JPH0215651A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0215651A
JPH0215651A JP16533088A JP16533088A JPH0215651A JP H0215651 A JPH0215651 A JP H0215651A JP 16533088 A JP16533088 A JP 16533088A JP 16533088 A JP16533088 A JP 16533088A JP H0215651 A JPH0215651 A JP H0215651A
Authority
JP
Japan
Prior art keywords
film
insulating film
layer
forming
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16533088A
Other languages
Japanese (ja)
Inventor
Yoshinori Tanaka
義典 田中
Shinichi Sato
真一 佐藤
Koji Ozaki
浩司 小崎
Wataru Wakamiya
若宮 亙
Takahisa Eimori
貴尚 栄森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16533088A priority Critical patent/JPH0215651A/en
Publication of JPH0215651A publication Critical patent/JPH0215651A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To precisely form a diffusion layer using the self-alignment technique by a method wherein a second conductor film is formed on the side-walls of a laminate of a first and second insulating films and a first conductor film through the intermediary of a third insulating film and then an impurity same as a semiconductor substrate in conductivity type is caused to be diffused from the second conductor film into the semiconductor substrate. CONSTITUTION:On the surface of a silicon substrate 1, an insulating film 2, a conductor film 3, and an insulating film 4 are formed. An oxide film 6 is formed on the surface where the silicon is exposed, and the oxide film 6 is retained on the sidewalls of the three-film laminate. A polycrystalline silicon layer doped overall with boron is deposited. The polycrystalline silicon layer is subjected to anisotropic etching and a sidewall 7 is formed on the patterned three-layer laminate. Next, heat treatment is accomplished for the formation of an insulating film 8 on the surface of the sidewall 7 and on the surface of element forming regions 10 on both sides thereof. Simultaneously, with boron being diffused from the sidewall 7 into the substrate 1, a P<+> inversion preventive layer 9 is formed by self-alignment. This method results in the inversion preventive layer 9 positioned just under the element isolation region, realizing excellent isolation characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置の製造方法に関するものであり、
特に素子分離領域の形成方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method for manufacturing a semiconductor device,
In particular, it relates to a method of forming element isolation regions.

〔従来の技術〕[Conventional technology]

第2図は従来のシールドプレーl−用導体膜を用いた素
子弁l111領域の断面図である。P形に浅くドープさ
れたシリコン基板1の表面に素子形成領域10が分離し
て存在する。また素子形成領域10゜10間のシリコン
基板1表面には1つ1反転防止層9がよく形成される。
FIG. 2 is a sectional view of the element valve l111 region using a conventional shield plate l- conductor film. Element formation regions 10 are separated and present on the surface of a silicon substrate 1 that is lightly doped with P type. Further, each inversion prevention layer 9 is well formed on the surface of the silicon substrate 1 between the element forming regions 10°10.

またその上方には絶縁膜8に覆われたシールドプレー1
・用導体膜3が形成される。
Further, above it is a shield plate 1 covered with an insulating film 8.
- A conductor film 3 is formed.

第3図は、第2図に示す素子分離領域の形成方法を示す
工程断面図である。第3図(a)においてシリコン基板
1上にレジスト5を塗イli シこれをパターン化する
。第3図(b)において、レジスト5をマスクとして1
1反転防止層9形成のためにボロンイオン11を注入す
る。第3図(C)においてレジスト5を除去し、絶縁膜
2.シールドプレート用導体膜3および絶縁膜4を順次
積層し3層膜とする。第3図Cd)において、素子分離
領域の部分だけを残すように上記3層膜をパターニング
する。第3図(Q)において、素子形成領l!i10が
パターニングされた3層膜の両側に形成される。第3図
([)において、熱処理を行い3層膜の表面および素子
形成領域10を覆うように絶縁膜8を形成しさらに、ボ
ロンイオン11を拡散、活性化しP+反転防止層9を形
成する。通謂P゛反転防W層9の位置は3層膜の下部で
あるが、マスク合わせの精度などによってはズレを生じ
ることがある。
FIG. 3 is a process cross-sectional view showing a method of forming the element isolation region shown in FIG. 2. In FIG. 3(a), a resist 5 is applied onto the silicon substrate 1 and patterned. In FIG. 3(b), with resist 5 as a mask, 1
1. Boron ions 11 are implanted to form the anti-inversion layer 9. In FIG. 3(C), the resist 5 is removed and the insulating film 2. A conductive film 3 for a shield plate and an insulating film 4 are laminated in sequence to form a three-layer film. In FIG. 3Cd), the three-layer film is patterned so that only the element isolation region remains. In FIG. 3(Q), the element formation region l! i10 is formed on both sides of the patterned three-layer film. In FIG. 3([), heat treatment is performed to form an insulating film 8 so as to cover the surface of the three-layer film and the element formation region 10, and further, boron ions 11 are diffused and activated to form a P+ inversion prevention layer 9. The position of the so-called P'inversion prevention W layer 9 is at the bottom of the three-layer film, but deviations may occur depending on the precision of mask alignment.

動作時には、シールドプレート用導体膜3の電位をシリ
コン基板1と同電位あるいはそれ以下の電位に固定する
ことによって、Nチャネルトランジスタのソースやドレ
インとなる隣接する素子形成領域10を分離する。
During operation, by fixing the potential of the shield plate conductor film 3 to the same potential as that of the silicon substrate 1 or a lower potential, adjacent element forming regions 10 that become the source and drain of the N-channel transistor are separated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のシールドプレー1へ用導体膜3を使った素子分離
領域の形成方法は以上のように構成されているので、P
+反転防止層9の形成にセルファラインメンi・技術を
利用できず、マスクずれなどによって分離領域内(シー
ルドプレート用導体膜3下部)に精度良くP+反転防止
層9を形成することができなかった。
Since the conventional method of forming an element isolation region using the conductor film 3 for the shield plate 1 is configured as described above, P
It was not possible to use Selfa Line Men i technology to form the + inversion prevention layer 9, and it was not possible to form the P+ inversion prevention layer 9 with precision in the isolation region (below the shield plate conductor film 3) due to mask misalignment, etc. .

この発明は上記のような問題点を解消するためになされ
たもので、例えば素子分離領域の形成方法などにおいて
セルファラインメント技術を利用して精度良く反転防止
層などの拡散層を形成することができる半導体装置の製
造方法を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems. For example, in a method for forming an element isolation region, it is possible to form a diffusion layer such as an anti-inversion layer with high precision using self-alignment technology. The purpose of the present invention is to obtain a method for manufacturing a semiconductor device that can be manufactured using the following methods.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体装置の製造方法は、半導体基板の
主面上に第1の絶縁膜を形成する工程と、前記第1の絶
縁膜上に第1の導体膜を形成する工程と、前記第1の導
体膜上に第2の絶縁膜を形成する工程と、前記第1.第
2の絶縁膜および第1の導体膜をパターニングする工程
と、前記パターニングされた第1の導体119の側壁部
に第3の絶縁膜を形成する工程と、前記パターニングさ
れた第1、第2の絶縁膜および第1の導体膜の側壁部に
、nh記第3の絶縁膜を介して前記半導体基板と同じ導
電型の不純物を導入された第2の導体膜を形成する工程
と、前記第2の導体膜から前記半導体基板と同じ導′市
型の不純物を萌記半尋体基板に拡散する工程とを含むも
のである。
A method for manufacturing a semiconductor device according to the present invention includes a step of forming a first insulating film on a main surface of a semiconductor substrate, a step of forming a first conductive film on the first insulating film, and a step of forming a first conductive film on the first insulating film. forming a second insulating film on the first conductor film; a step of patterning the second insulating film and the first conductor film; a step of forming a third insulating film on the side wall portion of the patterned first conductor 119; and a step of patterning the patterned first and second conductor films. forming a second conductive film into which impurities of the same conductivity type as the semiconductor substrate are introduced into the sidewalls of the insulating film and the first conductive film through the third insulating film; This method includes the step of diffusing impurities of the same conductive type as the semiconductor substrate from the conductive film of No. 2 to the semicircular substrate.

〔作用〕[Effect]

この発明における半導体装置の製造方法においては、パ
ターニングされた第1.第2の絶縁膜および第1の導体
膜の側壁部に、第3の絶縁膜を介して第2の導体膜を形
成する工程の後に、前記第2の導体膜から半導体基板と
同じ導電型の不純物を半導体基板に拡散する工程を行う
のでセルフアラインメント技術を利用して拡散層を形成
できる。
In the method of manufacturing a semiconductor device according to the present invention, a patterned first . After the step of forming a second conductive film on the sidewalls of the second insulating film and the first conductive film via the third insulating film, a second conductive film of the same conductivity type as the semiconductor substrate is formed from the second conductive film. Since the step of diffusing impurities into the semiconductor substrate is performed, the diffusion layer can be formed using self-alignment technology.

〔実IMVA) 以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例によるシールドプレート用導体
膜を使った素子分離領域の形成方法を示す工程断面図で
ある。
[Actual IMVA] An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a process sectional view showing a method of forming an element isolation region using a conductor film for a shield plate according to an embodiment of the present invention.

第1図(a)おいて、シリコン基板1の表面を熱酸化し
て絶縁膜2を形成した後、ヒ素あるいはリンをドーピン
グして抵抗を下げたシールドプレー1・用導体膜3とな
る多結晶シリコン膜をcVD法で積層し、その上に絶縁
14を形成する。さらにその上にレジスト5を塗布しこ
れをパターン化する。
In FIG. 1(a), the surface of a silicon substrate 1 is thermally oxidized to form an insulating film 2, and then arsenic or phosphorus is doped to lower the resistance of the polycrystalline silicon substrate 1, which becomes a conductor film 3. A silicon film is laminated by the cVD method, and an insulator 14 is formed thereon. Further, a resist 5 is applied thereon and patterned.

第1図(b)において、レジスト5をマスクとして素子
分離領域に絶縁IP!2.シールドプレート用シー膜3
および絶縁膜4の3m膜を残すようにパターニングし、
その後レジスト5を除去する。
In FIG. 1(b), an insulation layer is applied to the element isolation region using the resist 5 as a mask. 2. Seam film 3 for shield plate
and patterning to leave a 3m film of the insulating film 4,
After that, the resist 5 is removed.

第1図(C)において、シリコン露出表面に酸化ntA
 6を形成し、エツチングによりパターニングされた3
層膜の側面にのみ酸化膜6を残す。
In FIG. 1(C), oxidized ntA is present on the exposed silicon surface.
6 and patterned by etching 3
The oxide film 6 is left only on the side surfaces of the layer film.

第1図(d)において、全面にボロンをドーピングした
ボロンドープト多結晶シリコンを積層する。
In FIG. 1(d), boron-doped polycrystalline silicon doped with boron is deposited over the entire surface.

さらにボロンドープト多結晶シリコンに異方性エツチン
グを行い、パターニングされた31!111!の側壁に
サイドウオール7を形成する。
Furthermore, anisotropic etching was performed on the boron-doped polycrystalline silicon, resulting in a pattern of 31!111! A side wall 7 is formed on the side wall of the.

第1図(e)において、熱処理によりサイドウ4−ルア
およびその両側の素子形成領域10の表面に絶縁膜8を
形成し、同時にシリコン基板1内にり゛イドウオール7
内のボロンを拡散することにより、セルフアラインメン
トでP+反転防止層9を形成する。以上のようにして図
のような構造を得る。
In FIG. 1(e), an insulating film 8 is formed on the surface of the side wall 4-lua and the element formation region 10 on both sides thereof by heat treatment, and at the same time, an insulating film 8 is formed in the silicon substrate 1.
By diffusing boron therein, the P+ inversion prevention layer 9 is formed by self-alignment. In the above manner, the structure shown in the figure is obtained.

従来と同様に動作時にはシールドプレート用導体膜3の
電位をシリコン基板1と同電位またはそれ以下の電位に
固定することより、Nチャネルトランジスタのソースや
ドレインとなる隣接する素子形成領域10を分離覆る。
As in the conventional case, during operation, the potential of the shield plate conductor film 3 is fixed at the same potential as that of the silicon substrate 1 or a lower potential, thereby separating and covering the adjacent element forming regions 10 that become the source and drain of the N-channel transistor. .

またP+反転防止層9をサイドウオール7からのセルフ
ァラインメン[−によるボロンの拡散によって形成する
ので、P゛反転防止層9を素子分離領域の直下に形成づ
ることができ、より浸れた分離特性を得ることができる
In addition, since the P+ inversion prevention layer 9 is formed by boron diffusion by the self-alignment [-] from the sidewall 7, the P+ inversion prevention layer 9 can be formed directly under the element isolation region, providing deeper isolation characteristics. Obtainable.

なお上記実施例では、シリコン基板1にP型を用いたが
N型でも良く、その場合はサイドウオール7中にボロン
ではなくヒ素あるいリンをドーピングしておぎ、それら
をシリコン基板1内に拡散させることによってN+反転
防止層を形成する。
In the above embodiment, P-type silicon substrate 1 is used, but N-type silicon substrate 1 may also be used. In that case, arsenic or phosphorus is doped instead of boron in sidewall 7, and these are diffused into silicon substrate 1. By doing so, an N+ inversion prevention layer is formed.

さらに動作時にはシールドプレート用導体膜3を基板と
同電位あるいはそれ以上の電位に固定することにより、
隣接する素子形成領域を分離する。
Furthermore, during operation, by fixing the shield plate conductor film 3 to the same potential as the substrate or higher potential,
Adjacent element formation regions are separated.

〔発明の効果] 以上のようにこの発明にJ:れば、パターニングされた
第1.第2の絶縁膜および第1の導体膜の側壁部に、第
3の絶縁膜を介して第2の導体膜を形成する工程の後に
、前記第2の導体n9から半導体基板と同じ導電型の不
純物を半導体基板に拡散する工程を行うので、例えば素
子分離領域の形成方法などにおいてセルフアラインメン
ト技術を利用して精度良く反転防止層などの拡散層を形
成することができる半導体装置の製造方法を1りること
ができる。
[Effects of the Invention] As described above, according to the present invention, the patterned first . After the step of forming a second conductive film on the sidewalls of the second insulating film and the first conductive film via the third insulating film, a second conductor film of the same conductivity type as the semiconductor substrate is formed from the second conductor n9. Since a step of diffusing impurities into a semiconductor substrate is performed, a method for manufacturing a semiconductor device is provided in which a diffusion layer such as an anti-inversion layer can be formed with high accuracy using self-alignment technology, for example, in a method for forming an element isolation region. You can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実茄例による素子分離領域形成方
法の工程断面図、第2図は従来の素子力M領域の断面図
、第3図は第2図に示す従来の素子分l11領域形成方
法の工程断面図である。 図において、1はシリコン基板、2.4および6は絶縁
膜、3はシールドプレート用導体膜、7はナイドウオー
ル、9はP“反転防止層である。 なお、各図中同一符号は周一または相当部分をホす。 第1図 代理人   人  岩  増  雄 第 ] 図 (C) (d) サ イドウオル 第 図 第 図 (e) 父虹吻−層 第 図 (a) / (b) (C) 第 図 第 図
FIG. 1 is a process cross-sectional view of a method for forming an element isolation region according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a conventional element force M region, and FIG. 3 is a process cross-sectional view of a conventional element isolation region forming method shown in FIG. FIG. 3 is a process cross-sectional view of a region forming method. In the figures, 1 is a silicon substrate, 2, 4 and 6 are insulating films, 3 is a conductive film for a shield plate, 7 is a night wall, and 9 is a P"inversion prevention layer. In addition, the same reference numerals in each figure are the same number or equivalent. Figure 1 agent person Iwa Masu Yudai] Figure (C) (d) Sidewall diagram Figure (e) Father rainbow proboscis layer diagram (a) / (b) (C) Figure Diagram

Claims (1)

【特許請求の範囲】[Claims] (1)半導体装置の製造方法であって、 半導体基板の主面上に第1の絶縁膜を形成する工程と、 前記第1の絶縁膜上に第1の導体膜を形成する工程と、 前記第1の導体膜上に第2の絶縁膜を形成する工程と、 前記第1、第2の絶縁膜および第1の導体膜をパターニ
ングする工程と、 前記パターニングされた第1の導体膜の側壁部に第3の
絶縁膜を形成する工程と、 前記パターニングされた第1、第2の絶縁膜および第1
の導体膜の側壁部に、前記第3の絶縁膜を介して前記半
導体基板と同じ導電型の不純物を導入された第2の導体
膜を形成する工程と、前記第2の導体膜から前記半導体
基板と同じ導電型の不純物を前記半導体基板に拡散する
工程とを含む半導体装置の製造方法。
(1) A method for manufacturing a semiconductor device, comprising: forming a first insulating film on the main surface of a semiconductor substrate; forming a first conductive film on the first insulating film; forming a second insulating film on the first conductive film; patterning the first and second insulating films and the first conductive film; and sidewalls of the patterned first conductive film. forming a third insulating film on the patterned first and second insulating films and the first insulating film;
forming a second conductor film into which an impurity of the same conductivity type as that of the semiconductor substrate is introduced via the third insulating film on a side wall of the conductor film; A method for manufacturing a semiconductor device, comprising the step of diffusing impurities of the same conductivity type as the semiconductor substrate into the semiconductor substrate.
JP16533088A 1988-07-01 1988-07-01 Manufacture of semiconductor device Pending JPH0215651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16533088A JPH0215651A (en) 1988-07-01 1988-07-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16533088A JPH0215651A (en) 1988-07-01 1988-07-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0215651A true JPH0215651A (en) 1990-01-19

Family

ID=15810285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16533088A Pending JPH0215651A (en) 1988-07-01 1988-07-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0215651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066468U (en) * 1991-08-13 1994-01-28 田中源工業株式会社 Woven or knitted
US10532621B2 (en) 2016-03-16 2020-01-14 Komatsu Ltd. Mounting structure for suspension arm, and working vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066468U (en) * 1991-08-13 1994-01-28 田中源工業株式会社 Woven or knitted
US10532621B2 (en) 2016-03-16 2020-01-14 Komatsu Ltd. Mounting structure for suspension arm, and working vehicle

Similar Documents

Publication Publication Date Title
US5972741A (en) Method of manufacturing semiconductor device
US4285116A (en) Method of manufacturing high voltage MIS type semiconductor device
US4825278A (en) Radiation hardened semiconductor devices
JPS6318673A (en) Manufacture of semiconductor device
US4317690A (en) Self-aligned double polysilicon MOS fabrication
JPH0215651A (en) Manufacture of semiconductor device
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPS598352A (en) Fabrication of semiconductor device
JP2925910B2 (en) Manufacturing method of insulated gate semiconductor device
JP2707536B2 (en) Method for manufacturing semiconductor device
JPS603157A (en) Manufacture of semiconductor device
JPH0349236A (en) Manufacture of mos transistor
JPS60244037A (en) Semiconductor device and manufacture thereof
JPH1050857A (en) Method for manufacturing semiconductor device
KR100247813B1 (en) Semiconductor device and method for manufacturing the same
JP2720509B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2727557B2 (en) Method for manufacturing semiconductor device
JPS6050064B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPH0335534A (en) Manufacture of semiconductor device
JP2556619B2 (en) Method for manufacturing semiconductor device
JP3850933B2 (en) Manufacturing method of semiconductor device
JPH0369137A (en) Manufacture of semiconductor integrated circuit
KR100198673B1 (en) Semiconductor integrated circuit device
KR940010540B1 (en) Isolating area forming method having gettering function and their structure
JPS63150967A (en) Mos integrated circuit device