channel transistors is determined by the thickness of the insulating film, and the channel length can be controlled extremely well, and fine wiring formats can be easily formed.

〔発明の実施例] 以下、本発明の実施例を第2図a−nに示す製造方法を
併記して説明する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described with reference to the manufacturing method shown in FIGS. 2a-n.

(1)まず、p型シリコン基板11の表面に選択的に不
純物濃度2x1016cm−3のn型ウェル領域12を
形成した(第2図a図示)。
(1) First, an n-type well region 12 with an impurity concentration of 2.times.10@16 cm@-3 was selectively formed on the surface of a p-type silicon substrate 11 (as shown in FIG. 2a).

次に、選択酸化法に従い、第1の分離酸化膜13を形成
した後、図示しない別々のホトレジストパターンを用い
てイオン注入により夫々前記n型ウェル領域12にp+
型ドレイン領域14を、n型ウェル領域12以外の前記
基板11に酎型ドレイン領域15を形成した(第2図b
図示)。つついて、全面に厚さ0.5μmの第1のCV
D−SiO2膜16及び厚さ1μmの多結晶シリコン膜
17を順次堆積した後、多結晶シリコン膜17の結晶性
を改善するためにレーザーアニールを行つた(第2図c
図示)。つづいて、前記多結晶シリコン膜17の前記p
+型及びn+型のドレイン領域14,15の少なくとも
一部上に対応する領域上に耐酸化性膜としてシリコン窒
化膜パターン18を形成した。つづいて、選択酸化法に
従い、露出した前記多結晶シリコン膜17を酸化し、第
2の分離酸化膜19及びこの第2の分離酸化膜19に囲
まれた多結晶シリコン膜パターン20を形成した(第2
図d図示)。つづいて、前記シリコン窒化膜パターン1
8を除去した後、図示しない別々のホトレジスタパター
ンを用いて、イオン注入により前記多結晶シリコン膜パ
ターン20の前記p+型ドレイン領域14上に対応する
領域にp+型ソース領域21を、前記酎型ドレイン領域
15上に対応する領域にn+型ソース領域22を夫々形
成し、これらp+型及びn+型のソース領域21,22
にはさまれた多結晶シリコン膜パターン2『を残存させ
た(第2図e図示)。11)次いで全面にシリコン窒化
膜23を堆積した後、ホトレジストパターン24を形成
し、このホトレジストパターン24をマスクとして反応
性イオンエッチングにより前記シリコン窒化膜23、p
+型及び耐型のソース領域21,22の一部を含む多結
晶シリコン膜パターン2『、第1のCVD−SlO2膜
16を順次エッチングし、更に前記p+型ドレイン領域
14の一部を含むn型ウェル12の一部及び前記n+型
ドレイン領域15の一部を含む基板11を少なくとも前
記n型ウェル領域12の接合深さに達するまでエッチン
グ除去した。
Next, after forming a first isolation oxide film 13 according to a selective oxidation method, ions are implanted into the n-type well regions 12 using separate photoresist patterns (not shown).
A double-shaped drain region 14 was formed on the substrate 11 other than the n-type well region 12 (see FIG. 2b).
(Illustrated). A first CV with a thickness of 0.5 μm is applied to the entire surface.
After sequentially depositing a D-SiO2 film 16 and a 1 μm thick polycrystalline silicon film 17, laser annealing was performed to improve the crystallinity of the polycrystalline silicon film 17 (Fig. 2c).
(Illustrated). Subsequently, the p of the polycrystalline silicon film 17 is
A silicon nitride film pattern 18 was formed as an oxidation-resistant film on a region corresponding to at least part of the +-type and n+-type drain regions 14 and 15. Subsequently, the exposed polycrystalline silicon film 17 was oxidized according to a selective oxidation method to form a second isolation oxide film 19 and a polycrystalline silicon film pattern 20 surrounded by the second isolation oxide film 19 ( Second
Figure d shown). Next, the silicon nitride film pattern 1
8, a p+ type source region 21 is formed in a region corresponding to the p+ type drain region 14 of the polycrystalline silicon film pattern 20 by ion implantation using a separate photoresist pattern (not shown). N+ type source regions 22 are formed in regions corresponding to the drain region 15, and these p+ type and n+ type source regions 21, 22 are formed.
The polycrystalline silicon film pattern 2'' sandwiched between the two layers was left (as shown in FIG. 2e). 11) Next, after depositing a silicon nitride film 23 on the entire surface, a photoresist pattern 24 is formed, and the silicon nitride film 23,p is etched by reactive ion etching using this photoresist pattern 24 as a mask.
The first CVD-SlO2 film 16 is sequentially etched with a polycrystalline silicon film pattern 2' that includes a portion of the + type and resistive type source regions 21 and 22, and a polycrystalline silicon film pattern 2' that includes a portion of the p+ type drain region 14. The substrate 11 including a portion of the type well 12 and a portion of the n+ type drain region 15 was etched away until at least the junction depth of the n type well region 12 was reached.

この結果、前記p+型ソース領域21と酎型ソース領域
22との間に位置し、前記第1のCVD−SlO2膜1
6及びn型ウェル領域12の接合深さより深い基板11
表面に亘つて凹部25が形成された(第2図f図示)。
つづいて、前記ホトレジストパターツ24を除去した後
、全面に前記凹部25の幅以上の膜厚の第2のCVD−
SlO2膜26を堆積した(第2図g図示)。つづいて
、この第2のCVD−SlO2膜26を反応性イオンエ
ッチングによりエッチングして、前記凹部25内に、前
記p+型及び酎型のドレイン領域14,15が少なくと
も露出し、前記n型ウェル領域12及ひ基板11が露出
しない厚さの残存CVD−SiO2膜26′を埋込んだ
As a result, the first CVD-SlO2 film 1
6 and the substrate 11 deeper than the junction depth of the n-type well region 12.
A recess 25 was formed over the surface (as shown in FIG. 2 f).
Subsequently, after removing the photoresist pattern 24, a second CVD film having a thickness equal to or larger than the width of the recess 25 is applied to the entire surface.
A SlO2 film 26 was deposited (as shown in FIG. 2g). Subsequently, this second CVD-SlO2 film 26 is etched by reactive ion etching, so that at least the p+ type and bulge-type drain regions 14 and 15 are exposed in the recess 25, and the n-type well region is exposed. 12 and the remaining CVD-SiO2 film 26' was buried to a thickness such that the substrate 11 was not exposed.

つづいて、前記シリコン窒化膜23をエッチング除去し
た(第2図h図示)。(Iii)次いで、全面に厚さ8
00Aの多結晶シリコン層27を形成した後、この多結
晶シリコン層27の結晶性を改善するためにレーザーア
ニールを行つた(第2図1図示)。
Subsequently, the silicon nitride film 23 was removed by etching (as shown in FIG. 2h). (Iiii) Next, the entire surface has a thickness of 8
After forming the 00A polycrystalline silicon layer 27, laser annealing was performed to improve the crystallinity of the polycrystalline silicon layer 27 (as shown in FIG. 2).

つづいて、反応性イオンエッチング等の異方性エッチン
グにより前記多結晶シリコン層27をその膜厚分だけエ
ッチング除去し、凹部25内の側面にのみ多結晶シリコ
ン層を残存させた。つづいて、図示しないホトレジスト
パターンを形成し、前記p+型のドレイン領域14及び
ソース領域21と,n+型のドレイン領域15及びソー
ス領域22が露出してしない凹部25内の側面に残存し
た前記多結晶シリコン層のみをその深さ方向にプラズマ
エッチング等で選択的にエッチング除去することにより
、前記p+型のドレイン領域14及ひソース領域21が
露出する凹部25内の一側面並びにこの一側面に対向し
、前記n+型のドレイン領域15及びソース領域22が
露出する凹部25内の他側面に夫々チャンネル領域とな
る残存多結晶シリコン層281,282をj形成した(
第2図j図示)。つづいて、熱酸化処理を施して、前記
残存多結晶シリコン層281,282表面及ひ露出した
p+型及び耐型のソース領域21,22の表面の厚さ6
00Aの熱酸化膜(一部がゲート酸化膜となる)291
,;29。を形成した。これと同時に、前記p+型のド
レイン領域14及びソース領域21から残存多結晶シリ
コン層281へp型不純物が、前記n+型のドレイン領
域15及びソース領域22から残存多結晶シリコン層2
8。へn型不純ク物が夫々拡散した(第2図k図示)。
(1v)次いで、全面に前記凹部25の幅の1h以上の
厚さの多結晶シリコン膜30を堆積した後、低抵抗化を
図るためにこの多結晶シリコン膜30に31p+型をイ
オン注入した(第2図1図示)。
Subsequently, the polycrystalline silicon layer 27 was etched away by the thickness thereof by anisotropic etching such as reactive ion etching, leaving the polycrystalline silicon layer only on the side surfaces inside the recess 25. Subsequently, a photoresist pattern (not shown) is formed, and the polycrystalline polycrystal remains on the side surface of the recess 25 where the p+ type drain region 14 and source region 21 and the n+ type drain region 15 and source region 22 are not exposed. By selectively etching and removing only the silicon layer in its depth direction by plasma etching or the like, one side surface in the recess 25 where the p+ type drain region 14 and source region 21 are exposed, and one side surface facing this one side are removed. , residual polycrystalline silicon layers 281 and 282, which will become channel regions, are formed on the other side of the recess 25 where the n+ type drain region 15 and source region 22 are exposed (
(Illustrated in Figure 2j). Subsequently, thermal oxidation treatment is performed to reduce the thickness of the surfaces of the remaining polycrystalline silicon layers 281 and 282 and the exposed p+ type and resistive type source regions 21 and 22 by 6.
00A thermal oxide film (part becomes gate oxide film) 291
, ;29. was formed. At the same time, p-type impurities are transferred from the p+ type drain region 14 and source region 21 to the remaining polycrystalline silicon layer 281, and from the n+ type drain region 15 and source region 22 to the remaining polycrystalline silicon layer 281.
8. The n-type impurities were diffused into each layer (as shown in Figure 2k).
(1v) Next, after depositing a polycrystalline silicon film 30 with a thickness of 1h or more, which is the width of the recess 25, on the entire surface, 31p+ type ions were implanted into this polycrystalline silicon film 30 in order to lower the resistance ( (See Figure 2 1).

つづいて、エッチバック法より前記多結晶シリコン膜3
0をその膜厚分だけエッチング除去し、前記凹部25内
の前記残存CVD−SiO2膜26″上で、前記チャン
ネル領域となる残存多結晶シリコン層281,282間
に前記熱酸化膜(ゲート酸化膜)291,292を介し
て埋込まれたゲート電極31を形成した(第2図m図示
)。つづいで、全面に第3のCVD−SlO2膜32を
堆積した後、コンタクトホール33・・・・・を開孔し
た。つづいて、全面にA1膜を蒸着した後、パターニン
グしてN配線34,35,36,37,38を形成し、
CMOSインバータを製造した。
Subsequently, the polycrystalline silicon film 3 is etched back using an etch-back method.
The thermal oxide film (gate oxide film ) 291, 292 (as shown in FIG. 2m). After depositing a third CVD-SlO2 film 32 on the entire surface, contact holes 33... - Holes were opened. Next, after depositing an A1 film on the entire surface, patterning was performed to form N wirings 34, 35, 36, 37, 38,
A CMOS inverter was manufactured.

なお、A1配線34は入力となり、N配線34は電源■
DDDに、N配線36は基準電源■sに夫々接続され、
更にN配線37,38は結線されて出力となつている(
第2図n図示)。第2図n図示のCMOSインバータは
、n型ウェル領域12内のp+型ドレイン領域14及び
この上に第1のCVD−SlO2膜16を介して形成さ
れたp+型ソース領域21と、p型シリコン基板11に
設けられたn+ドレイン領域15及びこの上に第1のC
VD−SlO2膜16を介して形成されたn+型ソース
領域22と、これらp+型のドレイン領域14及びソー
ス領域21と酎型のドレイン領域15及びソース領域2
2との間に穿設された凹部25内の両側面に設けられた
チャンネル領域となる残存多結晶シリコン層281,2
8。
Note that the A1 wiring 34 is the input, and the N wiring 34 is the power supply ■
The N wiring 36 is connected to the DDD and the reference power source ■s, respectively.
Furthermore, the N wirings 37 and 38 are connected and become outputs (
(shown in Figure 2n). The CMOS inverter shown in FIG. An n+ drain region 15 provided on the substrate 11 and a first C
An n+ type source region 22 formed through the VD-SlO2 film 16, these p+ type drain region 14 and source region 21, and a cup-shaped drain region 15 and source region 2
Residual polycrystalline silicon layers 281 and 2 that will become channel regions provided on both sides of the recess 25 bored between the remaining polycrystalline silicon layers 281 and 2
8.

と、その表面に被覆されたゲート酸化膜となる熱酸化膜
291,292と、前記凹部25内に熱酸化膜291,
29。を介して埋込まれたゲート電極31(このゲート
電極31は残存CVD−SlO2膜26″によつて基板
11及びウェル領域12に対して絶縁されている)とを
主要部として構成されている。すなわち、pチャンネル
MOSトランジスタがn型ウェル領域12上で、nチャ
ンネルMOSトランジスタp型シリコン基板11上で夫
々基板11の厚さ方向に積層状に形成されている。した
がつて、素子面積が極端に小さくてすみ、しかも一つの
ゲート電極31で各トランジスタを動作させることがて
き、飛躍的に集積度を向上することができる。また、p
+型及び酎型のソース領域21,22が絶縁膜により分
離されているので、動作時のラッチアップ現象を防止す
ることができ、素子破壊の起こるおそれはない。更に、
各トランジスタのドレイン領域14,15とソース領域
21,22との間には第1のCVD−SlO2膜16が
介在され、それらの間への空乏層の拡がりは皆無となり
、パンチスルーは起こらない。また、上記実施例の製造
方法によれば、第2図j図示の工程で凹部25内の両側
面にチャンネル領域となる残存多結晶シリコン層281
,282が形成され、第2図k図示の工程でゲート酸化
膜となる熱酸化膜291,29。
, thermal oxide films 291 and 292 that become gate oxide films coated on the surfaces thereof, and thermal oxide films 291 and 292 in the recess 25.
29. The gate electrode 31 (this gate electrode 31 is insulated from the substrate 11 and the well region 12 by the remaining CVD-SlO2 film 26'') is the main part. That is, p-channel MOS transistors are formed on the n-type well region 12 and n-channel MOS transistors on the p-type silicon substrate 11 in a stacked manner in the thickness direction of the substrate 11. Therefore, the device area is extremely small. Moreover, each transistor can be operated with one gate electrode 31, and the degree of integration can be dramatically improved.
Since the +-type and half-shaped source regions 21 and 22 are separated by the insulating film, latch-up phenomenon during operation can be prevented, and there is no risk of element breakdown. Furthermore,
A first CVD-SlO2 film 16 is interposed between the drain regions 14, 15 and the source regions 21, 22 of each transistor, so that no depletion layer spreads between them, and no punch-through occurs. Further, according to the manufacturing method of the above embodiment, in the step shown in FIG.
, 282 are formed, and thermal oxide films 291 and 29 which become gate oxide films in the step shown in FIG.

を形成するための熱酸化処理の際に、p+型のドレイン
領域14及びソース領域21から残存多結晶シリコン層
281へp型不純物が、酎型のドレイン領域15及びソ
ース領域22から残存多結晶シリコン層282へn型不
純物が夫々拡散するので、各トランジスタのチャンネル
長は第1のCVD−SiO2膜16の厚さにより決定さ
れる。したがつて、各トランジスタのチャンネル長の制
御が良好に行える。更に、第2図m図示の工程で形成さ
れるゲート電極31は凹部25内に埋込まれているので
、平坦性がよく、第2図n図示の工程でN配線34〜3
8を容易に形成することができる。しかも、第2図d図
示の如く、多結晶シリコンパターン20(p+型及ひ耐
型のソース領域21,22となる)を選択酸化法により
形成すれば、表面をほぼ平坦にでき、よソー層信頼性の
高いN配線の形成が可能となる。たた七、この多結晶シ
リコンパターン20は写真蝕刻法により形成してもよく
、このような方法でも平坦性は従来のCMOSインバー
タより良好なので、微細な配線形成が容易である。なお
、上記実施例ではCVD−SiO2膜等の絶縁膜上に形
成される多結晶シリコン膜にレーザーアニールを施して
結晶性を向上させたが、電子ビームアニールを行つても
よい。〔発明の効果〕 以上詳述した如く本発明によれば、パンチスルー現象、
ラッチアップ現象がなく、飛躍的に集積度を向上し得る
相補型MOS半導体装置及びこのような相補型MOS半
導体装置の微細な配線形成が容易で、チャンネル長を良
好に制御し得る製造方法を提供できるものである。
During the thermal oxidation treatment to form p-type impurities from the p+ type drain region 14 and source region 21 to the remaining polycrystalline silicon layer 281, the p-type impurity flows from the p+ type drain region 15 and source region 22 to the remaining polycrystalline silicon layer 281. Since n-type impurities are diffused into the layer 282, the channel length of each transistor is determined by the thickness of the first CVD-SiO2 film 16. Therefore, the channel length of each transistor can be well controlled. Furthermore, since the gate electrode 31 formed in the process shown in FIG.
8 can be easily formed. Moreover, as shown in FIG. 2d, if the polycrystalline silicon pattern 20 (which becomes the p+ type and breakdown type source regions 21 and 22) is formed by selective oxidation, the surface can be made almost flat, and a good source layer can be formed. It becomes possible to form highly reliable N wiring. Furthermore, this polycrystalline silicon pattern 20 may be formed by photolithography, and even with this method, the flatness is better than that of conventional CMOS inverters, so it is easy to form fine wiring. In the above embodiment, a polycrystalline silicon film formed on an insulating film such as a CVD-SiO2 film was subjected to laser annealing to improve crystallinity, but electron beam annealing may also be performed. [Effects of the Invention] As detailed above, according to the present invention, the punch-through phenomenon,
Provided is a complementary MOS semiconductor device that is free from latch-up phenomenon and can dramatically improve the degree of integration, and a manufacturing method that facilitates the formation of fine wiring for such a complementary MOS semiconductor device and allows good control of channel length. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のCMOSインバータを示す断面図、第2
図a−nは本発明の実施例におけるCMOSインバータ
をその製造工程順に示す断面図である。 11・・・・・p型シリコン基板、12・・・・n型ウ
ェル領域、13・・・・・・第1の分離酸化膜、14・
・・p+型ドレイン領域、15・・・・・n+型ドレイ
ン領域、16・・・・・・第1のCVD−SiO2膜、
19・・・・・・第2の分離酸化膜、21・・・・・・
p+型ソース領域、22・・・・・n+型ソース領域、
25・ ・・凹部、26・・・・第2のCVD−SlO
2膜、26″ ・・残存CVD一SlO2膜、28,,
282・・残存多結晶シリコン層(チャンネル領域)、
291,292・・・・熱酸化膜(ゲート酸化膜)、3
1・・・・・・ゲート電極、32・・・・・・第3のC
VD−SiO2膜、33・ ・・コンタノクトホール、
34,35,36,37,38・・・N配線。
Figure 1 is a cross-sectional view of a conventional CMOS inverter;
Figures a to n are cross-sectional views showing a CMOS inverter according to an embodiment of the present invention in the order of its manufacturing process. 11...p-type silicon substrate, 12...n-type well region, 13...first isolation oxide film, 14...
...p+ type drain region, 15...n+ type drain region, 16...first CVD-SiO2 film,
19... second isolation oxide film, 21...
p+ type source region, 22...n+ type source region,
25... recess, 26... second CVD-SlO
2 films, 26″...Residual CVD-SlO2 film, 28,,
282...Remaining polycrystalline silicon layer (channel region),
291,292...Thermal oxide film (gate oxide film), 3
1...Gate electrode, 32...Third C
VD-SiO2 film, 33... contact hole,
34, 35, 36, 37, 38...N wiring.

Claims (1)

【特許請求の範囲】 1 第1導電型の半導体基板と、この半導体基板の表面
に選択的に設けられた第2導電型のウェル領域と、この
ウェル領域内に設けられた第1導電型の不純物領域と、
前記基板表面に前記不純物領域と所定距離へだてて設け
られた第2導電型の不純物領域と、前記ウェル領域上に
絶縁膜を介して前記第1導電型不純物領域と対向して積
層状に配置された第1導電型の半導体膜と、前記基板上
に絶縁膜を介して前記第2導電型不純物領域と対向して
積層状に配置された第2導電型の半導体膜と、これら半
導体膜間に位置し、前記絶縁膜及びウェル領域の深さよ
り深い基板表面に亘つて穿設された凹部と、この凹部内
に前記基板表面の第1、第2導電型の不純物領域の一部
に接するように埋込まれた絶縁体と、前記第1導電型不
純物領域と第1導電型の半導体膜とが露出する凹部内の
一側面並びにこの一側面と対向し、前記第2導電型不純
物領域と第2導電型の半導体膜とが露出する凹部内の他
側面に夫々設けられた半導体層からなるチャネル領域と
、前記凹部内に前記半導体層に被覆したゲート絶縁膜を
介して埋込まれるとともに前記基板及びウェル領域に対
して絶縁されたゲート電極とを具備したことを特徴とす
る相補型MOS半導体装置。 2 第1導電型の半導体基板表面に選択的に第2導電型
のウェル領域を形成する工程と、この第2導電型のウェ
ル領域内に第1導電型の不純物領域を、前記基板表面に
前記不純物領域と所定距離隔てて第2導電型の不純物領
域を形成する工程と、全面に絶縁膜を堆積する工程と、
前記第1及び第2導電型の不純物領域の少なくとも一部
上に対応する前記絶縁膜上に半導体膜を形成する工程と
、この半導体膜内に前記第1導電型不純物に対向して積
層状に第1導電型の領域を、前記第2導電型不純物領域
に対向して積層状に第2導電型の領域を夫々形成する工
程と、これら第1及び第2導電型の領域間の半導体膜、
前記絶縁膜及びウェル領域の深さより深い基板表面に亘
つて順次エッチング除去し凹部を形成する工程と、この
凹部内に前記基板表面の第1及び第2導電型の不純物領
域の少なくとも一部が露出するように絶縁体を埋込む工
程と、前記第1導電型不純物領域と第1導電型の半導体
膜とが露出する凹部内の一側面並びにこの一側面に対向
し、前記第2導電型不純物領域と第2導電型の半導体膜
とが露出する凹部内の他側面に夫々半導体層からなるチ
ャンネル領域を形成する工程と、前記凹部内に前記半導
体層に被覆したゲート絶縁膜を介するとともに前記基板
及びウェル領域に対して絶縁されたゲート電極を埋込む
工程とを具備したことを特徴とする相補型MOS半導体
装置の製造方法。 3 半導体膜及び半導体層にレーザーアニールあるいは
電子ビームアニールを施すことを特徴とする特許請求の
範囲第2項記載に相補型MOS半導体装置の製造方法。 4 半導体膜あるいは半導体層を形成するのにCVD法
あるいはエピタキシャル法を用いることを特徴とする特
許請求の範囲第2項記載の相補型MOS半導体装置の製
造方法。5 凹部内にゲート電極を埋込むのに全面に凹
部の幅の1/2以上の厚さのゲート電極材料を堆積した
後、写真蝕刻法あるいはエッチバック法を用いることを
特徴とする特許請求の範囲第2項記載の相補型MOS半
導体装置の製造方法。
[Claims] 1. A semiconductor substrate of a first conductivity type, a well region of a second conductivity type selectively provided on the surface of this semiconductor substrate, and a well region of a first conductivity type provided within this well region. an impurity region;
an impurity region of a second conductivity type provided on the surface of the substrate at a predetermined distance from the impurity region; and an impurity region of the first conductivity type arranged on the well region in a stacked manner opposite to the impurity region of the first conductivity type with an insulating film interposed therebetween. a semiconductor film of a first conductivity type; a semiconductor film of a second conductivity type disposed on the substrate in a stacked manner opposite to the impurity region of the second conductivity type with an insulating film interposed therebetween; a recess located and drilled across the substrate surface deeper than the depth of the insulating film and the well region; and a recess formed in the recess so as to be in contact with a portion of the first and second conductivity type impurity regions on the substrate surface. The buried insulator, one side surface in the recess where the first conductivity type impurity region and the first conductivity type semiconductor film are exposed, and the second conductivity type impurity region opposite to this one side surface. A channel region made of a semiconductor layer is provided on the other side of the recess where a conductive type semiconductor film is exposed, and a channel region formed of a semiconductor layer is embedded in the recess via a gate insulating film coated on the semiconductor layer, and the substrate and A complementary MOS semiconductor device comprising a gate electrode insulated with respect to a well region. 2 selectively forming a well region of a second conductivity type on the surface of a semiconductor substrate of a first conductivity type; forming an impurity region of a second conductivity type at a predetermined distance from the impurity region; depositing an insulating film over the entire surface;
forming a semiconductor film on the insulating film corresponding to at least a portion of the impurity regions of the first and second conductivity types; a step of forming regions of a first conductivity type in a stacked manner so as to face the impurity region of the second conductivity type, and a semiconductor film between the regions of the first conductivity type and the second conductivity type;
a step of sequentially etching away the substrate surface deeper than the depth of the insulating film and the well region to form a recess, and exposing at least a portion of the first and second conductivity type impurity regions on the substrate surface in the recess; a step of embedding an insulator so that the first conductivity type impurity region and the first conductivity type semiconductor film are exposed, and a second conductivity type impurity region opposite to this one side; forming a channel region made of a semiconductor layer on the other side surface of the recess where the semiconductor film and the semiconductor film of the second conductivity type are exposed; 1. A method for manufacturing a complementary MOS semiconductor device, comprising the step of burying a gate electrode insulated with respect to a well region. 3. A method for manufacturing a complementary MOS semiconductor device according to claim 2, characterized in that the semiconductor film and the semiconductor layer are subjected to laser annealing or electron beam annealing. 4. A method for manufacturing a complementary MOS semiconductor device according to claim 2, characterized in that a CVD method or an epitaxial method is used to form the semiconductor film or semiconductor layer. 5. In order to embed the gate electrode in the recess, a gate electrode material having a thickness of 1/2 or more of the width of the recess is deposited on the entire surface, and then a photolithography method or an etch-back method is used. A method for manufacturing a complementary MOS semiconductor device according to scope 2.
JP57146409A 1982-08-24 1982-08-24 Complementary MOS semiconductor device and manufacturing method thereof Expired JPS6050063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57146409A JPS6050063B2 (en) 1982-08-24 1982-08-24 Complementary MOS semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57146409A JPS6050063B2 (en) 1982-08-24 1982-08-24 Complementary MOS semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS5935463A JPS5935463A (en) 1984-02-27
JPS6050063B2 true JPS6050063B2 (en) 1985-11-06

Family

ID=15407039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57146409A Expired JPS6050063B2 (en) 1982-08-24 1982-08-24 Complementary MOS semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPS6050063B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451379B2 (en) * 1985-09-03 1992-08-18 Peugeot Cycles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338263A (en) * 1986-08-04 1988-02-18 Nec Kyushu Ltd Semiconductor device
JPH088357B2 (en) * 1986-12-01 1996-01-29 三菱電機株式会社 Vertical MOS transistor
JPH0770716B2 (en) * 1988-02-08 1995-07-31 株式会社東芝 Method for manufacturing semiconductor device
MY107475A (en) * 1990-05-31 1995-12-30 Canon Kk Semiconductor device and method for producing the same.
JP3376302B2 (en) 1998-12-04 2003-02-10 株式会社東芝 Semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451379B2 (en) * 1985-09-03 1992-08-18 Peugeot Cycles

Also Published As

Publication number Publication date
JPS5935463A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
EP0166218B1 (en) Silicon-on-insulator transistors
US4306915A (en) Method of making electrode wiring regions and impurity doped regions self-aligned therefrom
JPH06252359A (en) Manufacture of semiconductor device
JPH0846058A (en) Manufacture of mos semiconductor device
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JP2002246464A (en) Semiconductor device and its manufacturing method
JP3307481B2 (en) Semiconductor device
JPH10163338A (en) Semiconductor device and its manufacturing method
JP2697062B2 (en) Method for manufacturing semiconductor device
JPS6050064B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPS6118170A (en) Manufacture of semiconductor device
JPH079974B2 (en) Manufacturing method of complementary semiconductor device
JPH1050857A (en) Method for manufacturing semiconductor device
JP2864593B2 (en) Method for manufacturing semiconductor device
JPH11135783A (en) Mos transistor and manufacture thereof
JP2596341B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0481339B2 (en)
JP2002343884A (en) Semiconductor device and its manufacturing method
JPH03191574A (en) Semiconductor device
JPH03256356A (en) Semiconductor device
JPH0738445B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2720553B2 (en) Semiconductor device
JPH0215651A (en) Manufacture of semiconductor device
JPS6276666A (en) Complementary semiconductor device
JPH04245473A (en) Semiconductor integrated circuit and manufacture thereof