JPS63256690A - ピツチの製造方法 - Google Patents

ピツチの製造方法

Info

Publication number
JPS63256690A
JPS63256690A JP62090673A JP9067387A JPS63256690A JP S63256690 A JPS63256690 A JP S63256690A JP 62090673 A JP62090673 A JP 62090673A JP 9067387 A JP9067387 A JP 9067387A JP S63256690 A JPS63256690 A JP S63256690A
Authority
JP
Japan
Prior art keywords
pitch
hydrorefined
hydrogenation
weight
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62090673A
Other languages
English (en)
Other versions
JPH0672224B2 (ja
Inventor
Maki Sato
真樹 佐藤
Yoshiaki Matsui
松井 義昭
Masahiro Yamada
正弘 山田
Kenichi Fujimoto
研一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP62090673A priority Critical patent/JPH0672224B2/ja
Publication of JPS63256690A publication Critical patent/JPS63256690A/ja
Publication of JPH0672224B2 publication Critical patent/JPH0672224B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は製鋼用黒鉛電極、アルミニウム展錬用電極等の
炭素材料を製造する際に用いられるバインダーピッチ、
含浸ピッチなどに適したピッチを得るためのコールター
ルピッチの改質法に関するものである。
(従来の技術) 炭素材料の多くは石油コークス、ピッチコークス等のフ
ィラーにピッチ、タール等のバインダーを加えて成形し
、次いで炭化する事により製造されている。さらに、必
要に応じピッチ、タール等を含浸して再焼成し、密度、
強度を向上させている。製鋼用黒鉛電極の製造の際はこ
の再焼成品を電気炉を用いて、窒素、アルゴン等の不活
性気体中、もしくは詰め粉を行って空気を遮断した状態
で約3000℃に加熱し、コークスを黒鉛に変化させて
いる。
製鋼用黒鉛電極、アルミニウム製錬用電極等の炭素材料
の原料の一つであるバインダーピッチと含浸ピッチは以
下のような性質を要求されている。
バインダーピッチの場合は粘結性が良いこと、炭化率が
高いことが要求されている。一般的な性状としては、次
のものが挙げられる。
軟化点(SP)      90〜115℃トルエン不
溶分(TI)  25〜35重量%キノリンネ溶分(Q
I)  8〜20重量%固定炭素(PC)     5
5〜65重量%ここで固定炭素とはJIS規格で定めら
れた分析法により求められるものであるが、固定炭素が
高くなると炭化率も高くなるという良い相関があるので
ピッチの炭化率を評価する重要な指標として用いられて
いる。
また、含浸ピッチも含浸性の良いこと、炭化率の高いこ
とが要求されている。一般的な性状としては、次のもの
が挙げられる。
軟化点(sp)      約80゛Cトルエン不溶分
(TI)  約15重量%キノリンネ溶分(QI)  
3重量%以下固定炭素(FC)     50〜55重
量%バインダーピッチは炭化率が低いため、炭化工程で
揮発する部分が多く、製品中に多くの気孔を残すので高
密度、高強度の製品を得ることが難しい。そこで焼成後
、含浸ピッチ等で含浸し再焼成する工程を数回繰返し密
度、強度を向上させているのが現状である。このような
現状からバインダーピッチ、含浸ピッチの炭化率の向上
が強く望まれている。
(発明が解決しようとする問題点) 現在、製鋼用黒鉛電極、アルミニウム製錬用電極等の炭
素材料の原料の−っであるバインダーピッチ、含浸ピッ
チは主として石炭系の原料がら製造されている。通常の
コールタール連続蒸留から得られるピッチ(軟ピツチ)
の性状は前記のバインダーピッチ、含浸ピッチとして要
求される特性値と比較すればいずれも低く、種々の改質
操作を加える必要がある。通常バインダーピッチは軟ピ
ツチを用途に応じて300〜500℃で2〜24時間熱
改質して製造されている。また、含浸ピッチは含浸性を
阻害する物質を除去した後、熱改質して製造されている
。バインダーピッチ、含浸ピッチの熱改質反応は液相で
進行する。液相での熱改質反応は重合反応が進むとメン
フェースが生成しやすい特徴をもっている。バインダー
ピッチ中のメンフェースは流動性を阻害したり、焼成電
極の組織上の欠陥を生じさせてクラック発生の原因とな
ったりする。また、含浸ピッチ中のメンフェースは流動
性、浸透性を阻害させ、含浸効率を低下させる。したが
ってバインダーピッチ、含浸ピッチにはメンフェースが
含まれないように加熱条件を制御して製造する。メソフ
ェースは光学的異方性を有しているので、ピッチがメン
フェースを含有するかどうかは、偏光顕微鏡で観察すれ
ば容易に識別できる。
一方、重質油あるいはピッチを水素存在下で熱改質する
方法は炭素繊維用原料ピッチやニードルコークス用原料
ピッチに関して行なわれている。
たとえば炭素繊維用原料ピッチに関しては触媒を用いて
水素化する方法(特公昭45−28013号)、無触媒
で水素化改質する方法(特開昭57−168989号、
特開昭57−168990号)、等が提案されている。
また、ニードルコークス用原料ピッチに関しては、触媒
の存在下に水素化する方法(特開昭60−149690
号)等が提案されている。しかし、これらはいずれもメ
ソフェースを生成させ、異方性組織を発達させるピッチ
を目的としており、このような方法で得られたピッチは
バインダーピッチ、含浸ピッチ用には適さない。
本発明は前述の問題点を解決し炭化率が高く。
かつメンフェースを含有しないピッチを製造する方法を
提供しようとするものである。
(問題点を解決する手段) すなわち本発明は、コールタールピッチを水素化触媒の
存在下に水素化度が5y −H/ Kg−ピッチ以上で
かつ脱窒素率が80重量%以下の範囲で水素化精製を行
なった後、350〜450℃、0.6〜10時間密閉系
で熱改質してピッチを製造するものである。また、水素
化触媒の存在下に水素化度が水素吸収量で 5tt −
H/Kg−ピッチ以上でかつ脱窒素率で80重量%以下
の範囲で水素化精製を行なったコールタールピッチを水
素化精製を行なわないピッチに添加し、350〜450
℃、0.5〜10時間密閉系で熱改質してピッチを製造
するものである。
以下、本発明について詳細に説明する。原料となるコー
ルタールピッチには軟化点70℃以下の軟ピツチ、軟化
点70〜85℃の中ピツチ、軟化点85℃以上の硬ピツ
チがあり、いずれも使用可能であるが、取り扱いの点で
軟ピツチを使用することが有利である。
一般にコールタールピッチ°には窒素分が1〜2重量%
程度含有されている。コールタールピッチを水素化する
と最初は核水添反応が起こりやすく、脱窒素反応は比較
的起こりにくい。水素化反応がさらに進むと核分解反応
が著しく増加するため脱窒素反応が進行する。水素吸収
量は、水素化精製の初期の段階では反応が進むにつれて
、大きくなるため水素化の指標となりうる。しかし、脱
窒素率は核分解反応が少ないので増加が小さく、指標と
なりにくい。一方、水素化反応が進展し、核水添反応の
段階から核分解反応の段階になると水素吸収量は増加せ
ず、脱窒素率が増加してくる。このため、水素吸収Iは
水素化の指標とはなりにくく、逆に脱窒素率の方が水素
化の進行度を良く反映することになる。したがって本発
明においては水素吸収量と脱窒素率とによって水素化の
程度を制御しておくものである。
水素吸収量は原料のコールタールピッチの重量と水素化
精製で消費された水素の重量との比から算出される。ま
た脱窒素率は原料のコールタールピッチの窒素含有量と
これを水素化精製して軟化点を調製したピッチの窒素含
有量との比から算出される。
水素吸収量が59−H/に9−ピッチ未満では核水添等
の水素化反応が不十分であり、熱改質を行なっても高炭
化率のピッチが得られない。また、脱窒素率がso]i
i1%を越える場合は核分解反応が著しく増加するため
、ピッチの軽質化が起こり、炭化率が減少する。
水素化精製は水素化触媒の存在下に行なう。水素化触媒
としては、重油などの炭化水素油の水素化精製に用いら
れる水素化触媒が使用できる。このような触媒は、たと
えば特公昭52−39044号、特公昭53−6113
号、特公昭53−29392号、特公昭53−3643
!5号等に示されている。
一般的には、水素化触媒としてニッケル、モリブデン、
コバルト、タングステン等の遷移金属を主成分とする酸
化物、硫化物が使用できる。ニッケルーモリブデン、ニ
ッケルータングステンヲ組み合わせた触媒は活性および
寿命が優れる。ががる触媒はシリカまたはアルミナ等の
担体に担持させるのも効果的である。
水素化触媒は、固定床、懸濁床、沸騰床等の状態で使用
される。水素化反応はバッチ反応でも連続反応であって
も差し支えないが、連続水素化精製する方法は工業的に
有利である。水素化条件はバッチ反応の場合、たとえば
50〜300Kg/cJGの水素圧、300〜500℃
の反応温度、300〜2000 Nt/lの水素/コー
ルタール系原料比である。反応時間は触媒の種類、量、
反応温度等の条件によって異なるが、いずれにしても水
素吸収量が59−H/にダーピッチ以上となるまで行な
う。
好ましくはl Ot −H/Kg−ピッチ以上である。
水素化精製は脱窒素率で80重量%を超えないようにす
る。好ましくは脱窒素率で65重量%以下である。脱窒
素率が80重量%を超えると、核分解反応が著しく進行
し、ピッチが軽質化しすぎるため、これを熱改質しても
炭化率の高いピッチが得られない。また、連続反応の場
合の反応条件はバッチ反応の場合と同様であるが、反応
時間、すなわち接触時間は液基準空間速度として0.1
〜2Hr−”。
好ましくは0.5〜1.5 Hr−”が適当である。
水素化精製全行なったピッチは密閉系で熱改質を行ない
バインダーピッチ、含浸ピッチとする。
密閉系での熱改質は水素化精製を行なったピッチを全−
歌で行なっても良いし、さらにはこのように水素化精製
を行なったピッチを水素化精製を行なわないピッチに添
加して行なっても良い。水素化精製を行なったピッチを
添加して密閉系で熱改質する場合は、水素化精製を行な
ったピッチの添加量は、水素化度にもよるが、5重t%
以上が良い。
好ましくは10重量%以上である。水素化度は、水素化
精製を行なったピッチを単独で熱改質を行なう場合より
もやや高めに設定することが有利である。
熱改質は密閉系で行なうことが重要である。開放系で熱
改質を行なうと、熱分解で生成した水素、脂肪族化合物
等が系外に散逸し、熱分解反応が連続的に進行する結果
、ピッチの低分子量化が過度に進み、炭化率が低くなる
。開放系では改質効果がなく、炭化率が逆に低下する場
合もある。密閉系での熱改質の方法としては、オートク
レーブ、前型反応器等、熱改質反応(二ともない発生す
るガスが系内に閉じこめられる装置を用いればよい。
熱改質は自生圧下でも加圧下でもよい。また、熱改質の
雰囲気は一般的に行なわれているピッチの熱改質と同様
に不活性ガス雰囲気下で行なえばよい。
水素化精製を行なったピッチを単独で熱改質を行なう場
合、熱改質条件は350−450”(:、0.5〜IQ
時間である。好ましくは360〜380℃。
4〜6時間である。熱改質温度が350℃未満では熱改
質効果が小さく、450℃を超える温度ではメンフェー
スが生成するので好ましくない。熱改質時間が0.5時
間未満では熱改質効果が小さく、10時間を超える時間
ではメソフェースが生成するので好ましくない。一方、
水素化精製を行なったピッチを水素化精製を行なわない
ピッチに添加して熱改質を行なう場合は、水素化精製を
行なったピッチを単独で熱改質を行なう場合と比べると
、メンフェースが生成しに(くなるので、その熱改質条
件は若干緩和される。たとえば、1時間の熱改質を考え
ると、450℃でメソフェースが生成するピッチは水素
化精製を行なうことにより、メンフェース生成温度が低
下し、430℃でメンフェースが生成する。この水素化
精製を行なったピッチを水素化精製を行なわないピッチ
に対して25重量間係加した混合ピッチでは430℃、
1時間の熱改質ではメンフェースが生成せず、より高い
温度で熱改質することができ、より良い改質効果が期待
できる。
(作用) コールタールピッチは縮合芳香族多環化合物の混合物で
ある。コールタールピッチを水素ガスで水素化精製を行
なうと、核水添反応と核分解反応が起こる。核水添反応
ではナフテン環が生成する。
芳香族化合物はナフテン環の生成により粘度が低下する
。一方、核分解反応では芳香環の破壊が起こり、縮合環
数が減り、脂肪族側鎖が増加する。
縮合環数が減り低分子量化することによっても粘度が低
下する。すなわち、ピッチを水素化精製することにより
、ピッチの構成成分の芳香族環数が減少して低分子量化
するととも(=、ナフテン環が増加し、脂肪族側鎖が増
加し、粘度が低下する。
この水素化精製されたピッチを密閉系で熱改質を行なう
と、熱分解で生成した水素、脂肪族化合物等の熱分解ガ
スが系内に閉じこめられるため、過度の熱分解反応が抑
制される。その結果、粘度を低下させ、炭化率を大きく
変化させない適当な分子量分布をもったピッチが得られ
ると考えられる。すなわち、同じ軟化点(粘度と重要な
相関がある)で比較した場合、炭化率が向上することに
なる。
また、水素化精製を行なったピッチを水素化精製を行な
わないピッチに添加して炭化率が向上する理由は以下の
ように考えられる。水素化精製を行なったピッチは水素
供与能が極めて高いため、これを水素化精製を行なわな
いピッチに添加して得られた混合ピッチを密閉系にて熱
改質を行なうと、水素化精製を行なったピッチが水素化
精製を行なわないピッチに対して水添溶剤として作用し
、混合ピッチの粘度を低下させる。一方、水素化精製を
行なわないピッチは水素化精製を行なったピッチに比べ
て炭化率が高く、水素化精製を行なったピッチを添加し
ても炭化率は大きくは低下することはない。したがって
、粘度が低下し、炭化率は大きくは低下しないので、同
じ軟化点(粘度と重要な相関がある)で比較した場合、
炭化率が向上することになる。
(実施例) 実施例1 固定床連続水素化精製装置を用い、反応温度は398℃
、反応圧力150 Kq/mG、液空間速度1゜98 
Hr−1、水素化触媒として市販されているN1−M0
/アルミナ系水素化触媒でコールタールピッチ(5P−
1とする)を水素化精製した。水素化精製されたタール
ピッチを減圧蒸留して、軽質油分を20重量%除去し、
第1表の特性を有する軟ピツチ(HP−1)を得た。
このピッチを100−オートクレーブに502仕込み、
窒素置換した後、自生圧下で380℃。
5時間熱改質を行なった。反応終了時の圧力は3Kg/
cyA Gであった。次にこのピッチを蒸留で軽質分を
除去し、キノリンネ溶分量が約10重量係になるように
調整した後、軟化点を約90℃に調製した。得られたピ
ッチの特性値を第2表に示す。
実施例2 実施例1の水素化精製装置を用い、反応温度は402°
C1反応圧力150 K9/ctAG、液空間速度1゜
33 Hr−”  の条件で5P−1を水素化精製した
。水素化精製されたタールピッチを減圧蒸留して、軽質
油分を20重量%除去し、第1表の特性を有する軟ピツ
チ(HP−2)を得た。
このピッチを100−オートクレーブに5Of仕込み、
窒素置換した後、自生圧下で380’C。
5時間熱改質を行なった。反応終了時の圧力は5Kg/
1era Gであった。次にこのピッチを実施例1と同
様の方法で、軟化点を約90℃に調製した。得られたピ
ッチの特性値を第2表に示す。
実施例3 実施例1の水素化精製装置を用い、反応温度は400℃
、反応圧力150 Kq/e+JG、 液空間速度0、
75 Hr”−1の条件で5P−1を水素化精製した。
水素化[Wされたタールピッチを減圧蒸留して、軽質油
分を20重量%除去し、第1表の特性を有する軟ピツチ
(HP−3)を得た。
このピッチを100−オートクレーブに502仕込み、
窒素置換した後、自生圧下で380℃。
5時間熱改質を行なった。反応終了時の圧力は20Kg
/M Gであった。次にこのピッチを実施例1と同様の
方法で、軟化点を約90℃に調製した。得られたピッチ
の特性値を第2表に示す。
比較例1 SP−1を100−のガラス製反応管に50f仕込み、
窒素気流下で、380℃、5時間熱改質を行なった。次
にこのピッチを実施例1と同様の方法で軟化点を約90
°Cに調製した。得られたピッチの特性値を第2表に示
す。
第2表より、実施例1.実施例2.実施例3のいずれの
場合も比較例1に比べて得られたピッチの固定炭素が高
く、炭化率が向上していることがわかる。
実施例4 HP−1を100−オートクレーブに502仕込み、窒
素置換した後、自生圧下で360℃゛、5時間熱改質を
行なった。反応終了時の圧力は2Kg/cJc)であっ
た。次にこのピッチを実施例1と同様の方法で、軟化点
を約90゛Cに調製した。得られたピッチの特性値を第
3表に示す。
比較例2 SP−1を100−のガラス製反応管に50f仕込み、
窒素気流下で、360℃、5時間熱改質を行なった。次
にこのピッチを実施例1と同様の方法で、軟化点を約9
0℃に調製した。得られたピッチの特性値を第3表に示
す。
第3表より、実施例4は比較例2に比べて得られたピッ
チの固定炭素が高く、炭化率が向上していることがわか
る。
実施例5 HP−1を100−オートクレーブに502仕込み、窒
素置換した後、自生圧下で430℃、1時間熱改質を行
なった。反応終了時の圧力は25Kg/cdaであった
。次にこのピッチを実施例1と同様の方法で、軟化点を
約90℃に調製した。得られたピッチの特性値を第4表
に示す。
比較例3 SP−1を100−のガラス製反応管に50f仕込み、
窒素気流下で、380℃、5時間熱改質を行なった。次
にこのピッチを実施例1と同様の方法で軟化点を約90
℃に調製した。得られたピッチの特性値を第4表に示す
第4表より、実施例5は比較例3に比べて得られたピッ
チの固定炭素が高く、炭化率が向上していることがわか
る。
実施例6 T(P−1をl OOmeオートクレーブに501仕込
み、窒素置換した後、自生圧下で350°C,10時間
熱改質を行なった。反応終了時の圧力は2 K9/e、
Aaであった。次にこのピッチを実施例1と同様の方法
で、軟化点を約90°Cに調製した。得られたピッチの
特性値を第5表に示す。
比較例4 SP−1を100−のガラス製反応管に502仕込み、
窒素気流下で、350℃、10時間熱改質を行なった。
次にこのピッチを実施例1と同様の方法で軟化点を約9
0℃に調製した。得られたピッチの特性値を第5表に示
す。
第5表より、実施例6は比較例4に比べて得られたピッ
チの固定炭素が高(、炭化率が向上していることがわか
る。
実施例7 実施例1の水素化精製装置を用い、反応温度は400℃
、反応圧力150匂/cdio、 液空間速度1、68
 Hr−1の条件でコールタールピッチ(5p−2とす
る)を水素化精製した。水素化精製されたタールピッチ
を減圧蒸留して、軽質油分を20重量%除去し、第6表
の特性を有する軟ピツチ(HP−4)を得た。
このピッチを100−オートクレーブに5Of仕込み、
窒素置換した後、自生圧下で380℃。
5時間熱改質を行なった。反応終了時の圧力は3Kg/
d aであった。次にこのピッチを実施例1と同様の方
法で、軟化点を約90℃に調製した。得られたピッチの
特性値を第7表に示す。
比較例5 SP−2を1oo11dのガラス製反応管に502仕込
み、窒素気流下で、380’C,5時間熱改質を行なっ
た。次にこのピッチを実施例1と同様の方法で、軟化点
を約90℃に調製した。得られたピッチの特性値を第7
表に示す。
第7表より、実施例マは比較例5に比べて得られたピッ
チの固定炭素が高く、炭化率が向上していることがわか
る。
実施例8 SP−1に実施例2の方法で水素化精製ピッチを10重
量%添加したものを100−オートクレーブに5Of仕
込み、窒素置換した後、自生圧下で360℃、5時間熱
改質を行なった。反応終了時の圧力は2Kg/cdaで
あった。次にこのピッチを実施例1と同様の方法で、軟
化点を約90℃に調製した。得られたピッチの特性値を
第8表に示す。
実施例9 SP−1に実施例2の方法で水素化精製ピッチを25重
量%添加したものを100−オートクレーブに502仕
込み、窒素置換した後、自生圧下で360℃、5時間熱
改質を行なった。反応終了時の圧力は2 Kg/cd 
Gであった。次にこのピッチを実施例1と同様の方法で
、軟化点を約90°Cに調製した。得られたピッチの特
性値を第8表に示す。
第8表より、実施例8、実施例9は比較例2に比べて得
られたピッチの固定炭素が高く、炭化率が向上している
ことがわかる。
*:f−H/Kg−ピッチ チはいずれも重量% 第2表 チはいずれも重量% 第3表 第4表 チはいずれも重量% 第5表 チはいずれも重量% 第6表 *:f−H/Kg−ピッチ チはいずれも重量% 第7表 第8表 (発明の効果) 本発明により、炭化率が高く、かつメンフェースを含有
しないピッチが製造できる。本発明の方法により製造さ
れたピッチはバインダーピッチ、含浸ピッチとして高性
能であり、製鋼用黒鉛電極、アルミニウム精錬用炭素電
極等の製造原料として用いた場合、製品歩留の向上、製
品特性の向上環が期待できる。

Claims (7)

    【特許請求の範囲】
  1. (1)コールタールピッチを水素化触媒の存在下に水素
    化度が水素吸収量で5g−H/Kg−ピッチ以上でかつ
    脱窒素率で80重量%以下の範囲で水素化精製を行なっ
    た後、350〜450℃、0.5〜10時間密閉系で熱
    改質することを特徴とするピッチの製造方法
  2. (2)水素化度が水素吸収量で10g−H/Kg−ピッ
    チ以上でかつ脱窒素率で65重量%以下であることを特
    徴とする特許請求の範囲第1項に記載のピッチの製造方
  3. (3)水素化精製を行なった後、360〜380℃、4
    〜6時間熱改質することを特徴とする特許請求の範囲第
    1項に記載のピッチの製造方法
  4. (4)水素化触媒の存在下に水素化度が水素吸収量で5
    g−H/Kg−ピッチ以上でかつ脱窒素率で80重量%
    以下の範囲で水素化精製を行なったコールタールピッチ
    を水素化精製を行なわないピッチに添加し、350〜4
    50℃、0.5〜10時間密閉系で熱改質することを特
    徴とするピッチの製造方法
  5. (5)水素化精製を行なったピッチを水素化精製を行な
    わないピッチに対して10重量%以上を添加することを
    特許請求の範囲第4項に記載のピッチの製造方法
  6. (6)水素化度が水素吸収量で10g−H/Kg−ピッ
    チ以上でかつ脱窒素率で65重量%以下であることを特
    徴とする特許請求の範囲第4項に記載のピッチの製造方
  7. (7)水素化精製を行なった後、360〜380℃、4
    〜6時間熱改質することを特徴とする特許請求の範囲第
    4項に記載のピッチの製造方法
JP62090673A 1987-04-15 1987-04-15 ピツチの製造方法 Expired - Lifetime JPH0672224B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62090673A JPH0672224B2 (ja) 1987-04-15 1987-04-15 ピツチの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090673A JPH0672224B2 (ja) 1987-04-15 1987-04-15 ピツチの製造方法

Publications (2)

Publication Number Publication Date
JPS63256690A true JPS63256690A (ja) 1988-10-24
JPH0672224B2 JPH0672224B2 (ja) 1994-09-14

Family

ID=14005058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090673A Expired - Lifetime JPH0672224B2 (ja) 1987-04-15 1987-04-15 ピツチの製造方法

Country Status (1)

Country Link
JP (1) JPH0672224B2 (ja)

Also Published As

Publication number Publication date
JPH0672224B2 (ja) 1994-09-14

Similar Documents

Publication Publication Date Title
US4855037A (en) Hydrogenation catalyst for coal tar, a method of hydrogenation of coal tar with use of such catalyst, and a method of producing super needle coke from the hydrogenation product of coal tar
US4312742A (en) Process for the production of a petroleum pitch or coke of a high purity
JP5813502B2 (ja) コールタールから低パッフィングニードルコークスを生成する方法
JP5813503B2 (ja) コールタール蒸留物から低パッフィングニードルコークスを製造する方法
JP5483334B2 (ja) 石油コークスの製造方法
EP0175518B1 (en) Process for the preparation of super needle coke
KR20110121694A (ko) 코크스 제조용 점결재의 제조 방법 및 코크스의 제조 방법
JP4809676B2 (ja) 石油コークス及びその製造方法
JPH05163491A (ja) ニードルコークスの製造方法
JPS5840386A (ja) 高硫黄デカントオイルから低硫黄高品位コ−クスを製造する方法
JPS63256690A (ja) ピツチの製造方法
JPS6328477B2 (ja)
JPWO2019188280A1 (ja) ニードルコークス用原料油及びニードルコークス
JPS60149690A (ja) ニ−ドルコ−クスの製造方法
WO2021054122A1 (ja) 低cte、低パッフィングニードルコークス
JPS63227694A (ja) ピツチの製造方法
JPS59122586A (ja) 潜在的異方性ピツチの製造方法
CA2002828C (en) Process for producing environmentally improved coke binder
JPH0426638B2 (ja)
JPS6346800B2 (ja)
JP3502712B2 (ja) 重質炭化水素油の前処理方法
CA1143314A (en) Method for producing premium coke from residual oil
JPH10316972A (ja) ニードルコークスの製造方法
CN112708449A (zh) 提高馏分油馏程的方法
JPS618136A (ja) ピツチの水素化処理用触媒