JPH0481339B2 - - Google Patents

Info

Publication number
JPH0481339B2
JPH0481339B2 JP57150960A JP15096082A JPH0481339B2 JP H0481339 B2 JPH0481339 B2 JP H0481339B2 JP 57150960 A JP57150960 A JP 57150960A JP 15096082 A JP15096082 A JP 15096082A JP H0481339 B2 JPH0481339 B2 JP H0481339B2
Authority
JP
Japan
Prior art keywords
film
substrate
well
forming
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57150960A
Other languages
Japanese (ja)
Other versions
JPS5940563A (en
Inventor
Sunao Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57150960A priority Critical patent/JPS5940563A/en
Publication of JPS5940563A publication Critical patent/JPS5940563A/en
Publication of JPH0481339B2 publication Critical patent/JPH0481339B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に係り、特に
CMOS型の半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device.
This invention relates to a method for manufacturing a CMOS type semiconductor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

CMOS型半導体装置は、消費電力が小さく大
きなノイズマージンが得られる等の特長を有し、
将来の超LSI形成のための重要の技術として注目
されている。しかし、この装置では1つのチツプ
の上にn型の基板とp型の基板を持ち、それぞれ
の基板に形成されたpチヤネル及びnチヤネルト
ランジスタを相互に接続して回路が構成されるた
め、高集積化には解決すべき数々の問題が残つて
いる。特に問題となるのは、ウエルの形成方法と
その分離であり、ウエルの微細化が困難であるば
かりか、ウエル境界部近くに形成するとPnPnの
寄生構造でのスイツチング(所謂ラツチアツプ現
象)が生じ、回路が破壊される等の不都合があつ
た。
CMOS semiconductor devices have features such as low power consumption and large noise margins.
It is attracting attention as an important technology for the formation of future VLSIs. However, this device has an n-type substrate and a p-type substrate on one chip, and the circuit is constructed by interconnecting the p-channel and n-channel transistors formed on each substrate. There are still many problems with integration that need to be resolved. Particular problems arise in the well formation method and their separation. Not only is it difficult to miniaturize the well, but if it is formed near the well boundary, switching in the PnPn parasitic structure (so-called latch-up phenomenon) will occur. There were inconveniences such as the circuit being destroyed.

以下、この問題をCMOSインバータを例にと
り説明する。第1図a〜cは従来のCMOSイン
バータ製造工程を示す断面図である。まず、第1
図aに示す如く、n型半導体基板1上にSiO2
からなるマスク層2を形成し、その開口部を通し
てボロン(B+)を、例えば100〔kV〕の加速電
圧、2〜3×1012〔cm- 2〕のドーズ量でイオン注
入する。ここで、図中3がイオン注入領域であ
る。次いで1200〔℃〕約8時間の熱処置を行い、
第1図bに示す如くボロンの拡散させ、接合深さ
が5〜6〔μm〕となるようにする。このようにし
て形成されたP型拡散層p−ウエル4である。次
に、上記マスク層2を除去し、第1図cに示す如
くフイールド酸化膜5、ゲート酸化膜6a,6
b、ゲート電極7a,7bを形成し、さらにソー
ス・ドレインとなるP+拡散層8a,9a及びN+
拡散層8b,9b等を形成し、p−チヤネルトラ
ンジスタ10a及びn−チヤネルトランジスタ1
0bを形成する。この後、絶縁膜を介してAlの
配線等を形成し、必要な電気的接続を施すことに
よつて、CMOSインバータが形成されることに
なる。
This problem will be explained below using a CMOS inverter as an example. FIGS. 1a to 1c are cross-sectional views showing a conventional CMOS inverter manufacturing process. First, the first
As shown in FIG . Ion implantation is performed at a dose of 12 [cm - 2 ]. Here, 3 in the figure is an ion implantation region. Next, heat treatment was performed at 1200 [℃] for about 8 hours.
As shown in FIG. 1b, boron is diffused so that the bonding depth becomes 5 to 6 μm. This is the P-type diffusion layer p-well 4 formed in this manner. Next, the mask layer 2 is removed, and as shown in FIG.
b, P + diffusion layers 8a, 9a and N + which form gate electrodes 7a, 7b and become sources and drains;
Diffusion layers 8b, 9b, etc. are formed, and a p-channel transistor 10a and an n-channel transistor 1 are formed.
Form 0b. Thereafter, a CMOS inverter is formed by forming Al wiring and the like through an insulating film and making necessary electrical connections.

このような従来の方法によると、イオン注入さ
れたボロンを熱拡散させ5〜6〔μm〕の接合深さ
を持つp−ウエル4を形成する際、ボロンが横方
向にも約4〜5〔μm〕拡散するため、pウエル領
域も横方向に拡がる。したがつて、小さなウエル
を精度よく形成することは困難であつた。また、
第1図cに示したようにpチヤネルトランジスタ
10aのドレイン9a、n型基板1、p−ウエル
4及びnチヤネルトランジスタ10bのソース8
bの間にpnpnの寄生構造が形成され、これが回
路作動中にONすると回路が破壊されるという、
所謂ラツチ・アツプ現象が生じる。これを防止す
るためにはn+層9a(ドレイン)とn+層8b(ソ
ース)との間隔を十分に離す必要があり、これが
CMOS ICの微細化を妨げる大きな要因となつて
いた。なお、上述した問題はCMOSインバータ
に限らず各種のCMOS型半導体装置についても
同様に云えることである。
According to such a conventional method, when the p-well 4 having a junction depth of 5 to 6 [μm] is formed by thermally diffusing the ion-implanted boron, the boron also spreads in the lateral direction about 4 to 5 [μm]. μm] Due to the diffusion, the p-well region also expands laterally. Therefore, it has been difficult to form small wells with high precision. Also,
As shown in FIG. 1c, the drain 9a of the p-channel transistor 10a, the n-type substrate 1, the p-well 4, and the source 8 of the n-channel transistor 10b.
A pnpn parasitic structure is formed between b, and if this turns on during circuit operation, the circuit will be destroyed.
A so-called latch-up phenomenon occurs. In order to prevent this, it is necessary to provide a sufficient distance between the n + layer 9a (drain) and the n + layer 8b (source).
This was a major factor hindering the miniaturization of CMOS ICs. Note that the above-mentioned problem is not limited to CMOS inverters but also applies to various CMOS type semiconductor devices.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、小さなウエルを精度良く形成
することができ、かつラツチ・アツプ等の発生を
未然に防止することができ、CMOS型半導体装
置の微細化及び信頼性向上に寄与し得る半導体装
置の製造方法を提供することにある。
An object of the present invention is to provide a semiconductor device that can form small wells with high precision, prevents latch-up, etc., and contributes to miniaturization and improved reliability of CMOS semiconductor devices. The purpose of this invention is to provide a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、ウエルと基板との間或いはウ
エル間に溝を設け、この溝に絶縁膜を埋め込むこ
とにある。
The gist of the present invention is to provide a groove between a well and a substrate or between wells, and to fill this groove with an insulating film.

すなわち本発明は、半導体基板上の一部に該基
板と逆導電型のウエルを形成し、このウエル及び
基板上にそれぞれ能動素子を形成して半導体装置
を製造するに際し、上記基板上のウエル形成領域
外に1層以上の第1の被膜を形成したのち、
CVD法を用いて全面に第2の被膜を形成し、次
いで等方性エツチングにより前記第1の被膜の側
壁部の前記第2の被膜を選択的に除去し、次いで
残存した前記第2の被膜をマスクとして前記基板
を選択エツチングして溝部を形成し、次いで上記
溝部にCVD法を用いて絶縁膜を埋め込み、しか
るのち上記被膜及び絶縁膜をマスクとし前記基板
に該基板と逆導電型の不純物をドーピングするよ
うにした方法である。
That is, the present invention provides a method for manufacturing a semiconductor device by forming a well of a conductivity type opposite to that of the substrate in a part of the semiconductor substrate, and forming active elements on the well and the substrate, respectively. After forming one or more first layers outside the area,
A second coating is formed on the entire surface using a CVD method, and then the second coating on the side wall of the first coating is selectively removed by isotropic etching, and then the remaining second coating is removed. A trench is formed by selectively etching the substrate using the film as a mask, and then an insulating film is buried in the trench using the CVD method, and then, using the film and the insulating film as a mask, the substrate is doped with impurities of a conductivity type opposite to that of the substrate. This method involves doping.

また本発明は、半導体基板上に第1導電型の第
1ウエル及び第2導電型の第2ウエルを形成し、
これらのウエル上にそれぞれ能動素子を形成して
半導体装置を製造するに際し、上記基板の第2ウ
エル形成領域上に1層以上の第1の被膜を形成し
たのち、CVD法を用いて全面に第2の被膜を形
成し、次いで等方性エツチングにより第1の被膜
の側壁部の前記第2の被膜の段差部を選択的に除
去し、次いで残存した前記第2の被膜をマスクと
して前記の基板を選択エツチングして溝部を形成
し、次いで上記溝部にCVD法を用いて絶縁膜を
埋め込み、次いで上記第1の被膜及び絶縁膜をマ
スクとして第1ウエル形成領域上に第1導電型の
不純物をドーピングし、次いで上記第1ウエル形
成領域上に第3の被膜を形成し、次いで前記第1
の被膜を除去し、しかるのち上記第3の被膜をマ
スクとして前記第2ウエル形成領域上に第2導電
型の不純物をドーピングするようにした方法であ
る。
The present invention also provides a method for forming a first well of a first conductivity type and a second well of a second conductivity type on a semiconductor substrate,
When manufacturing a semiconductor device by forming active elements on each of these wells, one or more first layers are formed on the second well formation region of the substrate, and then a first film is coated on the entire surface using a CVD method. 2 is formed, and then the stepped portion of the second coating on the side wall of the first coating is selectively removed by isotropic etching, and then the remaining second coating is used as a mask to remove the step portion of the second coating on the substrate. A groove is formed by selectively etching the groove, and then an insulating film is buried in the groove using a CVD method. Next, an impurity of a first conductivity type is injected onto the first well formation region using the first film and the insulating film as a mask. doping, then forming a third coating on the first well formation region, and then forming a third coating on the first well formation region;
In this method, the second conductive type impurity is doped onto the second well forming region using the third coating as a mask.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、溝部に埋め込んだ絶縁膜によ
りウエルの横方向の拡がりが規定されるため、小
さなウエルを精度良く形成することができる。ま
た、第2の被膜はCVD膜であるため、ウエツト
エツチング等の等方性エツチングを用いること
で、第1の被膜の側壁部の第2の被膜を制御性良
く選択除去できる。この結果、寸法精度の高いマ
スクパターンが得られ、孔径の小さい溝を形成で
き、素子形成領域を広くとれる。さらに、溝部に
埋め込んだ絶縁膜により各素子間が確実に分離さ
れるため、ラツチアツプ現象等を招くこともな
い。また、絶縁膜はCVD法により形成されてい
るので、熱酸化法のように熱により基板がダメー
ジを受けるという恐れはない。したがつて、
CMOS半導体装置の微細化及び信頼性向上に絶
大なる効果を発揮する。
According to the present invention, since the lateral extent of the well is defined by the insulating film embedded in the groove, a small well can be formed with high precision. Further, since the second film is a CVD film, by using isotropic etching such as wet etching, the second film on the side wall portion of the first film can be selectively removed with good controllability. As a result, a mask pattern with high dimensional accuracy can be obtained, grooves with small hole diameters can be formed, and a wide element formation area can be obtained. Furthermore, since each element is reliably isolated by the insulating film embedded in the groove, latch-up phenomena and the like are not caused. Furthermore, since the insulating film is formed by the CVD method, there is no fear that the substrate will be damaged by heat, unlike the thermal oxidation method. Therefore,
It is extremely effective in miniaturizing CMOS semiconductor devices and improving their reliability.

〔発明の実施例〕[Embodiments of the invention]

第2図a〜hは本発明の第1の実施例に係わる
CMOSインバータ製造工程を示す断面図である。
まず、第2図aに示す如くn型シリコン基板(半
導体基板)11上に、熱酸化膜(SiO2膜)12
及びSi3N4膜13からなる第1の被膜をそれぞれ
例えば1000〔Å〕形成する、続いて、例えばフト
ロレジスト14を選択的に形成し、このレジスト
14をマスクとしてSi3N4膜13及びsiO2膜12
をエツチング除去する。次いで、第2図bに示す
如く全面に例えばプラズマSiO2膜(第2の被膜)
15を約10〔μm〕形成する。その後この試料を例
えばNH4Fで約20〜30秒エツチングし、第2図c
に示す如く段差部においてのみプラズマSiO2
5をエツチング除去する。
Figures 2a to 2h relate to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a CMOS inverter manufacturing process.
First, as shown in FIG. 2a, a thermal oxide film (SiO 2 film) 12 is placed on an n-type silicon substrate (semiconductor substrate) 11.
A first film consisting of the Si 3 N 4 film 13 and the Si 3 N 4 film 13 is formed to a thickness of, for example, 1000 [Å], and then, for example, a phytoresist 14 is selectively formed, and using this resist 14 as a mask, the Si 3 N 4 film 13 and the Si 3 N 4 film 13 and siO2 membrane 12
Remove by etching. Next, as shown in FIG. 2b, for example, a plasma SiO 2 film (second film) is applied to the entire surface.
15 with a thickness of about 10 [μm]. This sample is then etched with, for example, NH 4 F for about 20 to 30 seconds, as shown in Figure 2c.
As shown in Fig. 2, plasma SiO 2 1 is generated only at the step part.
5 is removed by etching.

次に、フオトレジスト膜14を除去すると共に
レジスト14上のプラズマSiO2膜15をリフト
オフにより除去する。次いで、第2図dに示す如
くSi3H4膜13及び残置されたプラズマSiO2膜1
5をマスクとして、シリコン基板11を異方性エ
ツチング法により選択エツチングし、前記第1の
被膜のパターン周辺に溝部16を5〜10〔μm〕の
深さに形成する。続いて、プラズマSiO2膜15
をエツチング除去したのち、第2図eに示す如く
全面に例えばCVD SiO2膜(絶縁膜)17を約
2000〔Å〕堆積させ、前記溝部16を埋めると同
時に全面を覆う。次いで、方向性エツチング法に
より全面エツチングを施し、SiO2膜17を約
2000〔Å〕除去すると第2図fに示す如く、溝部
16がSiO2膜17で充填された構造となる。続
いて、Si3N4膜13及びSiO2膜をマスクとして、
ボロン(B+)を拡散しpウエル18を形成する。
ここで、上記ボロンの拡散はボロンナイトライド
を用いた気相拡散でもよいし、ボロンのイオン注
入とドライブイン拡散とを組み合わせたものでも
よい。
Next, the photoresist film 14 is removed and the plasma SiO 2 film 15 on the resist 14 is removed by lift-off. Next, as shown in FIG. 2d, the Si 3 H 4 film 13 and the remaining plasma SiO 2 film 1 are removed.
5 as a mask, the silicon substrate 11 is selectively etched by an anisotropic etching method to form a groove 16 at a depth of 5 to 10 μm around the pattern of the first film. Next, plasma SiO 2 film 15
After removing it by etching, for example, a CVD SiO 2 film (insulating film) 17 is deposited on the entire surface as shown in Fig. 2e.
It is deposited to a thickness of 2000 Å, filling the groove 16 and simultaneously covering the entire surface. Next, the entire surface is etched using a directional etching method, and the SiO 2 film 17 is approximately etched.
When 2000 [Å] is removed, the groove 16 is filled with the SiO 2 film 17, as shown in FIG. 2f. Next, using the Si 3 N 4 film 13 and the SiO 2 film as a mask,
A p-well 18 is formed by diffusing boron (B + ).
Here, the boron diffusion described above may be vapor phase diffusion using boron nitride, or may be a combination of boron ion implantation and drive-in diffusion.

次に、第2図gに示す如くSi3N4膜13及び
SiO2膜12を除去する。そして、第2図hに示
す如くフイールド酸化膜19、ゲート酸化膜20
a,20b、ゲート電極21a,21b、ソー
ス・ドレインとなるp+拡散層22a,23a及
びN+拡散層22b,23b等を形成する。その
後、従来方法と同様に層間絶縁膜やAl配線等を
形成することによつてCMOSインバータが作製
されることになる。
Next, as shown in FIG. 2g, the Si 3 N 4 film 13 and
The SiO 2 film 12 is removed. Then, as shown in FIG. 2h, a field oxide film 19 and a gate oxide film 20 are formed.
a, 20b, gate electrodes 21a, 21b, p + diffusion layers 22a, 23a, and N + diffusion layers 22b, 23b, which will become sources and drains, are formed. Thereafter, a CMOS inverter is manufactured by forming an interlayer insulating film, Al wiring, etc. in the same manner as in the conventional method.

かくして本実施例方法によれば、pウエル18
を形成するための拡散工程に際し、両側がSiO2
膜17で囲まれているためボロンは横方向には拡
散しない。このため、微細なp−ウエル領域を容
易に形成することができる。また、pチヤネルト
ランジスタのソース若しくはドレイン23a及び
nチヤネルトラジスタのソース若しくはドレイン
22bを第2図hに示した如く近接させても、溝
部16に充填されたSiO2膜17によつても各ト
ランジスタが隔られているため、ラツチアツプ現
象を、従来法によつて十分離した構造をとつた場
合と同じかそれ以上に起こし難くすることができ
る。したがつて、CMOSインバータの微細化を
極めて容易に実現することができた。なお、前述
した溝部16を形成することによつて、ウエルの
分離を実現する方法はこれまでにもいろいろ試み
られているが、溝を形成するためのマスク形成工
程とpウエル拡散を行うためのマスク形成工程が
それぞれ別々に行われていたため、工程も複雑に
なり、さらに微細なp−ウエルを形成することに
おいても不利であつた。これに対し、本実施例で
は溝を形成するためのマスク形成工程をセルフア
ラインで行うことができ、さらにpウエル拡散の
ためのマスクを溝形成のためのマスクとしても用
いているので、その工程が極めて容易になる等の
利点もある。
Thus, according to the method of this embodiment, the p-well 18
During the diffusion process to form SiO 2 on both sides
Since boron is surrounded by the film 17, it does not diffuse laterally. Therefore, a fine p-well region can be easily formed. Furthermore, even if the source or drain 23a of the p-channel transistor and the source or drain 22b of the n-channel transistor are placed close to each other as shown in FIG . Because they are separated from each other, the latch-up phenomenon can be made as difficult to occur as, or even more difficult than, the conventional method in which the structures are sufficiently spaced apart. Therefore, miniaturization of CMOS inverters could be realized extremely easily. Various methods have been tried to achieve well isolation by forming the grooves 16 described above, but the mask forming process for forming the grooves and the process for performing p-well diffusion are difficult. Since each mask forming process was performed separately, the process became complicated, and it was also disadvantageous in forming a finer p-well. On the other hand, in this embodiment, the mask forming process for forming the groove can be performed by self-alignment, and the mask for p-well diffusion is also used as a mask for forming the groove, so the process It also has the advantage that it becomes extremely easy to use.

第3図a,bは第2の実施例に係わる工程断面
図である。この実施例が先に説明した第1の実施
例と異なる点は、前記半導体基板としてπ型基板
31を用いたことにある。すなわち、π型基板3
1を用い前記第2図fまでは先の実施例と同様の
工程とし、その後Si3N4膜13をマスクとして選
択酸化を行い第3図aに示す如く酸化膜(SiO2
膜)32を形成する。次いで、Si3N4膜13及び
SiO2膜12を除去したのち、第3図bに示す如
くヒ素(As)等のn型の不純物を選択酸化によ
つて形成されたSiO2膜(第3の被膜)32をマ
スクに基板31に導入しnウエル33を形成す
る。これにより、π型基板31上にn−ウエル3
3及びp−ウエル18を同時に形成することがで
き、かつこれらをSiO2膜32で分離した構造が
実現されることになる。
FIGS. 3a and 3b are process sectional views relating to the second embodiment. This embodiment differs from the first embodiment described above in that a π-type substrate 31 is used as the semiconductor substrate. That is, the π-type substrate 3
1, the steps up to FIG .
A film) 32 is formed. Next, Si 3 N 4 film 13 and
After removing the SiO 2 film 12, as shown in FIG. 3b, the substrate 31 is removed using the SiO 2 film (third film) 32 formed by selective oxidation of n-type impurities such as arsenic (As) as a mask. to form an n-well 33. As a result, an n-well 3 is formed on the π-type substrate 31.
A structure is realized in which the P-well 3 and the P-well 18 can be formed at the same time, and these are separated by the SiO 2 film 32.

したがつて、この実施例によつても先の第1の
実施例と同様の効果が得られるのは勿論のことで
ある。なお、前記pウエルとnウエルとの形成順
序は逆に行つてもよい。また、基板として先の実
施例と同じくn型の基板11を用いて酸化膜32
をマスクに行うイオン注入を、例えばn型基板1
1におけるフイールド反転防止及びチヤネル部の
閾値コントロールを目的に行つてもよい。この場
合、例えばAsのイオン注入が用いられ50kV〜
100KVで、5×1011〜1013の範囲のドーズ量でイ
オン注入すればよい。
Therefore, it goes without saying that this embodiment also provides the same effects as the first embodiment. Note that the formation order of the p-well and n-well may be reversed. In addition, using the n-type substrate 11 as the substrate as in the previous embodiment, the oxide film 32 is
For example, the ion implantation is performed using a mask as the n-type substrate 1.
1 may be performed for the purpose of preventing field inversion and controlling the threshold value of the channel section. In this case, for example, As ion implantation is used to
Ion implantation may be performed at 100 KV with a dose in the range of 5×10 11 to 10 13 .

第4図は第3の実施例に係わる工程断面図であ
る。この実施例は先の第1の実施例の改良であ
り、前記第2図dの段階で溝部16の底部にn型
の不純物をイオン注入し、n型不純物の高濃度不
純物層41をn型基板11内に形成した場合を示
す。この様な構造をとるとp−ウエル18の界面
における空気層のn基板11側における空気層の
形状は第4図中に破線で示す如くなつている。す
なわち、空気層の拡がりが高濃度層41によつて
おきかとられるため、ラツチアツプやパンチスル
ーの耐圧をさらに高くすることができる。
FIG. 4 is a cross-sectional view of the process according to the third embodiment. This embodiment is an improvement of the first embodiment, in which n-type impurity ions are implanted into the bottom of the groove 16 in the step shown in FIG. A case where it is formed inside the substrate 11 is shown. With this structure, the shape of the air layer on the n-substrate 11 side of the air layer at the interface of the p-well 18 is as shown by the broken line in FIG. That is, since the expansion of the air layer is prevented by the high concentration layer 41, the withstand voltage for latch-up and punch-through can be further increased.

なお、本発明は上述した各実施例に限定される
ものではない。前記第1の実施例では、プラズマ
SiO2膜15をリフト・オフによつて除去してか
らシリコン基板11の選択エツチングを行つた
が、これは必ずしも行わなくてもよい。すなわ
ち、第2図cの状態でシリコン基板11のエツチ
ングを行うようにしてもよい。また、前記溝部へ
の絶縁膜の充填としてCVD SiO2膜15の堆積を
行つたが、この代りに熱酸化を行つてもよい。さ
らに、残置されたプラズマSiO2膜17を除去し
てから溝部16への絶縁物の充填を行つている
が、SiO2膜15の除去前、すなわち第2図dの
段階で行つてもよい。また、前記第1の被膜とし
てレジスト/Si3N4/SiO2を用いて説明したが、
これ以外のいかなる組合せでもよい。例えばレジ
ストのかわりにAlを用いてもよいし、SiO2膜或
いはsi3N4膜単独であつてもよい。また、段差部
でのエツチング速度が平坦部でのエツチング速度
よりも速い膜としてプラズマSiO2膜の場合につ
いてのみ述べたが、これ以外のもの例えばプラズ
マSi3N4、プラズマPSG膜或いはスパツタリング
で堆積されたSiO2、Si3N4、PSG膜等でもよい。
さらに、Alの蒸着を用いて段差部で薄くなつた
膜を等方エツチングで除去して、残つたAlパタ
ンを用いて同様の効果が得られる。また、このよ
うな性質の膜を一切用いずマスク合せ工程を用い
てマスク材を第2図dに示す如く残置しても本発
明の主旨を逸脱するものではない。また、第2図
hでは図示されたnチヤネルトランジスタとp−
チヤネルトランジスタとの分離はウエルの分離用
酸化膜17をそのまま用いているが、これに加え
フイールド酸化膜で分離を行つてもよい。さら
に、フイールド酸化膜の形成はいかなる方法を用
いて形成してもよく、いわゆる従来のLOCOS法、
埋め込み酸化膜による方法など何を用いてもよい
ことは言うまでもない。要するに本発明は、その
要旨を逸脱しない範囲で、種々変形して実施する
ことができる。
Note that the present invention is not limited to the embodiments described above. In the first embodiment, plasma
Although selective etching of the silicon substrate 11 was performed after removing the SiO 2 film 15 by lift-off, this need not necessarily be performed. That is, the silicon substrate 11 may be etched in the state shown in FIG. 2c. Furthermore, although the CVD SiO 2 film 15 was deposited to fill the trench with an insulating film, thermal oxidation may be performed instead. Further, although the remaining plasma SiO 2 film 17 is removed and then the trench 16 is filled with an insulator, it may also be filled before the SiO 2 film 15 is removed, that is, at the stage shown in FIG. 2d. Furthermore, although the explanation has been made using resist/Si 3 N 4 /SiO 2 as the first film,
Any other combination may be used. For example, Al may be used instead of the resist, or a SiO 2 film or a si 3 N 4 film alone may be used. In addition, although we have only described the case of a plasma SiO 2 film as a film in which the etching rate at the step part is faster than the etching rate at the flat part, other films such as plasma Si 3 N 4 , plasma PSG film, or deposited by sputtering may be used. It may also be a film of SiO 2 , Si 3 N 4 , PSG film, or the like.
Furthermore, the same effect can be obtained by using the remaining Al pattern by removing the thinned film at the stepped portion by isotropic etching using Al vapor deposition. Further, it does not depart from the spirit of the present invention even if the mask material is left as shown in FIG. 2d by using a mask alignment process without using any film having such properties. In addition, in FIG. 2h, the illustrated n-channel transistor and the p-
Although the well isolation oxide film 17 is used as is for isolation from the channel transistor, a field oxide film may also be used for isolation. Furthermore, the field oxide film may be formed using any method, such as the so-called conventional LOCOS method,
Needless to say, any method such as a method using a buried oxide film may be used. In short, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜cは従来のCMOSインバータ製工
程を示す断面図。第2図a〜hは本発明の第1の
実施例に係わるCMOSインバータ製造工程を示
す断面図、第3図a〜bは第2の実施例に係わる
工程断面図、第4図は第3の実施例に係わる工程
断面図である。 11……n型シリコン基板、12……熱酸化膜
(SiO2膜)、13……Si3N4膜、14……レジス
ト、15……プラズマSiO2膜、16……溝部、
17……CVD SiO2膜(絶縁膜)、18……ウエ
ル、20a,20b……ゲート酸化膜、21a,
21b……ゲート電極、22a,22b,23
a,23b……ソース・ドレイン、31……π型
基板、32……酸化膜(SiO2膜)、33……nウ
エル、41……高濃度不純物層。
FIGS. 1a to 1c are cross-sectional views showing a conventional CMOS inverter manufacturing process. 2A to 2H are cross-sectional views showing the CMOS inverter manufacturing process according to the first embodiment of the present invention, FIGS. 3A to 3B are cross-sectional views of the process according to the second embodiment, and FIG. It is a process sectional view concerning an example. DESCRIPTION OF SYMBOLS 11... N-type silicon substrate, 12... Thermal oxide film (SiO 2 film), 13... Si 3 N 4 film, 14... Resist, 15... Plasma SiO 2 film, 16... Groove,
17...CVD SiO 2 film (insulating film), 18... Well, 20a, 20b... Gate oxide film, 21a,
21b...gate electrode, 22a, 22b, 23
a, 23b... Source/drain, 31... π type substrate, 32... Oxide film (SiO 2 film), 33... N well, 41... High concentration impurity layer.

Claims (1)

【特許請求の範囲】 1 半導体基板上の一部に該基板と逆導電型のウ
エルを形成し、このウエル及び上記基板上にそれ
ぞれ能動素子を形成する半導体装置の製造方法に
おいて、前記基板上のウエル形成領域外に第1の
被膜を形成する工程と、CVD法を用いて全面に
第2の被膜を形成する工程と、等方性エツチング
により前記第1の被膜の側壁部の前記第2の被膜
を選択的に除去する工程と、残存した前記第2の
被膜をマスクとして前記基板を選択エツチングし
て溝部を形成する工程と、上記溝部にCVD法を
用いて絶縁膜を埋め込む工程と、上記被膜及び絶
縁膜をマスクとし前記基板に該基板と逆導電型の
不純物をドーピングする工程とを具備したことを
特徴とする半導体装置の製造方法。 2 前記基板を選択エツチングして溝部を形成す
る工程は、前記被膜が形成された基板上の全面に
段差部におけるエツチング速度が平坦部における
エツチング速度より速い第2の被膜を形成したの
ち、全面エツチングを施し上記第2の被膜の段差
部を除去し、次いで残存した第2の被膜をマスク
の一部として前記基板を選択エツチングすること
である特許請求の範囲第1項記載の半導体装置の
製造方法。 3 半導体基板上に第1導電型の第1ウエル及び
第2導電型の第2ウエルを形成し、これらのウエ
ル上にそれぞれ能動素子を形成する半導体装置の
製造方法において、前記基板の第2ウエル形成領
域上に第1の被膜を形成する工程と、CVD法を
用いて全面に第2の被膜を形成する工程と、等方
性エツチングにより前記第1の被膜の側壁部の前
記第2の被膜を選択的に除去する工程と、残存し
た前記第2の被膜をマスクとして前記基板を選択
エツチングして溝部を形成する工程と、上記溝部
にCVD法を用いて絶縁膜を埋め込む工程と、上
記第1の被膜及び絶縁膜をマスクとして第1ウエ
ル形成領域上に第1導電型の不純物をドーピング
する工程と、上記第1ウエル形成領域上に第3の
被膜を形成する工程と、次いで前記第1の被膜を
除去する工程と、次いで上記第3の被膜をマスク
として前記第2ウエル形成領域上に第2導電型の
不純物をドーピングする工程とを具備したことを
特徴とする半導体装置の製造方法。 4 前記基板を選択エツチングして溝部を形成す
る工程は、前記第1の被膜が形成された基板上の
全面に段差部におけるエツチング速度が平坦部に
おけるエツチング速度より速い第2の被膜を形成
したのち、全面エツチングを施し上記第2の被膜
の段差部を除去し、次いで残存した第2の被膜を
マスクの一部として前記基板を選択エツチングす
ることである特許請求の範囲第3項記載の半導体
装置の製造方法。 5 前記第3の被膜は前記基板の選択酸化によつ
て形成されたものであり、前記第1の被膜は耐酸
化性膜を含むものである特許請求の範囲第3項又
は第4項記載の半導体装置の製造方法。
[Scope of Claims] 1. A method for manufacturing a semiconductor device in which a well of a conductivity type opposite to that of the substrate is formed in a part of a semiconductor substrate, and active elements are formed on this well and the substrate, respectively. a step of forming a first film outside the well formation region; a step of forming a second film on the entire surface using CVD; and a step of forming the second film on the side wall of the first film by isotropic etching. a step of selectively removing a film; a step of selectively etching the substrate using the remaining second film as a mask to form a groove; a step of embedding an insulating film in the groove using a CVD method; 1. A method of manufacturing a semiconductor device, comprising the step of doping the substrate with an impurity of a conductivity type opposite to that of the substrate using a film and an insulating film as a mask. 2. The step of forming grooves by selectively etching the substrate includes forming a second coating on the entire surface of the substrate on which the coating is formed, the etching rate of which is higher in the stepped portions than the etching rate of the flat portions, and then etching the entire surface. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the step portion of the second coating is removed, and then the remaining second coating is used as a part of a mask to selectively etch the substrate. . 3. In a method for manufacturing a semiconductor device, in which a first well of a first conductivity type and a second well of a second conductivity type are formed on a semiconductor substrate, and active elements are formed on each of these wells, the second well of the substrate a step of forming a first film on the formation region, a step of forming a second film on the entire surface using a CVD method, and a step of forming the second film on the side wall portion of the first film by isotropic etching. a step of selectively etching the substrate using the remaining second film as a mask to form a groove portion; a step of filling the groove portion with an insulating film using a CVD method; a step of doping impurities of a first conductivity type onto a first well formation region using the first film and an insulating film as a mask; a step of forming a third film on the first well formation region; A method for manufacturing a semiconductor device, comprising the steps of: removing the third coating; and doping an impurity of a second conductivity type onto the second well formation region using the third coating as a mask. 4. The step of selectively etching the substrate to form grooves is performed after forming a second coating on the entire surface of the substrate on which the first coating is formed, the etching rate of which is higher in the stepped portions than in the flat portions. 3. The semiconductor device according to claim 3, wherein etching is performed on the entire surface to remove the stepped portion of the second film, and then the remaining second film is used as a part of a mask to selectively etch the substrate. manufacturing method. 5. The semiconductor device according to claim 3 or 4, wherein the third coating is formed by selective oxidation of the substrate, and the first coating includes an oxidation-resistant film. manufacturing method.
JP57150960A 1982-08-31 1982-08-31 Manufacture of semiconductor device Granted JPS5940563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57150960A JPS5940563A (en) 1982-08-31 1982-08-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57150960A JPS5940563A (en) 1982-08-31 1982-08-31 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5940563A JPS5940563A (en) 1984-03-06
JPH0481339B2 true JPH0481339B2 (en) 1992-12-22

Family

ID=15508191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57150960A Granted JPS5940563A (en) 1982-08-31 1982-08-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5940563A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500140A (en) * 1983-10-11 1986-01-23 アメリカン テレフオン アンド テレグラフ カムパニ− Semiconductor circuits including complementary metal-oxide-semiconductor devices
US4656730A (en) * 1984-11-23 1987-04-14 American Telephone And Telegraph Company, At&T Bell Laboratories Method for fabricating CMOS devices
JPS6252957A (en) * 1985-09-02 1987-03-07 Toshiba Corp Cmos semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148466A (en) * 1979-05-10 1980-11-19 Nec Corp Cmos semiconductor device and its manufacture
JPS55154770A (en) * 1979-05-23 1980-12-02 Toshiba Corp Manufacture of complementary mos semiconductor device
JPS55154748A (en) * 1979-05-23 1980-12-02 Toshiba Corp Complementary mos semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148466A (en) * 1979-05-10 1980-11-19 Nec Corp Cmos semiconductor device and its manufacture
JPS55154770A (en) * 1979-05-23 1980-12-02 Toshiba Corp Manufacture of complementary mos semiconductor device
JPS55154748A (en) * 1979-05-23 1980-12-02 Toshiba Corp Complementary mos semiconductor device

Also Published As

Publication number Publication date
JPS5940563A (en) 1984-03-06

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US4463493A (en) Method for making mask aligned narrow isolation grooves for a semiconductor device
JP2002237575A (en) Semiconductor device and its manufacturing method
KR19980047270A (en) Transistor of semiconductor device and manufacturing method thereof
US5554554A (en) Process for fabricating two loads having different resistance levels in a common layer of polysilicon
US6352872B1 (en) SOI device with double gate and method for fabricating the same
JPH1074921A (en) Semiconductor device and manufacturing method thereof
US7064387B2 (en) Silicon-on-insulator (SOI) substrate and method for manufacturing the same
US5661048A (en) Method of making an insulated gate semiconductor device
US5895243A (en) Semiconductor processing method of providing electrical isolation between adjacent semiconductor diffusion regions of different field effect transistors and integrated circuitry having adjacent electrically isolated field effect transistors
JPH0481339B2 (en)
KR100361764B1 (en) A method for forming a field oxide of a semiconductor device
JP2845186B2 (en) Semiconductor device and manufacturing method thereof
JPH10163338A (en) Semiconductor device and its manufacturing method
JPH0334656B2 (en)
JPH09139382A (en) Manufacture of semiconductor device
KR960009991B1 (en) Field effect transistor manufacturing process
KR940009365B1 (en) Cmos manufacturing method using trench
JPH021377B2 (en)
JPH0334655B2 (en)
JP2674568B2 (en) Method for manufacturing semiconductor device
KR100548536B1 (en) Semiconductor device formed SOI substrate and method for manufacturing the same
JPH04245473A (en) Semiconductor integrated circuit and manufacture thereof
JPS61135135A (en) Semiconductor device
JPH0653420A (en) Bicmos transistor and its manufacture