JPH09102604A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH09102604A
JPH09102604A JP7260093A JP26009395A JPH09102604A JP H09102604 A JPH09102604 A JP H09102604A JP 7260093 A JP7260093 A JP 7260093A JP 26009395 A JP26009395 A JP 26009395A JP H09102604 A JPH09102604 A JP H09102604A
Authority
JP
Japan
Prior art keywords
main surface
region
type
semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7260093A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Asao
強 朝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP7260093A priority Critical patent/JPH09102604A/en
Publication of JPH09102604A publication Critical patent/JPH09102604A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Abstract

PROBLEM TO BE SOLVED: To reduce the ON resistance of a transistor by forming a hollow in a semiconductor substrate, forming a conductive layer on the bottom surface of the hollow, and shortening the path of current. SOLUTION: A hollow 7 is formed on the back of a P-type silicon substrate 1. An N-type buried layer 6 is formed in a region which reaches the main surface from the bottom surface of the hollow 7 in the P-type silicon substrate 1. In an N-type epitaxial layer 2, a vertical type MOSFET forming region 4 and a control element forming region 5 are formed. A P-type isolation region 3 is formed for isolating the control element forming region 5 from the vertical type MOSFET forming region 4. Since the hollow 7 is formed in the P-type silicon substrate 1 and a drain electrode 8 is formed on the bottom surface of the hollow 7, the path of a current flowing in the P-type silicon substrate is shortened, and the ON resistance of the vertical type MOSFET can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はパワーデバイスを
搭載した複数のトランジスタを有する半導体装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a plurality of transistors equipped with power devices.

【0002】[0002]

【従来の技術】複数のトランジスタが形成される半導体
装置に於て、少なくとも1つは半導体基板の裏面に電極
が形成されるトランジスタの素子分離方法の仕方が特開
昭50−39082号(公報)に記載されている。この
公報によると、NPNトランジスタとPNPトランジス
タが形成されたN型エピタキシャル層5とN+半導体1
との間に、これらトランジスタを素子分離する為にPー
半導体層2が介在していた。
2. Description of the Related Art In a semiconductor device having a plurality of transistors, at least one of which has an electrode formed on the back surface of a semiconductor substrate has a method of element isolation of a transistor, which is disclosed in Japanese Patent Laid-Open No. 50-39082. It is described in. According to this publication, the N-type epitaxial layer 5 and the N + semiconductor 1 in which the NPN transistor and the PNP transistor are formed.
The P-semiconductor layer 2 is interposed between the P and semiconductor layers to isolate these transistors from each other.

【0003】[0003]

【発明が解決しようとする課題】前記公報では素子分離
のためにN+半導体1上にPー半導体層2を形成する必
要があり、Pー埋込層2内に形成されたN+埋込層3と
N+半導体1とをNPNトランジスタのコレクタ領域に
していたので電流の流れる経路が長くなってしまいNP
Nトランジスタのオン抵抗が大きくなってしまう。
In the above publication, it is necessary to form the P-semiconductor layer 2 on the N + semiconductor 1 for element isolation, and the N + burying layer 3 formed in the P- burying layer 2 is required. And N + semiconductor 1 are used as the collector region of the NPN transistor, the current flow path becomes long and NP
The ON resistance of the N-transistor increases.

【0004】[0004]

【課題を解決するための手段】本発明は、窪みが形成さ
れた第1の主面と第1の主面に対向する第2の主面を有
する第1導電型の半導体基板と、窪みの底面から第2の
主面に達する第2導電型の第1の不純物層と、窪みの底
面上に形成され、第1の不純物層と電気的に接続される
第1の導電層と、第1導電型の半導体基板と第1の導電
層とを電気的に分離する為に窪みの底面の周縁から第1
の主面上に延在する絶縁膜と、第2の主面上全面に形成
され、第2の主面に対向する第3の主面を有する半導体
層であって、第1の不純物層上を含む第2の主面から第
3の主面に達する第2の導電型の第1の半導体領域と、
第1の半導体領域に隣接し、第3の主面から第2の主面
に達する第1導電型の第2の半導体領域と、第2の半導
体領域に隣接し、かつ第3の主面から第2の主面に達
し、第2の半導体領域によって第1の半導体領域から分
離される第2導電型の第3の半導体領域とを有する半導
体層と、第1の半導体領域内の第3の主面を含む第1の
半導体領域内に形成される第1導電型の第1の不純物領
域と、第1の不純物領域内の第3の主面を含む第1の不
純物領域内に形成される第2導電型の第2の不純物領域
と、第2の不純物領域内の第3の主面上に形成される第
2の導電層と、第2の不純物領域を除く第1の不純物領
域内の第3の主面上に形成される第3の導電層と、第3
の半導体領域内の第3の主面を含む第3の半導体領域内
に形成される第1導電型の第3の不純物領域と、第3の
不純物領域内の第3の主面を含む第3の不純物領域内に
形成される第2導電型の第4の不純物領域と、第4の不
純物領域内の前記第3の主面上に形成される第4の導電
層と、第4の不純物領域を除く前記第3の不純物領域内
の第3の主面上に形成される第5の導電層と、第3の不
純物領域を除く第3の半導体層内の第3の主面に形成さ
れる第6の導電層と、第3の半導体領域内の第2の主面
を含む半導体基板内に形成される第2導電型の第2の不
純物層とを有することを特徴とする。
According to the present invention, there is provided a first conductivity type semiconductor substrate having a first main surface in which a recess is formed and a second main surface opposed to the first main surface, and a recess. A first impurity layer of a second conductivity type reaching the second main surface from the bottom surface, a first conductive layer formed on the bottom surface of the recess and electrically connected to the first impurity layer, In order to electrically separate the conductive type semiconductor substrate and the first conductive layer from the peripheral edge of the bottom surface of the recess,
A semiconductor layer that is formed on the entire main surface of the second main surface and has a third main surface that is formed on the entire second main surface and that opposes the second main surface. A first semiconductor region of the second conductivity type that reaches from the second main surface to the third main surface including
A second semiconductor region of the first conductivity type that is adjacent to the first semiconductor region and reaches the second main surface from the third main surface, and is adjacent to the second semiconductor region, and from the third main surface A semiconductor layer having a third semiconductor region of a second conductivity type that reaches the second main surface and is separated from the first semiconductor region by the second semiconductor region; and a third semiconductor layer in the first semiconductor region. First impurity region of the first conductivity type formed in the first semiconductor region including the main surface, and formed in the first impurity region including the third main surface in the first impurity region. A second impurity region of the second conductivity type, a second conductive layer formed on the third main surface in the second impurity region, and a first impurity region other than the second impurity region A third conductive layer formed on the third main surface,
Third impurity region of the first conductivity type formed in the third semiconductor region including the third main surface in the third semiconductor region, and the third impurity region including the third main surface in the third impurity region. Second conductivity type fourth impurity region formed in the impurity region, a fourth conductive layer formed on the third main surface in the fourth impurity region, and a fourth impurity region And a fifth conductive layer formed on the third main surface in the third impurity region excluding the third impurity region and a third main surface in the third semiconductor layer excluding the third impurity region. A sixth conductive layer and a second conductive type second impurity layer formed in the semiconductor substrate including the second main surface in the third semiconductor region.

【0005】[0005]

【発明の実施の形態】図1は、本発明の第1の実施の形
態の半導体装置の断面図である。第1の実施の形態で
は、裏面にドレイン電極が形成された縦型MOSトラン
ジスタとバイポーラトランジスタとを有している。以下
この図面を参照しつつ第1の実施の形態について説明す
る。
1 is a sectional view of a semiconductor device according to a first embodiment of the present invention. The first embodiment has a vertical MOS transistor having a drain electrode formed on the back surface and a bipolar transistor. The first embodiment will be described below with reference to the drawings.

【0006】濃度1015/cm3程度のP型シリコン
基板1の裏面に窪み7が形成される。P型シリコン基板
1内の窪み7の底面から主面に達する領域に濃度101
9/cm3程度のN型埋め込み層6が形成される。P型
シリコン基板1主面上には濃度1015/cm3程度の
N型エピタキシャル層2が形成される。N型エピタキシ
ャル層2内には、縦型MOSFET形成領域4とコント
ロール素子形成領域5とが形成される。縦型MOSFE
T形成領域4からコントロール素子形成領域5を分離す
るために、るN型エピタキシャル層2内のN型エピタキ
シャル層2主面からP型シリコン基板1の主面に達する
領域に濃度1018/cm3程度のP型分離領域3が形
成される。縦型MOSFET形成領域4内のN型エピタ
キシャル層2主面に臨む領域内に濃度1018/cm3
程度のP型ベース領域9とP型ベース領域9内に濃度1
020/cm3程度のN型ソース領域10とが形成され
る。P型ベース領域9上にゲート絶縁膜11を介してゲ
ート領域12が形成される。ゲート領域12は縦型MO
SFET形成領域4の外周部で図示しないゲート電極に
接続される。またN型ソース領域10とP型ベース領域
9とは縦型MOSFET形成領域4主面上全面に形成さ
れたソース電極13に接続される。ゲート電極12は絶
縁膜14により、被覆されていて、ソース電極13から
分離される。
A depression 7 is formed on the back surface of the P-type silicon substrate 1 having a concentration of about 1015 / cm3. Concentration 101 in the region reaching the main surface from the bottom surface of the depression 7 in the P-type silicon substrate 1.
An N-type buried layer 6 of about 9 / cm3 is formed. An N-type epitaxial layer 2 having a concentration of about 1015 / cm3 is formed on the main surface of the P-type silicon substrate 1. A vertical MOSFET formation region 4 and a control element formation region 5 are formed in the N-type epitaxial layer 2. Vertical MOSFE
In order to separate the control element formation region 5 from the T formation region 4, a concentration of about 1018 / cm3 is applied to a region from the main surface of the N type epitaxial layer 2 in the N type epitaxial layer 2 to the main surface of the P type silicon substrate 1. P-type isolation region 3 is formed. The concentration of 1018 / cm3 in the region facing the main surface of the N-type epitaxial layer 2 in the vertical MOSFET formation region 4.
P-type base region 9 and a concentration of 1 in P-type base region 9
The N-type source region 10 of about 020 / cm 3 is formed. A gate region 12 is formed on the P-type base region 9 with a gate insulating film 11 interposed therebetween. The gate region 12 is a vertical MO
It is connected to a gate electrode (not shown) at the outer peripheral portion of the SFET formation region 4. The N-type source region 10 and the P-type base region 9 are connected to the source electrode 13 formed on the entire main surface of the vertical MOSFET formation region 4. The gate electrode 12 is covered with the insulating film 14 and separated from the source electrode 13.

【0007】一方コントロール素子形成領域5は、その
内部にバイポーラトランジスタが形成される。P型シリ
コン基板1内のP型シリコン基板1主面に臨む領域には
バイポーラトランジスタのコレクタ抵抗低減のために、
濃度1019/cm3程度のN型埋め込み層24が形成
される。コントロール素子形成領域5内の主面に臨む領
域に濃度1018/cm3程度のP型ベース領域25及
びP型ベース領域25内に濃度1020/cm3程度の
N型エミッタ領域26が形成される。またN型エミッタ
領域26上にエミッタ電極27が形成され、ベース領域
25上にベース電極28が形成される。またコレクタ電
極29が形成され、コレクタ電極下のN型エピタキシャ
ル層2主面近傍に高濃度のN型拡散層が形成される。N
型埋め込み層6下にはドレイン電極15が形成されてお
り、ドレイン電極15からP型シリコン基板1を分離す
る為、これらの間に裏面絶縁膜が形成される。
On the other hand, the control element forming region 5 has a bipolar transistor formed therein. In order to reduce the collector resistance of the bipolar transistor in a region of the P-type silicon substrate 1 facing the main surface of the P-type silicon substrate 1,
The N-type buried layer 24 having a concentration of about 1019 / cm3 is formed. A P-type base region 25 having a concentration of about 1018 / cm3 and an N-type emitter region 26 having a concentration of about 1020 / cm3 are formed in a region facing the main surface in the control element formation region 5. An emitter electrode 27 is formed on the N-type emitter region 26, and a base electrode 28 is formed on the base region 25. Further, collector electrode 29 is formed, and a high-concentration N-type diffusion layer is formed near the main surface of N-type epitaxial layer 2 below the collector electrode. N
A drain electrode 15 is formed below the mold burying layer 6, and a P-type silicon substrate 1 is separated from the drain electrode 15, so a back surface insulating film is formed between them.

【0008】上記構成では窪み7がP型シリコン基板1
に形成され、かつ窪み7の底面にドレイン電極8が形成
されることにより、P型シリコン基板を流れる電流の経
路が短くなるので縦型MOSFETのオン抵抗が低減さ
れる。
In the above structure, the depression 7 has the P-type silicon substrate 1
And the drain electrode 8 is formed on the bottom surface of the recess 7, the path of the current flowing through the P-type silicon substrate is shortened, and the on-resistance of the vertical MOSFET is reduced.

【0009】また上記構成は1実施の形態として裏面電
極形成型の縦型MOSFETを説明したが裏面電極形成
型のトランジスタであれば上記効果が得られ、例えば裏
面にコレクタ電極が形成された裏面コレクタ電極形成型
のバイポーラトランジスタであってもよく、この場合は
図1の縦型MOSFET形成領域4中にベース、エミッ
タを形成し、ドレイン電極15をコレクタ電極とする。
In the above-described structure, the backside electrode forming type vertical MOSFET has been described as an embodiment. However, the above effects can be obtained if the backside electrode forming type transistor is used. For example, a backside collector having a collector electrode formed on the backside. It may be an electrode formation type bipolar transistor. In this case, a base and an emitter are formed in the vertical MOSFET formation region 4 of FIG. 1 and the drain electrode 15 is used as a collector electrode.

【0010】次に第1の実施の形態の製造方法について
説明する。
Next, the manufacturing method of the first embodiment will be described.

【0011】(100)の面方位を持つP型シリコン基
板1の主面上に拡散によりN型埋め込み層6とN型埋め
込み層24とを同時に形成する。次にP型シリコン基板
1上全面に通常のCVD法によってN型エピタキシャル
層2を形成する。その後N型エピタキシャル層2中に拡
散法によりP型分離領域3を形成する。つぎに縦型MO
SFET形成領域4にP型ベース領域9、N型ソース領
域10、ゲート領域12、ソース電極13を形成する。
またコントロール素子形成領域にバイポーラトランジス
タを形成する。次にN型エピタキシャル層2上全面に、
コントロール回路の電極及びソース電極13を保護する
Si3N4の保護膜21をCVD法により形成する。次
にP型シリコン基板1の裏面側にアルカリ系のエッチャ
ントにより縦型MOSFET4の下方に窪み7を形成す
る。次に裏面全面にCVD法による5000オングスト
ローム程度の例えばSiO2の裏面絶縁膜8を形成し、
通常のホトリソ、エッチング工程によりN型埋め込み層
6を再度露出させる。最後に裏面全面に蒸着法により導
電層を形成しパターニングすることによりドレイン電極
15を形成し、第1の実施の形態の構造が得られる。
The N-type buried layer 6 and the N-type buried layer 24 are simultaneously formed on the main surface of the P-type silicon substrate 1 having the (100) plane orientation by diffusion. Next, the N-type epitaxial layer 2 is formed on the entire surface of the P-type silicon substrate 1 by a normal CVD method. After that, a P-type isolation region 3 is formed in the N-type epitaxial layer 2 by a diffusion method. Next, vertical MO
A P-type base region 9, an N-type source region 10, a gate region 12 and a source electrode 13 are formed in the SFET formation region 4.
Further, a bipolar transistor is formed in the control element formation region. Next, on the entire surface of the N-type epitaxial layer 2,
A protective film 21 of Si3N4 for protecting the electrodes of the control circuit and the source electrode 13 is formed by the CVD method. Next, a recess 7 is formed below the vertical MOSFET 4 on the back surface side of the P-type silicon substrate 1 with an alkaline etchant. Next, a back surface insulating film 8 of, eg, SiO 2 of about 5000 Å is formed on the entire back surface by a CVD method,
The N-type buried layer 6 is exposed again by a normal photolithography and etching process. Finally, a drain electrode 15 is formed by forming a conductive layer on the entire back surface by an evaporation method and patterning the structure, and the structure of the first embodiment is obtained.

【0012】上記工程においては、埋め込み層6と埋め
込み層24とが1回の拡散工程により同時に形成するこ
とが可能である。
In the above process, the buried layer 6 and the buried layer 24 can be simultaneously formed by a single diffusion process.

【0013】図2は、本発明の第2の実施の形態の半導
体装置の断面図である。第2の実施の形態では、表面に
ドレイン電極が形成された縦型MOSFETとバイポー
ラトランジスタとを有している。
FIG. 2 is a sectional view of a semiconductor device according to the second embodiment of the present invention. The second embodiment has a vertical MOSFET having a drain electrode formed on the surface and a bipolar transistor.

【0014】第2の実施の形態では第1の実施の形態に
対して、N型ドレイン拡散層16とN型エピタキシャル
層2主面上にドレイン電極17が新たに形成される。ま
た第2の実施の形態と第1の実施の形態はN型埋め込み
層6上に導電層が形成されている点では同じであるが第
1の実施の形態では、その導電層が縦型MOSFETの
ドレイン電極の役割をするドレイン電極15であった
が、第2の実施の形態では、その導電層が埋め込み層6
の抵抗成分を削減するための裏打ち配線の役割をするも
のであり、それぞれ役割が異なるので、その導電層を新
たに裏面配線金属18と呼ぶことにする。
In the second embodiment, a drain electrode 17 is newly formed on the main surface of the N-type drain diffusion layer 16 and the N-type epitaxial layer 2 as compared with the first embodiment. The second embodiment is the same as the first embodiment in that the conductive layer is formed on the N-type buried layer 6, but in the first embodiment, the conductive layer is a vertical MOSFET. The drain electrode 15 functions as the drain electrode of the buried layer 6 in the second embodiment.
, Which serves as a backing wiring for reducing the resistance component of the wiring. Since the respective roles are different, the conductive layer will be referred to as a back wiring metal 18.

【0015】この構成について具体的に説明すると、P
型シリコン基板1主面からドレイン電極16を取り出す
ために縦型MOSFET形成領域4内であって、かつN
型エピタキシャル層2内のN型エピタキシャル層2主面
からN型埋め込み層6に達する領域にN型ドレイン拡散
層16が形成される。N型ドレイン拡散層16上のN型
エピタキシャル層2主面上にドレイン電極17が形成さ
れる。
The structure will be described in detail.
In the vertical MOSFET formation region 4 for taking out the drain electrode 16 from the main surface of the type silicon substrate 1, and N
An N-type drain diffusion layer 16 is formed in a region reaching the N-type buried layer 6 from the main surface of the N-type epitaxial layer 2 in the type epitaxial layer 2. A drain electrode 17 is formed on the main surface of the N-type epitaxial layer 2 on the N-type drain diffusion layer 16.

【0016】第2の実施の形態の縦型MOSFETは、
埋め込み層6,N型ドレイン拡散層16を通して電流が
流れている。よって埋め込み層6の抵抗成分を減少させ
ることで縦型MOSFETのオン抵抗が減少する。
The vertical MOSFET of the second embodiment is
A current flows through the buried layer 6 and the N-type drain diffusion layer 16. Therefore, by reducing the resistance component of the buried layer 6, the on-resistance of the vertical MOSFET is reduced.

【0017】図3は本発明の第3の実施の形態の半導体
装置の断面図であり、図1と相当部分には、同一符号を
符して説明を省略する。
FIG. 3 is a cross-sectional view of a semiconductor device according to a third embodiment of the present invention, in which portions corresponding to those in FIG.

【0018】第3の実施の形態は第1の実施の形態にお
ける裏面電極形成型の縦型MOSFET形成領域4が2
つ隣接して形成されており、これら縦型MOSFET形
成領域下に形成された窪み7の側壁のテーパによって窪
みと窪みの間のシリコン基盤の形状が稜19になってい
る。これにより第3の実施の形態では縦型MOSFET
形成領域4同士が密に隣接されるのでICの集積度が増
す。
In the third embodiment, the back surface electrode forming type vertical MOSFET forming region 4 in the first embodiment is two.
The sidewalls of the recesses 7 formed under these vertical MOSFET formation regions are tapered so that the silicon base between the recesses has a ridge 19. Accordingly, in the third embodiment, the vertical MOSFET
Since the formation regions 4 are closely adjacent to each other, the integration degree of IC is increased.

【0019】図4,図5,図6,図7,図8,図9は本
発明の第3の実施の形態の半導体装置の工程断面図であ
る。以下、第3の実施の形態を説明する。
FIG. 4, FIG. 5, FIG. 6, FIG. 7, FIG. 8, and FIG. 9 are process sectional views of a semiconductor device according to a third embodiment of the present invention. The third embodiment will be described below.

【0020】(100)の面方位を持つP型シリコン基
盤1の主面上に熱酸化による3000オングストローム
程度のSiO2膜20を形成し、通常のホトリソ、エッ
チング工程により、開口する。開口部よりSbをイオン
種とするイオンインプラテーションと熱拡散により、表
面濃度1018/cm3程度のN型埋め込み層6とN型
埋め込み層24を形成する。(図4) 次にSiO2膜20を除去しP型シリコン基盤1の主面
上にρ=1Ωcm、厚さ10μm程度のN型エピタキシ
ャル層2を形成する。その後N型エピタキシャル層2中
に拡散法によりP型分離領域3を形成し、縦型MOSF
ET4の複数の素子を形成し、ソース電極13を形成す
る。次にN型エピタキシャル層2上全面に縦型MOSF
ET4等の素子及びソース電極13を保護する1.5μ
mのSi3N4の保護膜21をCVD法により形成す
る。(図5) その後P型シリコン基盤1の裏面側にアルカリ系のエッ
チャントのマスクとして2000オングストローム程度
のSi3N4膜22をCVD法により形成し、縦型MO
SFET4の下方に位置する部分を通常のホトリソ、エ
ッチング工程により開口する。隣接する2つの縦型MO
SFET4の間に残存しているSi3N4膜22の残存
幅Wは次式の範囲で設定する。
A SiO2 film 20 of about 3000 angstrom is formed by thermal oxidation on the main surface of the P-type silicon substrate 1 having a (100) plane orientation, and an opening is formed by a usual photolithography and etching process. The N-type buried layer 6 and the N-type buried layer 24 having a surface concentration of about 1018 / cm3 are formed by ion implantation using Sb as an ion species and thermal diffusion through the opening. (FIG. 4) Next, the SiO 2 film 20 is removed, and an N-type epitaxial layer 2 with ρ = 1Ωcm and a thickness of about 10 μm is formed on the main surface of the P-type silicon substrate 1. After that, a P-type isolation region 3 is formed in the N-type epitaxial layer 2 by a diffusion method to form a vertical MOSF.
A plurality of elements of ET4 are formed, and the source electrode 13 is formed. Next, a vertical MOSF is formed on the entire surface of the N-type epitaxial layer 2.
1.5μ for protecting the element such as ET4 and the source electrode 13
A m3 Si3N4 protective film 21 is formed by a CVD method. (FIG. 5) After that, a Si3N4 film 22 of about 2000 angstrom is formed on the back surface side of the P-type silicon substrate 1 as a mask of an alkaline etchant by a CVD method, and a vertical MO
A portion located below the SFET 4 is opened by a normal photolithography and etching process. Two adjacent vertical MOs
The remaining width W of the Si3N4 film 22 remaining between the SFETs 4 is set within the range of the following equation.

【0021】W<2rD r=a/d 但し、DはP型シリコン基盤の厚さ、dは(100)方
向のエッチングレート、aは(100)方向と垂直の方
向のアンダーエッチングレートである。(図6) 次にSi3N4膜22をマスクとしてアルカリ系のエッ
チャントによりエッチングをおこない窪み7を形成す
る。(図7) (100)方向のエッチングの深さがW/2rに達する
と、2つの開口部23の間に挾まるP型シリコン基盤1
のマスク下の部分がエッチングレートaでアンダーエッ
チングされて、開口部23間のSi3N4膜22から離
間し、稜19が形成される。この稜19の先端は、この
後(100)方向にdのエッチングレートでエッチング
される。
W <2rD r = a / d where D is the thickness of the P-type silicon substrate, d is the etching rate in the (100) direction, and a is the underetching rate in the direction perpendicular to the (100) direction. (FIG. 6) Next, using the Si3N4 film 22 as a mask, etching is performed with an alkaline etchant to form the depression 7. (FIG. 7) When the etching depth in the (100) direction reaches W / 2r, the P-type silicon substrate 1 sandwiched between the two openings 23.
The portion under the mask of 1 is under-etched at the etching rate a, and is separated from the Si3N4 film 22 between the openings 23 to form a ridge 19. The tip of the ridge 19 is thereafter etched in the (100) direction at an etching rate of d.

【0022】その後N型埋め込み層6が露出されるまで
エッチングを継続することにより、露出された2つのN
型埋め込み層6の間に挾まる位置にP型シリコン基盤1
の裏面平面に達しない高さの稜19が形成される。(図
8) 次に裏面全面にCVD法による5000オングストロー
ム程度の例えばSiO2の裏面絶縁膜8を形成し、通常
のホトリソ、エッチング工程によりN型埋め込み層6を
再度露出させる。最後に裏面全面に蒸着法により導電層
を形成しパターニングすることによりドレイン電極15
を形成し、第3の実施例の構造が得られる。(図9)
Thereafter, etching is continued until the N-type buried layer 6 is exposed, and the two exposed N
The P-type silicon substrate 1 is sandwiched between the mold burying layers 6.
A ridge 19 having a height that does not reach the back plane of the. (FIG. 8) Next, a back surface insulating film 8 of, eg, SiO 2 of about 5000 angstrom is formed on the entire back surface by a CVD method, and the N-type buried layer 6 is exposed again by a normal photolithography and etching process. Finally, a drain electrode 15 is formed by forming a conductive layer on the entire back surface by vapor deposition and patterning.
And the structure of the third embodiment is obtained. (FIG. 9)

【0023】[0023]

【発明の効果】本発明では半導体基板に窪みが形成さ
れ、その窪みの底面に導電層が形成されるので、トラン
ジスタのオン抵抗が減少する。
According to the present invention, since the depression is formed in the semiconductor substrate and the conductive layer is formed on the bottom of the depression, the on-resistance of the transistor is reduced.

【0024】また本発明では、半導体基板を複数のトラ
ンジスタの分離領域としているので、複数のトランジス
タを分離する為に半導体基板と第1の半導体層との間に
新たな分離層を形成する必要がない。
Further, in the present invention, since the semiconductor substrate is used as the isolation region of the plurality of transistors, it is necessary to form a new isolation layer between the semiconductor substrate and the first semiconductor layer in order to isolate the plurality of transistors. Absent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態のの半導体装置の断面図FIG. 1 is a sectional view of a semiconductor device according to a first embodiment.

【図2】第2の実施の形態の半導体装置の断面図FIG. 2 is a sectional view of a semiconductor device according to a second embodiment.

【図3】第3の実施の形態の半導体装置の断面図FIG. 3 is a sectional view of a semiconductor device according to a third embodiment.

【図4】第3の実施の形態の半導体装置の工程断面図FIG. 4 is a process sectional view of a semiconductor device according to a third embodiment.

【図5】第3の実施の形態の半導体装置の工程断面図FIG. 5 is a process sectional view of a semiconductor device according to a third embodiment.

【図6】第3の実施の形態の半導体装置の工程断面図FIG. 6 is a process sectional view of a semiconductor device according to a third embodiment.

【図7】第3の実施の形態の半導体装置の工程断面図FIG. 7 is a process sectional view of a semiconductor device according to a third embodiment.

【図8】第3の実施の形態の半導体装置の工程断面図FIG. 8 is a process sectional view of a semiconductor device according to a third embodiment.

【図9】第3の実施の形態の半導体装置の工程断面図FIG. 9 is a process sectional view of a semiconductor device according to a third embodiment.

【符号の説明】[Explanation of symbols]

1はP型シリコン基盤 2はNエピタキシャル層 3はP型分離領域 4は縦型MOSFET形成領域 5はコントロール素子形成領域 6,24はN型埋め込み層 7は窪み 8は裏面絶縁膜 9はP型ベース領域 10はN型ソース領域 11はゲート絶縁膜 12はゲート領域 13はソース電極 14は絶縁膜 15はドレイン電極 16はN型ドレイン拡散層 17はドレイン電極 18は裏面配線金属 19は窪み 20はSiO2膜 21は保護膜 22はSi3N4膜 23は開口部 25はP型ベース領域 26はN型エミッタ領域 27,33はエミッタ電極 28,34はベース電極 29,35はコレクタ電極 30,31はP型コレクタ領域 32はP型エミッタ領域 1 is a P-type silicon substrate 2 is an N epitaxial layer 3 is a P-type isolation region 4 is a vertical MOSFET formation region 5 is a control element formation region 6 and 24 is an N-type buried layer 7 is a recess 8 is a back surface insulating film 9 is a P-type Base region 10 is N-type source region 11 is gate insulating film 12 is gate region 13 is source electrode 14 is insulating film 15 is drain electrode 16 is drain electrode 16 is N-type drain diffusion layer 17 is drain electrode 18 is backside wiring metal 19 is recess 20 SiO2 film 21 is protective film 22 is Si3N4 film 23 is opening 25 is P-type base region 26 is N-type emitter region 27, 33 is emitter electrode 28, 34 is base electrode 29, 35 is collector electrode 30, 31 is P-type The collector region 32 is a P-type emitter region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窪みが形成された第1の主面と前記第1
の主面に対向する第2の主面を有する第1導電型の半導
体基板と、 前記窪みの底面から前記第2の主面に達する第2導電型
の第1の不純物層と、 前記窪みの底面上に形成され、前記第1の不純物層と電
気的に接続される第1の導電層と、 前記第1導電型の半導体基板と前記第1の導電層とを電
気的に分離する為に前記窪みの底面の周縁から前記第1
の主面上に延在する絶縁膜と、 前記第2の主面上全面に形成され、前記第2の主面に対
向する第3の主面を有する半導体層であって、 前記第1の不純物層上を含む前記第2の主面から前記第
3の主面に達する第2の導電型の第1の半導体領域と、
前記第1の半導体領域に隣接し、前記第3の主面から前
記第2の主面に達する第1導電型の第2の半導体領域
と、前記第2の半導体領域に隣接し、かつ前記第3の主
面から前記第2の主面に達し、前記第2の半導体領域に
よって前記第1の半導体領域から分離される第2導電型
の第3の半導体領域とを有する前記半導体層と、 前記第1の半導体領域内の前記第3の主面を含む前記第
1の半導体領域内に形成される第1導電型の第1の不純
物領域と、 前記第1の不純物領域内の前記第3の主面を含む前記第
1の不純物領域内に形成される第2導電型の第2の不純
物領域と、 前記第2の不純物領域内の前記第3の主面上に形成され
る第2の導電層と、 前記第2の不純物領域を除く前記第1の不純物領域内の
第3の主面上に形成される前記第3の導電層と、 前記第3の半導体領域内の前記第3の主面を含む前記第
3の半導体領域内に形成される第1導電型の第3の不純
物領域と、 前記第3の不純物領域内の前記第3の主面を含む前記第
3の不純物領域内に形成される第2導電型の第4の不純
物領域と、 前記第4の不純物領域内の前記第3の主面上に形成され
る第4の導電層と、 前記第4の不純物領域を除く前記第3の不純物領域内の
第3の主面上に形成される前記第5の導電層と、 前記第3の不純物領域を除く前記第3の半導体層内の前
記第3の主面に形成される第6の導電層と、 前記第3の半導体領域内の前記第2の主面を含む前記半
導体基板内に形成される第2導電型の第2の不純物層と
を有することを特徴とする半導体装置。
1. A first main surface having a recess and the first main surface.
A first conductive type semiconductor substrate having a second main surface facing the main surface, a second conductive type first impurity layer reaching the second main surface from the bottom surface of the recess, and A first conductive layer formed on the bottom surface and electrically connected to the first impurity layer; and a semiconductor substrate of the first conductivity type and the first conductive layer for electrical isolation. From the periphery of the bottom surface of the recess to the first
A semiconductor layer that is formed on the entire main surface of the second main surface and has a third main surface that is formed on the entire second main surface and that opposes the second main surface. A second semiconductor region of the first conductivity type that extends from the second main surface including the impurity layer to the third main surface;
A second semiconductor region of a first conductivity type that is adjacent to the first semiconductor region, reaches the second main surface from the third main surface, and is adjacent to the second semiconductor region; A semiconductor layer having a second conductivity type third semiconductor region reaching from the third major surface to the second major surface and separated from the first semiconductor region by the second semiconductor region; A first impurity region of a first conductivity type formed in the first semiconductor region including the third main surface in the first semiconductor region; and a third impurity region in the first impurity region. A second conductivity type second impurity region formed in the first impurity region including a main surface, and a second conductivity formed on the third main surface in the second impurity region. A layer and the third main surface formed on the third main surface in the first impurity region excluding the second impurity region. A conductive layer, a third impurity region of a first conductivity type formed in the third semiconductor region including the third main surface in the third semiconductor region, and a third impurity region in the third impurity region A fourth impurity region of the second conductivity type formed in the third impurity region including the third main surface, and formed on the third main surface in the fourth impurity region. A fourth conductive layer, a fifth conductive layer formed on a third main surface in the third impurity region excluding the fourth impurity region, and the third impurity region excluded A sixth conductive layer formed on the third main surface in the third semiconductor layer, and a sixth conductive layer formed in the semiconductor substrate including the second main surface in the third semiconductor region. A semiconductor device having a second conductivity type second impurity layer.
【請求項2】 前記第1の半導体領域内に形成され、か
つ前記第3の主面から前記第1の導電層に達する第2導
電型の第5の不純物領域と、前記第5の不純物領域内の
前記第3の主面上に形成された第7の導電層を有するこ
とを特徴とする請求項1記載の半導体装置。
2. A fifth impurity region of the second conductivity type, which is formed in the first semiconductor region and reaches the first conductive layer from the third main surface, and the fifth impurity region. The semiconductor device according to claim 1, further comprising a seventh conductive layer formed on the third main surface of the inside.
JP7260093A 1995-10-06 1995-10-06 Semiconductor device Withdrawn JPH09102604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7260093A JPH09102604A (en) 1995-10-06 1995-10-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7260093A JPH09102604A (en) 1995-10-06 1995-10-06 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH09102604A true JPH09102604A (en) 1997-04-15

Family

ID=17343207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7260093A Withdrawn JPH09102604A (en) 1995-10-06 1995-10-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH09102604A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056930A (en) * 2003-08-06 2005-03-03 Honda Motor Co Ltd Method for manufacturing semiconductor device
EP2149154A2 (en) * 2007-05-31 2010-02-03 Cree, Inc. Methods of fabricating silicon carbide power devices by at least partially removing an n-type silicon carbide substrate, and silicon carbide power devices so fabricated
WO2013172059A1 (en) * 2012-05-15 2013-11-21 富士電機株式会社 Semiconductor device
CN104380470A (en) * 2012-05-18 2015-02-25 富士电机株式会社 Semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056930A (en) * 2003-08-06 2005-03-03 Honda Motor Co Ltd Method for manufacturing semiconductor device
JP4554898B2 (en) * 2003-08-06 2010-09-29 本田技研工業株式会社 Manufacturing method of semiconductor device
EP2149154A2 (en) * 2007-05-31 2010-02-03 Cree, Inc. Methods of fabricating silicon carbide power devices by at least partially removing an n-type silicon carbide substrate, and silicon carbide power devices so fabricated
JP2010529646A (en) * 2007-05-31 2010-08-26 クリー インコーポレイテッド Method of making a silicon carbide power device by at least partially removing an n-type silicon carbide substrate, and a silicon carbide power device so produced
US8866150B2 (en) 2007-05-31 2014-10-21 Cree, Inc. Silicon carbide power devices including P-type epitaxial layers and direct ohmic contacts
EP2149154B1 (en) * 2007-05-31 2018-04-25 Cree, Inc. Method of fabricating a silicon carbide power device and silicon carbide power device fabricated thereby
WO2013172059A1 (en) * 2012-05-15 2013-11-21 富士電機株式会社 Semiconductor device
CN104380470A (en) * 2012-05-18 2015-02-25 富士电机株式会社 Semiconductor device
US9577032B2 (en) 2012-05-18 2017-02-21 Fuji Electric Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
JP2587444B2 (en) Bipolar transistor using CMOS technology and method of manufacturing the same
US5574306A (en) Lateral bipolar transistor and FET
JP3502509B2 (en) Integrated circuit having CMOS structure and method of manufacturing the same
JPH09102604A (en) Semiconductor device
JPH09102506A (en) Manufacture of semiconductor device
JPH08298322A (en) Manufacture of semiconductor device
JP2778126B2 (en) Method for manufacturing semiconductor device
JPH09129763A (en) Semiconductor integrated circuit
JPH0618200B2 (en) Method of manufacturing lateral transistor semiconductor device
JPH05343413A (en) Bipolar transistor and manufacture thereof
KR19980071823A (en) Semiconductor integrated circuit device
JP2554993B2 (en) Semiconductor device
JP5017744B2 (en) Manufacturing method of semiconductor device
JP2764988B2 (en) Semiconductor device
JPH11307544A (en) Bipolar transistor and semiconductor integrated circuit device
JP2630863B2 (en) Manufacturing method of insulated gate semiconductor device
JPS62133763A (en) Mos transistor
JPH11111874A (en) Semiconductor integrated circuit device and its manufacture
JP2851069B2 (en) Semiconductor device
JPS61269377A (en) Semiconductor device
JPH04267554A (en) Bi-mos semiconductor device and manufacture thereof
JPH05198665A (en) Manufacture of semiconductor integrated circuit device
JPH0584068B2 (en)
JPH08213473A (en) Semiconductor integrated circuit device and its manufacture
JPH03132042A (en) Manufacture of vertical mosfet

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107