WO2021054122A1 - 低cte、低パッフィングニードルコークス - Google Patents

低cte、低パッフィングニードルコークス Download PDF

Info

Publication number
WO2021054122A1
WO2021054122A1 PCT/JP2020/033267 JP2020033267W WO2021054122A1 WO 2021054122 A1 WO2021054122 A1 WO 2021054122A1 JP 2020033267 W JP2020033267 W JP 2020033267W WO 2021054122 A1 WO2021054122 A1 WO 2021054122A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
needle coke
raw material
cte
puffing
Prior art date
Application number
PCT/JP2020/033267
Other languages
English (en)
French (fr)
Inventor
恭兵 秦
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to US17/631,578 priority Critical patent/US20220267151A1/en
Priority to CN202080061166.8A priority patent/CN114364769B/zh
Priority to EP20864460.9A priority patent/EP4032962A4/en
Priority to JP2021546589A priority patent/JPWO2021054122A1/ja
Publication of WO2021054122A1 publication Critical patent/WO2021054122A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B55/00Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/045Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing mineral oils, bitumen, tar or the like or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/90Other crystal-structural characteristics not specified above
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C1/00Working-up tar
    • C10C1/04Working-up tar by distillation
    • C10C1/16Winning of pitch
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C1/00Working-up tar
    • C10C1/18Working-up tar by extraction with selective solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C1/00Working-up tar
    • C10C1/20Refining by chemical means inorganic or organic compounds
    • C10C1/205Refining by chemical means inorganic or organic compounds refining in the presence of hydrogen

Definitions

  • the present invention relates to low CTE, low puffing needle coke and artificial graphite electrodes for electric steelmaking.
  • Needle coke is generally manufactured from petroleum-based heavy oil and coal tar-based heavy oil, and is used as an aggregate for artificial graphite electrodes for electric steelmaking.
  • This graphite electrode is produced by adjusting needle coke to a predetermined particle size, kneading it with a binder pitch, then extrusion molding, and then performing primary firing, impregnation, secondary firing, and graphitization treatment.
  • Graphite electrodes are desired to have a low coefficient of thermal expansion (CTE) in order to withstand a harsh usage environment in a high temperature atmosphere.
  • CTE coefficient of thermal expansion
  • the electrode wear during electric steelmaking is reduced, which contributes to cost reduction of electric steelmaking.
  • the graphitization treatment in the graphite electrode manufacturing process is a process of heat treatment at a high temperature of about 3000 ° C., and a method using an LWG furnace (direct energization type furnace) is common.
  • LWG furnace direct energization type furnace
  • the rate of temperature rise is high, so the rate of gas generation from the graphite electrode material is high, and an abnormal expansion phenomenon called puffing is likely to occur.
  • This puffing causes the electrodes to have a low density, and in some cases, the electrodes are damaged. Therefore, a method for producing needle coke for reducing puffing and a puffing inhibitor to be added at the time of electrode production have been studied.
  • the CTE is lower as the tissue orientation of the needle coke is uniform and the number of fine cracks is larger. Since the carbon hexagonal network direction of the graphite structure, which is the crystal structure constituting the needle coke, has a smaller thermal expansion than the stacking direction, it is considered that the electrodes have a low CTE when the surface directions are aligned with the longitudinal direction of the electrodes. Further, it is considered that the presence of fine cracks acts to alleviate thermal expansion and lowers the CTE. Puffing is generally thought to be caused by gas pressure due to vaporization of nitrogen and sulfur-derived compounds in needle coke under high temperature conditions.
  • Needle coke for artificial graphite electrodes is required to have low CTE when using electrodes and low puffing when manufacturing electrodes.
  • Patent Document 1 it is preferable to reduce puffing by removing nitrogen and sulfur in the raw material oil by hydrogenating the raw material oil, and to reduce the viscosity at high temperature by reducing oxygen and sodium and increasing the naphthen ring.
  • a method of reducing CTE by exhibiting carbonization behavior is described.
  • Patent Document 2 a coal tar pitch from which quinoline insoluble matter has been removed is mixed with a petroleum-based heavy oil adjusted to a specific property to form a coke, and the nitrogen and sulfur components of the puffing-causing substance are diluted to perform puffing.
  • a co-carbonization method for reducing CTE by obtaining a balance between carbonization rate and gas generation such as producing an anisotropic structure showing low CTE is described.
  • Patent Document 3 describes a method in which needle coke with low CTE and low puffing can be obtained by mixing two or more kinds of raw material oils to generate good bulk mesophase and gas generation for crystal orientation during solidification.
  • Patent Document 4 and Non-Patent Document 1 describe that low CTE and low puffing are achieved by changing the coke structure that occurs during calcination by baking in two stages.
  • Patent Document 5 describes that low CTE and low puffing needle coke can be produced by increasing fine pores by recalcinating coke that has been calcined once in an oxidizing atmosphere.
  • coal tar-based heavy oil from which quinoline insoluble matter has been removed and petroleum-based heavy oil are mixed and coked, and further, needle coke having low CTE and low puffing is obtained by baking in two steps. The method of manufacturing is described.
  • Non-Patent Document 2 PDQI (Proton Donor Quality Index) has been proposed in Non-Patent Document 2 as an evaluation of hydrogen donation property, but it is an evaluation of a circulating solvent in a coal hydrogenation liquefaction reaction, and is for improving the quality of needle coke. There is nothing to teach that it is useful as an indicator.
  • low CTE and low puffing needle coke can be obtained by co-carbonization by using modified raw material oil and using two or more kinds of raw material oil, and by changing the calcination conditions, but the properties of the raw material oil. It is required to obtain low CTE and low puffing needle coke more stably while responding to changes. Needle coke expresses low CTE and low puffing in artificial graphite electrodes, and by clarifying what kind of needle coke structure contributes to low CTE and low puffing, selection of raw material oil, It is considered that more stable low CTE and low puffing can be produced by combining coking conditions and baking conditions.
  • low CTE and low puffing are performed by limiting the characteristics of the main raw material oil and the auxiliary raw material oil. -Provide doll coke. Further, the present invention provides low CTE and low puffing needle coke by controlling the needle coke structure obtained after caulking and calcination to obtain a specific structure.
  • the present inventor has mixed a needle coke main raw material oil having a small hydrogen donating property with an auxiliary raw material oil having a large hydrogen donating property in order to reduce CTE and puffing.
  • Low CTE and low puffing needle coke can be obtained by coking and calcination of the mixed oil obtained in the above process, and the obtained needle coke can be obtained with a specific structure depending on the raw material selection, caulking conditions and calcination conditions.
  • low CTE and low puffing needle coke can be obtained by controlling so as to, and completed the present invention.
  • a low PDQI value of 5.0 or more represented by the formula (1) is characterized by mixing and coking with 10 to 80 parts by weight of an auxiliary raw material oil having a large hydrogen donating property, and burning the obtained raw coke.
  • H% is the amount of hydrogen (% by weight) obtained by elemental analysis
  • HN ⁇ / H is the ratio of ⁇ -naphthene hydrogen to total hydrogen measured by 1 H-NMR.
  • the low CTE and low puffing needle coke of the present invention has a structural index (NCSIC: Needle Cake Structure Index for CTE) for CTE represented by the formula (2) larger than 25.0 and is represented by the formula (3). It is preferable that the structural index related to puffing (NCSIP: Needle Coke Structure Index for Looping) is larger than 5.0.
  • NCSIC ((Lc / d002) + (open porosity)) / ( ⁇ ( ⁇ ))
  • Lc crystallite size
  • d002 interplanar spacing
  • ⁇ ( ⁇ ) standard deviation of the average orientation angle is shown.
  • NCSIP (Amount of open pores / Amount of closed pores) + (HIT / 1000) / EIT
  • HIT indentation hardness
  • EIT indentation elastic modulus are shown.
  • the main raw material oil is a de-QI pitch with a small hydrogen donating property obtained by distilling and de-QIing coal tar.
  • the main raw material oil has a PDQI value of less than 2 calculated by the formula (1) obtained by distilling coal tar and de-QI, and having a de-QI pitch with a small hydrogen donating property.
  • the low CTE and low puffing needle coke of the present invention has a crystallite size Lc of 4.0 to 10.0 nm, a surface spacing d002 of 0.340 to 0.350 nm, and an open pore ratio of 0.15 to 0.350 nm. It is preferably 0.40 and the standard deviation ⁇ ( ⁇ ) of the average orientation angle is 0.01 to 0.85.
  • the amount of open pores is 0.040 to 0.070 cm 3 / g
  • the amount of closed pores is 0.001 to 0.015 cm 3 / g
  • the indentation hardness HIT is 800 to 1500 MPa
  • the indentation elastic modulus EIT is It is preferably 5.0 to 15.0 GPa.
  • the crystallite size Lc and the interplanar spacing d002 of the formula (2) are measured by XRD and analyzed by the Gakushin method, and the open pore ratio is 120 ⁇ m in diameter measured by mercury porosity.
  • the standard deviation ⁇ ( ⁇ ) of the average orientation angle is an index of the variation of the orientation angle measured using a compound refractive index meter. Calculated as standard deviation.
  • the main raw material oil for needle coke having a small hydrogen donating property is coked with an auxiliary raw material oil having a large hydrogen donating property, and the obtained raw coke is calcinated, and the pore structure and structure are controlled.
  • the pore structure and structure are controlled.
  • Displacement-load curve as measured by a microhardness meter. It is the displacement-load curve of the needle coke of Example 1. It is a displacement-load curve of the needle coke of Comparative Example 1.
  • Important factors of the needle coke structure with respect to CTE of needle coke are considered to be crystallinity, pore size, tissue orientation and the like. Most of them are formed during the caulking process. In the process of heating and caulking the raw material oil, organic molecules repeat the dehydrogenation polycondensation reaction, and in the process of laminating them, optically anisotropic mesophase spherulites are generated, which grow and coalesce. It is known to have an optically anisotropic structure.
  • the viscosity of the system increases as the mesophase growth and coalescence progresses in the caulking process, but the balance between the system viscosity increase and the mesophase growth and coalescence is lost, and the viscosity increase occurs first.
  • the mesophase cannot grow sufficiently, and the crystallinity becomes low, and the crystallinity develops by continuing the low viscosity region so that the mesophase growth and coalescence sufficiently occur.
  • the orientation of the optically anisotropic structure is improved by orienting the structure in the uniaxial direction due to the shearing force of the generated gas and the introduced gas immediately before the end of caulking.
  • An effective feedstock for these CTE influencing factors is a hydrogenated feedstock.
  • the hydrogenated raw material has a PDQI value represented by the formula (1) larger than that of the non-hydrogenated raw material. It was found that it was characterized by a large donor property. It has been found that needle coke having a lower CTE can be produced by preparing a raw material oil having a particularly large hydrogen donating property among the hydrogenated raw material oils. It is not clear why needle coke with low CTE can be obtained by using a raw material oil with a large hydrogen donating property, but when a raw material oil with a large hydrogen donating property is used, naphthenic hydrogen is transferred to hydrogen during caulking.
  • the naphthenic hydrogen possessed by the auxiliary raw material oil can be obtained. It has also shifted to the aromatic ring of the main feedstock, and it has become possible to continue the low-viscosity region where the main feedstock, whose mesophase growth and coalescence was not sufficient by itself, can be sufficiently developed. It is considered that the orientation is also improved by the gas generated from.
  • the auxiliary raw material oil having a large hydrogen donating property plays a role of a reaction modifier, and by increasing or decreasing the amount thereof, it is possible to adjust the property improvement. Therefore, the amount of the auxiliary raw material oil having a large hydrogen donating property to be mixed with 100 parts by weight of the main raw material oil having a small hydrogen donating property is preferably 10 parts by weight or more and 80 parts by weight or less. It is more preferably 20 parts by weight or more and 50 parts by weight or less, and further preferably 25 parts by weight or more and 45 parts by weight or less.
  • the caulking conditions and calcination conditions are changed as appropriate, and the needle coke structure is prepared to make the structure suitable for low CTE and low puffing. It is expected that the characteristics will be improved.
  • the structure of needle coke obtained through raw material selection, caulking, and calcination is considered to be most related to CTE and puffing characteristics.
  • the coke structure evaluation was carried out from the XRD to the degree of development of crystallinity, from the birefringence to the orientation of the optically anisotropic structure, and from the mercury porosimeter to the pore size, and the needle coke structure for CTE obtained from each evaluation result. It is considered that the structure of low CTE needle coke can be quantified by using the index (Equation (2)).
  • the index Equation (2)
  • the crystallinity size Lc is large and the interplanar spacing d002 is narrow. Therefore, when the crystallinity is large, it can be considered that the crystallinity is developed.
  • the crystallite size Lc is preferably 5.5 nm or more, more preferably 6.0 nm or more.
  • the standard deviation ⁇ ( ⁇ ) of the average orientation angle ⁇ av measured from the birefringence decreases when the orientation is high, indicating that the orientation is uniform. Therefore, the smaller the ⁇ ( ⁇ ), the more the orientation. It is considered that the coke has all of them.
  • the standard deviation ⁇ ( ⁇ ) is preferably less than 0.80, more preferably less than 0.70. It is considered that when the ratio of the pore amount of 1 to 10 ⁇ m to the pore amount of 120 ⁇ m or less is large, the pore amount acts as a relaxation point at the time of expansion and contributes to low CTE.
  • the ratio of the pore amount of 1 to 10 ⁇ m to the pore amount of 120 ⁇ m or less is called the open pore ratio.
  • the open pore ratio is preferably in the range of 0.15 to 0.40, more preferably 0.30 or more, still more preferably 0.33 or more.
  • NCSIC is a numerical value of the coke structure suitable for low CTE using the coke structure of crystallinity, orientation, and pore size, and this value is large (crystallinity is developed, orientation is high, It is considered that the lower the CTE needle coke, the larger the pore size).
  • the pore amount and strength can be appropriately changed depending on the caulking or calcination conditions.
  • the coke structure index (formula (3)) suitable for low puffing it is obtained from the amount of open pores obtained from mercury porosity, the amount of closed pores calculated from the true density and the apparent density, and the microhardness meter.
  • the indentation hardness HIT is preferably 800 to 1500 MPa, more preferably 900 to 1400 MPa.
  • the indentation elastic modulus EIT is preferably 5.0 to 15.0 GPa, more preferably 8.0 to 13.0 GPa.
  • Needle coke for low puffing is obtained by optimizing the tissue structure related to pore structure and strength, but as a pore structure, the amount of open pores connected to the outside of the coke is large, and the amount of closed pores not connected to the outside is small.
  • coke As a structural structure related to the strength to withstand gas pressure, coke has high resistance to deformation due to external force (hard structure) and has flexibility (low elastic modulus) that can be easily restored even after being deformed by external force.
  • the structure specifically, the coke structure in which the orientation of the optically anisotropic structure is disturbed in the micron size, but the orientation of the optically anisotropic structure is uniform in the submicron to nano size. it is conceivable that.
  • pore structure it is considered possible to reduce puffing by increasing the amount of pores that serve as a gas escape route when nitrogen and sulfur volatilize as gas during graphitization. It is considered that the amount of closed pores is small, so that the amount of gas remaining in the coke can be reduced and the puffing can also be reduced. On the other hand, it is considered that a coke structure having high strength can withstand the gas pressure at the time of graphitization, or can be easily restored even if it is deformed by the gas pressure, so that puffing can be reduced.
  • the structure structure is changed by changing the caulking conditions such as temperature, pressure, and steam amount on the way, the structure structure is changed by changing the submicron to nano-sized optical anisotropy and the micron to millimeter-sized optically anisotropic structure, respectively.
  • methods such as calcination in two or more stages, high temperature calcination, and oxidation or calcination can be mentioned.
  • calcination in two or more stages calcination is performed at a low temperature for the first time, and after cooling, fine cracks are generated by cooling and heating, and the number of open pores is increased and the closed pores are closed.
  • the shrinkage becomes larger than that of normal calcination, cracks occur due to stress, and the amount of open pores becomes large.
  • the needle coke surface is oxidized by introducing an oxidizing gas and calcination, so that pores are generated and the amount of open pores is increased.
  • the amount of open pores is in the range of 0.040 to 0.070 cm 3 / g, preferably 0.050 to 0.065 cm 3 / g.
  • the amount of closed pores is in the range of 0.001 to 0.015 cm 3 / g, preferably in the range of 0.005 to 0.009 cm 3 / g.
  • the needle coke of the present invention is obtained by coking a mixed raw material oil in which a main raw material oil having a small hydrogen donating property and an auxiliary raw material oil having a large hydrogen donating property are mixed, and burning the obtained raw coke.
  • Examples of the main raw material oil for needle coke include coal tar-based heavy oil and petroleum-based heavy oil.
  • coal tar-based heavy oils examples include coal tar produced as a by-product during coke production, coal tar pitch obtained by distilling coal tar, and coal liquefaction oil obtained by liquefying coal.
  • the coal tar pitch removes the quinoline insoluble content, and it is usually preferable to use a coal tar pitch having a quinoline insoluble content of 0.1% or less.
  • Coal tar pitch from which quinoline insoluble matter has been removed may be distilled and heat-modified pitch may be used as a raw material oil.
  • petroleum-based heavy oils include catalytic cracking oils, thermal cracking oils, atmospheric cracking residual oils, vacuum residual oils, and ethylene bottom oils.
  • decant oil which is a heavy component of catalytic cracking oils.
  • -DO decant oil
  • a mixed oil of coal tar-based heavy oil and petroleum-based heavy oil, a mixture of by-products obtained in the caulking process, or a heat-modified mixed oil may be used as the raw material oil.
  • These main raw material oils have a PDQI value indicating hydrogen donating property of less than 5.0, preferably less than 1.0, usually about 0.001, and have low hydrogen donating property.
  • an auxiliary raw material oil having a large hydrogen donating property is used together with the main raw material oil, and the main raw material oil and the auxiliary raw material oil are mixed and used.
  • an oil having a large PDQI value is used as the auxiliary raw material oil.
  • the PDQI value is preferably 5.0 or more, more preferably 8.0 or more, still more preferably 10.0 or more.
  • coal tar-based heavy oil or petroleum-based heavy oil which is the main raw material oil, can be hydrogenated.
  • a preferred heavy oil is coal tar or its distilled content. More preferably, a fraction of 300 to 600 ° C. obtained by distilling the main raw material oil is partially hydrogenated.
  • any oil adjusted so that the hydrogen donating property is 5 or more, preferably 10 or more is suitable as the auxiliary raw material oil.
  • the hydrogenation treatment conditions it is preferable to use a hydrogenation reaction apparatus using a hydrogenation catalyst at 100 ° C. or higher and lower than 300 ° C. and a hydrogen partial pressure of less than 5 MPa. Not limited to this.
  • the mixing ratio of the main raw material oil and the auxiliary raw material oil is preferably 10 to 80 parts by weight of the auxiliary raw material oil with respect to 100 parts by weight of the main raw material oil. More preferably, it is 20 to 50 parts by weight, and more preferably 25 parts by weight to 45 parts by weight. If the amount of auxiliary oil is small, the hydrogen donating property is low, and the desired low CTE and low puffing needle coke cannot be obtained. On the other hand, when the amount of auxiliary oil becomes too large, the decomposition reaction of the auxiliary oil becomes dominant over the reaction of the main oil and the auxiliary oil, and the hydrogen of the auxiliary oil is used to grow and coalesce the mesophase of the main oil. Therefore, the desired low CTE and low puffing needle coke cannot be obtained.
  • a known delayed caulking method For caulking of mixed raw material oil, a known delayed caulking method can be adopted. For example, raw coke is obtained by caulking at 450 to 550 ° C. and a pressure of 0.2 to 0.8 MPa for 18 to 48 hours.
  • the charging temperature is changed stepwise during caulking, the caulking pressure is changed stepwise, and the amount of water vapor charged during caulking is stepped.
  • the raw material oil is divided into two, one raw material oil is supplied at low temperature from the lower part of the caulk, and the other raw material oil is supplied at high temperature from the side of the caulk, increasing the pressure during caulking.
  • a caulking method such as a combination thereof in which the amount of water vapor is increased more than usual can be adopted.
  • a method of calcining raw coke As a method of calcining raw coke, a known method can be adopted. For example, a method of baking at 800 to 1600 ° C. using a rotary kiln, a shaft furnace, or a siliconit furnace can be mentioned. Calcination may be performed in one stage or in two or more stages. It may be baked at a high temperature, or it may be baked by blowing an oxidizing gas.
  • a known method may be used for producing an artificial graphite electrode for electric steelmaking from the above low CTE and low puffing needle coke, for example, kneading with a binder pitch, molding, primary firing, impregnation, secondary firing, and graphitization. It can be obtained through steps such as.
  • the auxiliary raw material oil of needle coke contains condensed polycyclic aromatic hydrocarbons having a naphthen ring structure, and the hydrogen of the naphthen ring includes hydrogen (HN ⁇ ) bonded to the carbon at the ⁇ position with respect to the carbon of the aromatic ring. There is hydrogen (HN ⁇ ) that binds to carbon above the ⁇ position.
  • hydrogen (HN ⁇ ) that binds to carbon above the ⁇ position.
  • there is hydrogen derived from an alkyl group or the like bonded to the condensed polycyclic aromatic as a substituent and this also contains hydrogen (H ⁇ ) bonded to the carbon at the ⁇ -position or hydrogen (H ⁇ or the like) bonded to the carbon after the ⁇ -position. ).
  • Carbon and hydrogen analysis (elemental analysis) of main raw material oil and auxiliary raw material oil is based on JIS M 8819, nitrogen is based on JIS K 2609, oxygen is based on JIS M 8813, and sulfur is based on JIS K 2541. Calculated.
  • PDQI is calculated by the formula (1).
  • H% is the amount of hydrogen (% by weight) obtained by elemental analysis
  • HN ⁇ / H is the ratio of ⁇ -naphthen hydrogen to total hydrogen measured by 1 H-NMR.
  • PDQI represents the maximum amount of hydrogen that can be donated (mg) of the naphthenic ring contained in 1 g of the solvent, and the unit is mg / g.
  • the crystallite size Lc and the interplanar spacing d002 obtained from the XRD were calculated by measuring an angle of 20 to 30 ° using an XRD device manufactured by Rigaku Corporation and performing crystallography size analysis using the Gakushin method.
  • the standard deviation ⁇ ( ⁇ ) of the orientation angle obtained from the measurement using a compound refractive index meter is that needle coke particles with a size of 1 to 2 cm are embedded in the resin and polished with a polishing machine to expose the needle coke to the surface.
  • the exposed needle coke surface was set to 0.9 ⁇ m or 2.7 ⁇ m per pixel using a photonic lattice double refractive index meter PI-micro, using a test piece with a thickness of 8 mm. From the values of the retardation Re and the orientation angle ⁇ for each pixel, Re for one field, the average orientation angle ⁇ av, and the standard deviation ⁇ ( ⁇ ) of the average orientation angle were obtained, and a plurality of fields were measured. The value averaged for the entire measured visual field was used as the evaluation value.
  • the needle coke was reduced to 2 to 5 mm, and the pressure was measured to a pressure of 1.9 to 14400 psi (pore diameter equivalent 0.017 to 120 ⁇ m) using Autopore IV manufactured by micromeritics.
  • the pore volume with respect to the pore diameter was calculated from the obtained pressure and the amount of mercury, and the pore volume of 1 to 10 ⁇ m was calculated and used as the amount of open pores of needle coke.
  • the open pore ratio was calculated by dividing the pore volume of 1 to 10 ⁇ m by the pore volume of 120 ⁇ m or less. In Tables 1 and 2, the value of the pore volume means the total pore volume, and is the pore volume of 120 ⁇ m or less for calculating the open pore ratio.
  • the true density of needle coke was measured according to JIS K 2151.
  • the apparent density was measured by crushing the needle coke with a jaw crusher, sieving 8-16 Mesh, and measuring by the same measurement procedure as the true density.
  • the indentation depth is the amount of displacement at the maximum load of the indentation test, which varies depending on the test conditions and the measurement substance, and the depth immediately before the needle coke is broken is good. When measured, 8 to 15 ⁇ m is desirable.
  • the indentation hardness HIT conforms to ISO14577, and is calculated from the maximum load and indentation depth of the indentation test by the analysis software attached to the apparatus by the following formula (5).
  • HIT is considered to exhibit a coke structure with high resistance to indenters because if the coke is hard, it will not be pushed in during the test.
  • an optically anisotropic structure of the coke structure is considered. It is thought that this is due to the disordered orientation.
  • Indentation hardness HIT (MPa) Fmax / Ap
  • Fmax maximum load
  • Ap projected area where the indenter and the test piece are in contact with each other.
  • the indentation elastic modulus EIT is calculated by the analysis software attached to the apparatus by the following formula (6) based on the inclination at the initial stage of unloading from the maximum load of the indentation test in accordance with ISO14577. This EIT is easily restored after unloading when the elastic modulus of the coke is low, and it is considered that this EIT is caused by the well-developed optically anisotropic structure of the coke structure as an example of the coke structure having a low elastic modulus.
  • NCSIC related to CTE is a needle coke suitable for lower CTE, as the graphite crystallinity of the needle coke develops, the proportion of open pores increases, and the orientation becomes uniform. It is an index showing that.
  • NCSIC is preferably larger than 25.0, more preferably 27.0 or more, and further preferably 29.0 or more.
  • NCSIP for puffing is an index showing that the needle coke is suitable for lower puffing because it becomes larger as the needle coke has more open pores, fewer closed pores, harder tissue, and lower elastic modulus. is there.
  • NCSIP is preferably greater than 5.0, more preferably 6.0 or more, and even more preferably 7.0 or more.
  • Nitrogen content in raw coke and needle coke was measured according to JIS M 8819. Sulfur content in raw coke and needle coke was measured according to JIS M 8813.
  • the kneaded product is molded to obtain a molded body having a diameter of 20 mm and a length of 100 mm, and this molded body is fired at 900 ° C., impregnated with an impregnation pitch (IP78 manufactured by C-Chem Co., Ltd.), and again. , 900 ° C. was fired to prepare a test piece for puffing measurement.
  • the test piece is heated in a Tanman furnace in an argon atmosphere at a heating rate of 10 ° C./min from room temperature to 2550 ° C., and the elongation of the test piece in the length direction at 1500 ° C. and 2500 ° C. is measured.
  • the kneaded product is extruded, and the molded product adjusted to a size of 20 mm in diameter and 100 mm in length is fired at 900 ° C., and then graphitized at 2550 ° C. in an argon atmosphere using a Tanman furnace. It was used as a test piece.
  • the average coefficient of thermal expansion from room temperature to 500 ° C. of the prepared test piece was measured.
  • Example 1 Coal tar was distilled, and the obtained coal tar pitch, which is a heavy component, was used as the main raw material oil from which the quinoline insoluble component was removed by the solvent separation method.
  • a distillate of 300 to 600 ° C. obtained by atmospheric distillation of coal pitch was batch hydrogenated in the presence of a hydrogenation catalyst (stabilized Ni) under the conditions of 200 ° C. and 4.5 MPa, and used as an auxiliary raw material oil. .. 35 parts by weight of the auxiliary raw material oil is mixed with 100 parts by weight of the main raw material oil, and the coking charging temperature of the mixed raw material oil is increased from 470 ° C to 530 ° C stepwise at 0.6 MPa to obtain a steam ratio (steam ratio).
  • the amount of water vapor (g) / amount of raw material oil (g)) was gradually increased from 0.15 to 0.30 and coked to obtain raw coke.
  • the obtained raw coke was calcined at 700 ° C. under a nitrogen atmosphere, cooled once, and then calcined again at 1400 ° C. to obtain needle coke.
  • CTE and puffing test pieces were prepared from this needle coke.
  • the characteristic values of the obtained needle coke and test piece are shown in Table 1.
  • Example 2 Using the same coal tar pitch as in Example 1 as the main raw material oil, a 300-600 ° C. fraction obtained by atmospheric distillation of coal tar was used as a hydrogenation catalyst (stabilized Ni) under the conditions of 200 ° C. and 4.5 MPa. In the presence, the batch hydrogenated product was used as an auxiliary raw material oil. 43 parts by weight of the auxiliary raw material oil is mixed with 100 parts by weight of the main raw material oil, the mixed raw material oil is gradually raised from the caulking charging temperature of 460 ° C. to 550 ° C., and the pressure is gradually increased from 0.5 MPa to 0. The steam ratio was raised to 65 MPa and the steam ratio was gradually raised from 0.10 to 0.35 for caulking to obtain raw coke. After that, the same operation as in Example 1 was performed.
  • Example 3 Using the same coal tar pitch as in Example 1 as the main raw material oil, a distillate having a boiling point of 300 to 600 ° C. obtained by atmospheric distillation of a fluid catalytic cracking oil was used as a hydrogenation catalyst under the conditions of a temperature of 250 ° C. and a pressure of 4.5 MPa. In the presence of stabilized Ni), batch hydrogenated oil was used as an auxiliary raw material oil. 100 parts by weight of the main raw material oil and 45 parts by weight of the auxiliary raw material oil are mixed to make the pressure 0.5 MPa, and the steam ratio is increased from 0.15 to 0.35 while gradually raising the caulking charging temperature from 470 ° C to 500 ° C. I raised it step by step and caulked to get raw coke. After that, the same operation as in Example 1 was performed.
  • Comparative Example 1 The coal tar pitch of Example 1 was used as the main raw material oil, and the 300 to 600 ° C. fraction obtained by atmospheric distillation of coal tar was used as the auxiliary raw material oil. 100 parts by weight of the main raw material oil and 45 parts by weight of the auxiliary raw material oil were mixed and coked at 500 ° C., 0.4 MPa and a steam ratio of 0.12 under constant conditions to obtain raw coke. After that, the same operation as in Example 1 was performed.
  • Comparative Example 2 Using the same main raw material oil as in Example 1, a mixture of 70% by weight of coal tar pitch used as the main raw material oil in Example 1 and 30% by weight of liquid catalytic cracking oil was distilled at atmospheric pressure as an auxiliary raw material oil. The obtained distillate at 300 to 600 ° C. was used. These 100 parts by weight of the main raw material oil and 45 parts by weight of the auxiliary raw material oil were mixed and coked at 490 ° C., 0.4 MPa and a steam ratio of 0.12 under constant conditions to obtain raw coke. After that, the same operation as in Example 1 was performed.
  • Comparative Example 3 100 parts by weight of the main raw material oil used in Example 1 is mixed with 100 parts by weight of the auxiliary raw material oil used in Example 1, and the mixed raw material oil is coked at 530 ° C., 0.5 MPa, and a steam ratio of 0.10 under constant conditions. And got raw coke. After that, the same operation as in Example 1 was performed.
  • Tables 1 and 2 show the types and properties of raw material oils, and the characteristics of raw coke and needle coke.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Coke Industry (AREA)

Abstract

原料油の性状変化に対応しながら、より安定的に低CTE、低パッフィングニードルコークスを得ること。 式(1)で示されるPDQI値が5.0未満の水素供与性の小さいコールタール系重質油あるいは石油系重質油のニードルコークス主原料油に、式(1)で示されるPDQI値が5.0以上の水素供与性の大きな副原料油を混合してコーキングし、得られた生コークスをか焼することを特徴とする低CTE、低パッフィングニードルコークス。 [式(1)] PDQI=H%×10×(HNβ/H) ここで、H%は元素分析で求められる水素量(重量%)であり、HNβ/HはH-NMRで測定されるβナフテン水素と全水素の比である。

Description

低CTE、低パッフィングニードルコークス
 本発明は、低CTE、低パッフィング用ニードルコークス及び電気製鋼用人造黒鉛電極に関する。
 ニードルコークスは、一般的に、石油系重質油やコールタール系重質油を原料として製造され、電気製鋼用人造黒鉛電極の骨材として用いられている。この黒鉛電極は、ニードルコークスを所定粒度に調整後、バインダーピッチと捏合し、次いで、押出成型し、その後、一次焼成、含浸、二次焼成及び黒鉛化処理することにより製造される。
 黒鉛電極は、高温雰囲気での過酷な使用環境に耐えるため、熱膨張係数(CTE)が低いことが望まれている。CTEが低いと、電気製鋼時の電極消耗が少なくなり、電気製鋼のコスト削減に寄与する。
 黒鉛電極製造工程の黒鉛化処理は、3000℃前後の高温で熱処理する工程であり、LWG炉(直接通電方式の炉)を用いる方法が一般的である。このLWG炉で黒鉛化すると昇温速度が速いため、黒鉛電極材料からのガスの発生速度が速く、パッフィングと称される異常膨張現象が起きやすくなる。このパッフィングにより、電極が低密度となり、場合により電極が破損してしまう。このため、パッフィングを小さくするためのニードルコークスの製造法や電極製造時に添加するパッフィングインヒビターが検討されてきた。
 CTEは、一般的にニードルコークスの組織配向性が揃っているほど、微細なクラックが多いほど低いとされている。ニードルコークスを構成する結晶構造である黒鉛構造の炭素六角網面方向は、積層方向よりも熱膨張が小さいため、面方向が電極の長手方向に並ぶことで低CTEの電極になると考えられる。また、微細なクラックがあることで、熱膨張を緩和する働きをして低CTEとなると考えられる。
 パッフィングは、一般的にニードルコークス中の窒素や硫黄に由来する化合物が高温条件で気化することによるガス圧によって生じると考えられている。
 人造黒鉛電極用ニードルコークスに求められるのは、電極使用時の低CTE、電極製造時の低パッフィングであり、従来、低CTE、低パッフィングニードルコークスを製造する方法としては、以下のような技術が挙げられる。
 特許文献1には、原料油を水素化し、原料油中の窒素、硫黄分を除去することによるパッフィング原因物質除去によるパッフィング低減、酸素、ナトリウムの低減とナフテン環増加による高温時の粘度低下による好ましい炭素化挙動を示すことによるCTEを低減する方法が記載されている。特許文献2には、キノリン不溶分を除去したコールタールピッチに特定の性状に調整した石油系重質油を混合してコークス化することで、パッフィング原因物質の窒素、硫黄分の希釈により、パッフィングを低減し、低CTEを示す異方性組織を生成するような炭素化速度とガス発生のバランスが得られることによりCTEを低減する共炭素化方法が記載されている。また、特許文献3には、2種以上の原料油を混合することで良好なバルクメソフェーズの生成と固化時の結晶配向のためのガス発生により低CTE、低パッフィングのニードルコークスが得られる方法が記載されている。特許文献4及び非特許文献1には、2段階でか焼することでか焼の際に起こるコークス構造変化により、低CTE、低パッフィングとなることが記載されている。特許文献5には、一度か焼したコークスを酸化性雰囲気下で再か焼することで微細気孔を増加させることで低CTE、低パッフィングのニードルコークスを製造できることが記載されている。特許文献6には、キノリン不溶分を除去したコールタール系重質油と石油系重質油を混合してコーキングし、さらに、2段階でか焼することで低CTE、低パッフィングであるニードルコークスを製造する方法が記載されている。
 以上のように、水素化による原料油改質、2種以上の原料油を混合してコーキングする共炭素化、2段階か焼、酸化雰囲気での再か焼及びこれらの組み合わせにより、低CTE、低パッフィングニードルコークスが得られることは知られている。
 CTE、パッフィングを低下するための方法ではないが、特許文献7には、低温タールピッチに水素供与性溶剤を加え、加熱処理し熱改質するとニードルコークス用原料油として適する品質に改質できるとの記載がある。
 水素供与性の評価として、非特許文献2には、PDQI(Proton Donor Quality Index)が提案されているが、石炭水添液化反応における循環溶剤の評価であり、ニードルコークスの品質を改善するための指標として有用であることを教えるものはない。
特開昭60-149690号公報 特開平4-145193号公報 WO2009/1610号 特開昭52-29801号公報 特開昭61-21886号公報 特開平5-163491号公報 WO2011/48920号
Carbon Vol.19No.5 pp.347-352 燃料協会誌,65,12,p.1012-1019,1986
 改質原料油の使用、2種以上の原料油の使用による共炭素化、か焼条件の変更により、低CTE、低パッフィングニードルコークスが得られることは知られているが、原料油の性状変化に対応しながら、より安定的に低CTE、低パッフィングニードルコークスを得ることが求められている。
 人造黒鉛電極において低CTE、低パッフィングを発現しているのはニードルコークスであり、どういったニードルコークス構造が低CTE、低パッフィングに寄与しているかを明確にすることで、原料油の選定、コーキング条件、か焼条件を組み合わせて、より安定した低CTE、低パッフィングを製造することが可能になると考えられる。
 本発明は、2種以上の原料油を混合してコーキングして低CTE、低パッフィングニードルコークスを製造する方法に際して、主原料油と副原料油の特性を限定することで低CTE、低パッフィングに―ドールコークスを提供する。
 また、本発明は、コーキング、か焼後により得られるニードルコークス構造を制御して特定構造とすることで低CTE、低パッフィングニードルコークスを提供する。
 本発明者は、上述の課題を解決するために鋭意研究を重ねた結果、CTE、パッフィングを低減するために、水素供与性の小さいニードルコークス主原料油に水素供与性の大きい副原料油を混合して得られる混合油をコーキング、か焼することにより、低CTE、低パッフィングニードルコークスが得らえること、また、原料選定、コーキング条件、か焼条件により、得られるニードルコークスを特定の構造とするように制御することで低CTE、低パッフィングニードルコークスが得られることを見出し、本発明を完成した。
 すなわち、本発明は、式(1)で計算されるPDQI値が5.0未満の水素供与性の小さいコールタール系重質油あるいは石油系重質油のニードルコークス主原料油100重量部に、式(1)で示されるPDQI値が5.0以上の水素供与性の大きな副原料油10~80重量部を混合してコーキングし、得られた生コークスをか焼することを特徴とする低CTE、低パッフィングニードルコークスである。
[式(1)]
       PDQI=H%×10×(HNβ/H)
 ここで、H%は元素分析で求められる水素量(重量%)であり、HNβ/HはH-NMRで測定されるβナフテン水素と全水素の比である。
 本発明の低CTE、低パッフィングニードルコークスは、式(2)にて示されるCTEに関する構造指標(NCSIC:Needle Coke Structure Index for CTE)が25.0より大きく、式(3)にて示されるパッフィングに関する構造指標(NCSIP:Needle Coke Structure Index for Puffing)が5.0よりも大きいことが好適である。
[式(2)]
  NCSIC=((Lc/d002)+(開気孔比率))/(σ(θ))
 ここで、Lc:結晶子サイズ、d002:面間隔、σ(θ):平均配向角度の標準偏差を示す。
[式(3)]
  NCSIP=(開気孔量/閉気孔量)+(HIT/1000)/EIT
 ここで、HIT:押込み硬さ、EIT:押込み弾性率を示す。
 本発明の低CTE、低パッフィングニードルコークスは、主原料油が、コールタールを蒸留、脱QIして得られた水素供与性の小さい脱QIピッチであることが好適である。特に、主原料油が、コールタールを蒸留して脱QIした式(1)で計算されるPDQI値が2未満の水素供与性の小さい脱QIピッチであることが好適である。
 本発明の低CTE、低パッフィングニードルコークスは、結晶子サイズLcが4.0~10.0nmであり、面間隔d002が0.340~0.350nmであり、開気孔比率が0.15~0.40であり、平均配向角度の標準偏差σ(θ)が0.01~0.85であることが好適である。
 開気孔量が0.040~0.070cm/gであり、閉気孔量が0.001~0.015cm/gであり、押込み硬さHITが800~1500MPaであり、押込み弾性率EITが5.0~15.0GPaであることが好適である。
 本発明において、式(2)の結晶子サイズLc及び面間隔d002は、XRDにて測定し、学振法にて解析して得られ、開気孔比率は水銀ポロシメトリーにて測定される直径120μm以下の細孔容積に対する直径1~10μmの細孔容積の割合として算出され、平均配向角度の標準偏差σ(θ)は、複屈折率計を用いて測定される配向角度のバラつきの指標である標準偏差として算出される。
 本発明によれば、水素供与性の小さいニードルコークス主原料油に水素供与性の大きい副原料油をコーキングし、得られた生コークスをか焼すること、また、細孔構造及び組織構造を制御して特定のコークス構造とすることで、低CTE、低パッフィングニードルコークスを安定して得ることができる。
微小硬度計の測定での変位―荷重曲線である。 実施例1のニードルコークスの変位―荷重曲線である。 比較例1のニードルコークスの変位―荷重曲線である。
 ニードルコークスのCTEに対するニードルコークス構造の重要因子は、結晶性、細孔量、組織配向性等であると考えられている。いずれも多くはコーキング過程で形成される。原料油を加熱してコーキングする過程では、有機分子が脱水素重縮合反応を繰り返し、それらが積層する過程で光学的に異方性を有するメソフェーズ球晶が生成し、それらが成長・合体を経て光学的異方性組織を持つことが知られている。コーキング過程でのメソフェーズの成長・合体の進行に伴い、系の粘度が上昇することは知られているが、系の粘度上昇とメソフェーズの成長・合体のバランスが崩れ、粘度上昇が先に起これば、十分にメソフェーズの成長ができず、低結晶性となり、メソフェーズの成長・合体が十分に起こるよう低粘度域が継続することで結晶性が発達する。また、コーキング終了直前に発生ガス、導入ガスによるせん断力により、一軸方向に組織が配向することで光学的異方性組織の配向性が向上する。これらのCTE影響因子に対して、有効な原料油は、水素化された原料油である。
 水素化原料油と非水素化原料油の違いについて検討した結果、水素化原料油は、式(1)で示されるPDQI値が非水素化原料よりも大きい、つまり、水素化原料油は、水素供与性が大きいことが特徴であることが判明した。水素化された原料油のうち、特に水素供与性の大きい原料油を調製することで、より低CTEのニードルコークスを製造できることが判明した。水素供与性の大きい原料油を使用することで低CTEのニードルコークスが得られる要因は明確ではないが、水素供与性の大きな原料油を使用すると、ナフテン水素がコーキング中に水素移行することで、コーキング中の低粘度領域が継続し、十分なメソフェーズの成長・合体が進行し、発生ガスも多くなり、コーキング終了直前にそれらのガスのせん断により光学的異方性組織の配向性も向上する。
 しかしながら、水素供与性の大きな原料油を単体で原料油として用いると、沸点が水素供与性の小さい主原料油よりも低く、ガス発生量が多くなりすぎるため、生コークスが得られない、得られても低い収率となることが想定される。一方、通常使用している水素供与性の小さい原料油を主原料油として、水素供与性の大きな原料油を副原料油とした混合原料油を使用することで、副原料油が持つナフテン水素が主原料油の芳香環にも移行し、単体ではメソフェーズの成長・合体が十分でなかった主原料油も十分に発達できる低粘度領域を継続することが可能となり、水素供与性の大きな副原料油から発生するガスにより配向性も向上すると考えられる。また、水素供与性の大きな副原料油は、反応調整剤の役割を果たし、その量を増減させることで、特性改善の調整が可能となる。そのため、水素供与性の小さい主原料油100重量部に対して混合する水素供与性の大きい副原料油は、10重量部以上80重量部以下であることが好ましい。より好ましくは20重量部以上50重量部以下、さらに好ましくは、25重量部以上45重量部以下である。
 ニードルコークス原料油を選定すると同時に、コーキング条件、か焼条件を適宜変更し、ニードルコークス構造を調製し、低CTE、低パッフィングに適した構造とすることで、原料油による特性改善に加えて更なる特性改善が見込める。
 原料選定、コーキング、か焼を経て得られるニードルコークスの構造は、CTE、パッフィング特性に最も関係していると考えられる。コークス構造評価は、XRDから結晶性の発達度合、複屈折率から光学的異方性組織の配向性、水銀ポロシメトリーから細孔量について実施し、それぞれの評価結果から得られるCTEに関するニードルコークス構造指標(式(2))を用いることで低CTEニードルコークスの構造を数値化することが可能になると考えられる。結晶性が発達していると、結晶子サイズLcは大きく、面間隔d002は狭くなることから、Lc/d002が大きいと、結晶性が発達していると考えることができる。結晶子サイズLcは好ましくは5.5nm以上、より好ましくは6.0nm以上である。
 複屈折率から測定される平均配向角度θavの標準偏差σ(θ)は、配向性が高いと数値は小さくなり、配向が揃っていることを示すため、σ(θ)が小さいほど、配向性が揃っているコークスであると考えられる。標準偏差σ(θ)は好ましくは0.80未満、より好ましくは0.70未満である。
 細孔量は、120μm以下の細孔量に対する1~10μm細孔量の割合が多いと、膨張時の緩和箇所として働き、低CTEに寄与すると考えられる。120μm以下の細孔量に対する1~10μm細孔量の割合を開気孔比率という。開気孔比率は好ましくは0.15~0.40の範囲であり、より好ましくは0.30以上、さらに好ましくは0.33以上である。
 結晶性、配向性、細孔量のコークス構造を用いて低CTEに適したコークス構造を数値化したものがNCSICであり、この数値が大きい(結晶性が発達している、配向性が高い、細孔量が多い)ほど低CTEニードルコークスであると考えられる。
 ニードルコークスのパッフィングにおける重要な因子は、原因物質であるニードルコークス中の窒素、硫黄である。ガスの原因物質である窒素、硫黄を低減することで、パッフィングを低減可能なことは知られているが、どういったニードルコークス構造がパッフィング低減に有効であるかについては、細孔量が多いことが有用であることは知られているものの、他の構造については明確ではなかった。本発明者は、発生したガスが逃げるための逃げ道となる細孔量、ガス圧に耐えられるコークス強度が重要であり、低パッフィング用ニードルコークスのコークス構造として、パッフィング時に発生するガスが外へ逃げるための細孔構造とガス圧に耐えられる強度に関する組織構造の両方が最適である必要があることを見出した。
 窒素、硫黄量は、原料油由来であるため、低窒素、低硫黄量の原料油が求められるが、近年は、原料油中の窒素、硫黄量が多くなり、原料油選定にも苦労している。水素供与性の高い副原料油を添加することでコーキング中に軽度の水素化脱硫・脱窒素が期待できるため、副原料油の水素供与性は、副原料油選定のための重要な因子である。
 細孔量及び強度は、コーキングあるいはか焼条件により適宜変更可能である。低パッフィングに適したコークス構造指標(式(3))について、水銀ポロシメトリーから得られる開気孔量、真密度と見かけ密度から算出される閉気孔量の2つの細孔量と微小硬度計から得られる印加した荷重と圧子が押し込まれた深さから算出される押し込み硬さHITと、除荷後の回復度合いである押し込み弾性率EITから算出されるコークス強度を用いることでパッフィングに適したコークス構造を数値化できると考えられる。
 本発明において、押込み硬さHITは好ましくは800~1500MPa、より好ましくは900~1400MPaである。押込み弾性率EITは好ましくは5.0~15.0GPa、より好ましくは8.0~13.0GPaである。
 細孔構造と強度に関する組織構造の最適化により低パッフィング用ニードルコークスとなるが、細孔構造として、コークスの外とつながる開気孔量が多いこと、外とのつながりがない閉気孔量が少ないこと、ガス圧に耐えられる強度に関する組織構造として、外力による変形に対する抵抗力が高く(硬い組織)、外力による変形を受けた後も容易に復元できる柔軟性がある(弾性率が低い)ようなコークス構造、具体的には、ミクロンサイズでは光学的異方性組織の配向性が乱れているが、サブミクロンからナノサイズでは光学的異方性組織の配向性が揃っているようなコークス構造であると考えられる。細孔構造については、黒鉛化時に窒素、硫黄がガスとして揮散する際にガスの逃げ道となる細孔量が多いことでパッフィングを低減することが可能と考えられる。閉気孔量が少ないことで、コークス内に留まるガスを低減でき、パッフィングも低減できると考えられる。一方、強度が高いコークス組織構造であると黒鉛化時のガス圧に耐える、あるいはガス圧による変形を受けても容易に復元できることでパッフィングを低減できると考えられる。コーキングでは、サブミクロンからナノサイズの光学的異方性が発達するように、コーキング初期では、低温でコーキングするあるいは水素化原料を用いて低粘度状態を維持しながらメソフェーズを発達させ、コーキング後期では、ミクロンサイズの光学的異方性組織の配向性を乱すように、温度、圧力、スチーム量を上げるあるいはこれらの組み合わせで系内を乱すようにコーキング条件をコーキング途中で変化させることによる方法などが挙げられる。途中で温度、圧力、スチーム量等のコーキング条件を変更することで、サブミクロンからナノサイズの光学的異方性とミクロンからミリサイズの光学的異方性組織をそれぞれ変更することにより、組織構造の配向により得られるコークスの閉気孔量を増減することにつながる。か焼では、開気孔量を増加させるために、2段階以上でのか焼、高温か焼、酸化か焼などの方法が挙げられる。2段階以上でのか焼では、1回目に低温でか焼し、一旦冷却後に、2回目以降のか焼を実施することで、冷却、加熱により微細なクラックが発生し、開気孔の増加と閉気孔の減少が達成できる。また、高温か焼については、通常よりも高温での温度でか焼することで、通常のか焼よりも収縮が大きくなり、応力によりクラックが発生し、開気孔量が大きくなる。酸化か焼については、酸化性ガスを導入してか焼することでニードルコークス表面が酸化されることにより細孔が生成し、開気孔量が多くなる。
 開気孔量は0.040~0.070cm/gの範囲にあり、好ましくは0.050~0.065cm/gである。一方、閉気孔量は0.001~0.015cm/gの範囲であり、好ましくは0.005~0.009cm/gの範囲である。
 本発明のニードルコークスは、水素供与性の小さい主原料油と水素供与性の大きい副原料油を混合した混合原料油をコーキングし、得られた生コークスをか焼して得られる。
 ニードルコークスの主原料油としては、コールタール系重質油や石油系重質油などが挙げられる。
 コールタール系重質油としては、例えば、コークス製造時に副生するコールタール、コールタールを蒸留したコールタールピッチ、石炭を液化した石炭液化油が挙げられる。コールタールピッチは、キノリン不溶分を除去し、通常、キノリン不溶分が0.1%以下のものを使用することが好ましい。キノリン不溶分を除去したコールタールピッチを蒸留、熱改質したピッチを原料油としても良い。
 石油系重質油としては、例えば、接触分解油、熱分解油、常圧残油、減圧残油、エチレンボトム油が挙げられるが、特に、接触分解油の重質成分であるデカント油(FCC-DO)が好ましい。
 コールタール系重質油と石油系重質油の混合油、あるいはコーキング過程で得られる副生油を混合したもの、混合油を熱改質したものを原料油としても良い。
 これらの主原料油は、水素供与性を示すPDQI値が、5.0未満、好ましくは1.0未満、通常0.001程度であり、水素供与性が低い。
 本発明は、主原料油とともに、水素供与性の大きい副原料油を使用し、主原料油と副原料油を混合して使用する。この副原料油は、上述のとおり、PDQI値が大きいものを使用する。PDQI値は、好ましくは5.0以上、より好ましくは8.0以上、さらに好ましくは10.0以上である。
 副原料油としては、主原料油であるコールタール系重質油や石油系重質油を水素化処理したものを使用できる。好ましい重質油は、コールタール又はその蒸留分である。より好ましくは、主原料油を蒸留して得られた300~600℃留分を部分水素化したものである。また、ニードルコークスの主原料油が出発原料油でなくても、水素供与性が5以上、好ましくは、10以上となるように調整した油であれば、副原料油に適する。
 水素化処理条件としては、100℃以上、300℃未満、水素分圧が5MPa未満で水素化触媒を使用した水素化反応装置を用いることが好ましいが、PDQI値を満足する調整方法であれば、これに限らない。
 主原料油と副原料油との配合割合は、好ましくは、主原料油100重量部に対して、副原料油10~80重量部である。より好ましくは、副原料油20~50重量部、より好ましくは、25重量部~45重量部である。副原料油が少ないと、水素供与性が低く、目的とする低CTE、低パフィングのニードルコークスを得ることができない。一方、副原料油が多くなり過ぎると、主原料油と副原料油の反応よりも副原料油の分解反応が優勢となり、副原料油の水素を使用して主原料油のメソフェーズの成長・合体を促進できないため、目的とする低CTE、低パッフィングのニードルコークスを得ることができない。
 混合原料油のコーキングは、公知のディレードコーキング法を採用することができる。例えば、450~550℃、圧力0.2~0.8MPaで18~48時間コーキングして生コークスを得る。コーキング方法としては、原料装入開始から終了までコーキング条件を一定とするのではなく、コーキング中に装入温度を段階的に変える、コーキング圧力を段階的に変える、コーキング時装入水蒸気量を段階的に変える、原料油を2つに分け、一方の原料油は、コーカー下部から低温で、もう一方の原料油は、コーカー側面から高温で、コーカー内へ供給する、コーキング時の圧力を上げてかつ通常よりも水蒸気量を多くする、それらの組み合わせなどのコーキング方法が採用できる。
 生コークスをか焼する方法としては、公知の方法を採用することができる。例えば、ロータリーキルン、シャフト炉、シリコニット炉を使用して、800~1600℃でか焼する方法が挙げられる。か焼は1段で行ってもよく、2段以上で行ってもよい。高温でか焼しても良いし、酸化性ガスを吹き込んでか焼しても良い。
 上記低CTE、低パッフィングニードルコークスから、電気製鋼用人造黒鉛電極を製造する方法は公知の方法でよく、例えばバインダーピッチと混練し、成型、一次焼成、含浸、二次焼成、及び黒鉛化するなどの工程を経て得ることができる。
 次に、測定条件について説明する。
 ニードルコークスの副原料油は、ナフテン環構造を有する縮合多環芳香族炭化水素を含むが、ナフテン環の水素には芳香族環の炭素に対しα位の炭素に結合する水素(HNα)と、β位以上の炭素に結合する水素(HNβ)がある。また、縮合多環芳香族に置換基として結合するアルキル基等に由来する水素があり、これにもα位の炭素に結合する水素(Hα)やβ位以降の炭素に結合する水素(Hβ等)がある。その他、芳香族環の炭素に結合する水素(Ha)がある。
 これらの水素の同定等はH-NMRの測定により行う。
 H-NMRの測定は、溶媒としてクロロホルムを使用し、標準物質をTMS(テトラメチルシラン)とし、日本電子株式会社製JNM-LA400を用いて測定し、得られた1H-NMRスペクトルにおける積分値より水素分率を算出した。
 Hα、HNα、HNβは、得られたH-NMRのスペクトルのケミカルシフト2.0~4.2、3.0~4.2、1.5~2.0をそれぞれ積分して算出した。
 主原料油及び副原料油の炭素及び水素の分析(元素分析)は、JIS M 8819により、窒素は、JIS K 2609により、酸素は、JIS M 8813により、硫黄は、JIS K 2541に準拠して算出した。
 PDQIは、式(1)で算出される。H%は元素分析で求められる水素量(重量%)であり、HNβ/HはH-NMRで測定されるβナフテン水素と全水素の比である。
 PDQIは、溶剤1gに含まれるナフテン環の最大供与可能水素量(mg)を表すものであり、単位はmg/gである。
 XRDから得られる結晶子サイズLc、面間隔d002は、リガク社製XRD装置を用いて、20~30°の角度を測定し、学振法を使った結晶子サイズ解析により、算出した。
 複屈折率計を用いた測定から得られる配向角度の標準偏差σ(θ)は、1~2cmの大きさのニードルコークス粒子を樹脂に埋め込み、研磨機で研磨し、ニードルコークスを表面に露出させた状態で8mmの厚さにしたものを試験片として、露出したニードルコークスの表面をフォトニックラティス社製複屈折率計PI-microを用いて、1画素あたり、0.9μmまたは2.7μmとし、1画素ごとのリタデーションReと配向角度θの値から1視野分のRe、平均配向角度θav、平均配向角度の標準偏差σ(θ)を求め、複数視野を測定した。測定した全視野に対して平均化した数値を評価値とした。
 ニードルコークスの水銀ポロシメトリーの測定は、ニードルコークスを2~5mmに縮分し、micromeritics社製オートポアIVを用いて圧力1.9~14400psi(細孔直径換算0.017~120μm)まで測定し、得られた圧力と水銀量から細孔直径に対する細孔容積を算出し、1~10μmの細孔容積を算出し、ニードルコークスの開気孔量とした。また、開気孔比率としては、1~10μm細孔容積を120μm以下の細孔容積で割って算出した。表1、表2において、細孔容積の値は、全気孔量を意味し、開気孔比率を算出するための120μm以下の細孔容積である。
 ニードルコークスの真密度は、JIS K 2151に準拠して測定した。
 見かけ密度は、ニードルコークスをジョークラッシャーで粉砕後、8-16Meshを篩とり、真密度と同様の測定手順にて測定した。閉気孔量は、以下の式(4)で算出する。
[式(4)]
  閉気孔量(cm/g)=
    (1/見かけ密度(g/cm)―(1/真密度(g/cm))
 微小硬度計での測定は、1~2cmの大きさのニードルコークス粒子を樹脂に埋め込み、研磨機で研磨し、ニードルコークスを表面に露出させた状態で8mmの厚さにしたものを試験片として、露出したニードルコークスの表面に対して行った。
 具体的な試験条件は、フィッシャー・インストルメンツ製FISHERSCOPE、HM2000を用いて、ビッカース圧子を測定子として、最大荷重2000mN、負荷速度300mN/s、クリープ時間2秒、除荷は負荷と同速度で実施した。各試験片について、10ケ所測定し、その平均値をその試験片の値として採用した。図1にその典型的な変位-荷重曲線を示す。
 ニードルコークスの組織構造を測定するため、ニードルコークスが塑性変形(破壊)しない領域(弾性変形領域)で測定する必要があり、試験にて得られる変位-荷重曲線において、変位は図1に示すように除荷後に原点まで戻っていることが必要である。
 押込み深さは、押込み試験の最大荷重時の変位量であり、試験条件、測定物質により異なり、ニードルコークスが破壊される直前の深さが良いが、今回の試験条件で本発明のニードルコークスを測定した場合、8~15μmが望ましい。
 押込み硬さHITは、ISO14577に準拠し、押込み試験の最大荷重と押込み深さから以下の式(5)で装置に付属の解析ソフトにて算出される。HITは、コークスが硬いと試験時に押し込まれないため、圧子に対して抵抗力が高いコークス構造を示していると考えられ、硬いコークス構造の例としては、コークス組織の光学的異方性組織の配向性が乱れることに起因すると考えられる。
[式(5)]
      押込み硬さHIT(MPa)=Fmax/Ap
 ここで、Fmax:最大荷重、Ap:圧子と試験片が接している投影面積を示す。
 押込み弾性率EITは、ISO14577に準拠し、押込み試験の最大荷重からの除荷初期の傾きを基にして以下の式(6)で装置に付属の解析ソフトにて算出される。このEITは、コークスの弾性率が低いと除荷後に復元しやすく、弾性率の低いコークス構造の例として、コークス組織の光学的異方性組織が良く発達していることに起因すると考えられる。
[式(6)]
  押込み弾性率EIT(GPa)=
   (1-(Vs))/(1/Er-1-(Vi)/(Ei)
 ここで、Vs:サンプルのポアソン比、Vi:圧子のポアソン比、Er:押込み接点の減少弾性率、Ei:圧子の弾性率を示す。
 CTEに関する構造指標NCSICは、ニードルコークスの黒鉛結晶性が発達しているほど、開気孔量の割合が多いほど、配向性が揃っているほど、大きくなり、より低CTEに適したニードルコークスであることを示す指標である。
 NCSICは、上述のとおり、25.0より大きいことが好ましく、より好ましくは27.0以上、さらに好ましくは29.0以上である。
 パッフィングに関する構造指標NCSIPは、ニードルコークスの開気孔が多いほど、閉気孔が少ないほど、組織が硬いほど、弾性率が低いほど大きくなり、より低パッフィングに適したニードルコークスであることを示す指標である。
 NCSIPは、上述のとおり、5.0より大きいことが好ましく、より好ましくは6.0以上、さらに好ましくは7.0以上である。
 生コークス、及びニードルコークス中窒素分は、JIS M 8819に準拠して測定した。
 生コークス及びニードルコークス中の硫黄分は、JIS M 8813に準拠して測定した。
 CTE、パッフィング試験片の調製は、ニードルコークスをジョークラッシャーで粉砕し、8-16Meshを篩とった後、篩上と下を混合し、ハンマークラッシャーで粉砕し、48-200Meshと200Mesh以下に篩分けした。それぞれを40wt%、35wt%、25wt%で粒度配合した後、バインダーピッチ((株)シーケム製BP97)と混練した。混練は、ニーダーを使用して、ニードルコークス100wt%に対してバインダーピッチを30wt%配合し、160℃で20分の混練を行い、混練物とした。
 パッフィング用は、混練物をモールド成型にて、直径20mm、長さ100mmの成型体を得て、この成型体を900℃で焼成後、含浸ピッチ((株)シーケム製IP78)を含浸し、再度、900℃で焼成し、パッフィング測定用の試験片とした。
 パッフィングの測定は、試験片をタンマン炉にて、アルゴン雰囲気下、昇温速度10℃/minで室温から2550℃まで加熱し、1500℃と2500℃での試験片の長さ方向の伸びを測定し、以下の式(7)からパッフィングを算出した。
[式(7)]
  パッフィング(%)=(L2500-L1500)/L×100
 ここで、L:試験片初期長さ、L1500:温度1500℃における長さ、L2500:温度2500℃における長さを示す。
 CTE用は、混練物を押出成型し、直径20mm、長さ100mmの大きさに調整した成型体を900℃で焼成後、タンマン炉を用いて、アルゴン雰囲気下、2550℃で黒鉛化を行ない、試験片とした。
 CTEの測定は、調整した試験片の室温から500℃の平均熱膨張係数を測定した。
 以下、本発明を実施例及び比較例によってさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
 コールタールを蒸留し、得られた重質成分であるコールタールピッチを溶剤分離法にてキノリン不溶分を除去したピッチを主原料油とし、同様な方法で調整したキノリン不溶分が除去されたコールタールピッチを常圧蒸留して得た300~600℃留分を200℃、4.5MPaの条件で水素化触媒(安定化Ni)の存在下、バッチ水素化処理したものを副原料油とした。主原料油100重量部に対して、副原料油を35重量部混合し、混合原料油を、0.6MPaにて、コーキング装入温度を470℃から段階的に530℃まで上げ、スチーム比(水蒸気量(g)/原料油量(g))を0.15から段階的に0.30としてコーキングし、生コークスを得た。得られた生コークスを窒素雰囲気下、700℃でか焼し、一旦、冷却した後、1400℃で再度か焼し、ニードルコークスを得た。このニードルコークスからCTE、パッフィング用試験片を調製した。
 また、得られたニードルコークス、試験片の特性値は、表1に示す。
実施例2
 実施例1と同じコールタールピッチを主原料油として用い、コールタールを常圧蒸留して得た300~600℃留分を200℃、4.5MPaの条件で水素化触媒(安定化Ni)の存在下、バッチ水素化処理したものを副原料油とした。主原料油100重量部に対して、副原料油を43重量部混合し、混合原料油をコーキング装入温度460℃から段階的に550℃まで上げ、圧力を0.5MPaから段階的に0.65MPaまで上げ、スチーム比を0.10から段階的に0.35まで上げてコーキングし、生コークスを得た。それ以降は、実施例1と同様の操作を行なった。
実施例3
 実施例1と同じコールタールピッチを主原料油として用い、流動接触分解油を常圧蒸留して得た沸点300~600℃留分を温度250℃、圧力4.5MPaの条件で水素化触媒(安定化Ni)の存在下、バッチ水素化したものを副原料油とした。主原料油100重量部と副原料油45重量部を混合し、圧力0.5MPaとし、コーキング装入温度を470℃から段階的に500℃まで上げながら、スチーム比を0.15から0.35まで段階的に上げてコーキングし、生コークスを得た。それ以降は、実施例1と同様の操作を行なった。
比較例1
 実施例1のコールタールピッチを主原料油として用い、コールタールを常圧蒸留して得た300~600℃留分を副原料油とした。主原料油100重量部と副原料油45重量部を混合し、500℃、0.4MPa、スチーム比0.12で条件一定でコーキングして生コークスを得た。それ以降は、実施例1と同様の操作を行なった。
比較例2
 実施例1と同じ主原料油を用い、副原料油として、実施例1で主原料油として使用したコールタールピッチ70重量%に流動接触分解油30重量%を混合したものを常圧蒸留して得た300~600℃の留分を用いた。これら主原料油100重量部と副原料油45重量部を混合し、490℃、0.4MPa、スチーム比0.12で条件一定でコーキングして生コークスを得た。それ以降は、実施例1と同様の操作を行なった。
比較例3
 実施例1で使用した主原料油100重量部に実施例1で使用した副原料油を100重量部混合し、混合原料油を530℃、0.5MPa、スチーム比0.10で条件一定でコーキングして生コークスを得た。それ以降は、実施例1と同様の操作を行なった。
 表1、表2に、原料油の種類、性状、生コークスの及びニードルコークスの特性を示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1.  式(1)で示されるPDQI値が5.0未満の水素供与性の小さいコールタール系重質油あるいは石油系重質油のニードルコークス主原料油100重量部に、式(1)で示されるPDQI値が5.0以上の水素供与性の大きな副原料油10~80重量部を混合してコーキングし、得られた生コークスをか焼することを特徴とする低CTE、低パッフィングニードルコークス。
    [式(1)]
           PDQI=H%×10×(HNβ/H)
     ここで、H%は元素分析で求められる水素量(重量%)であり、HNβ/HはH-NMRで測定されるβナフテン水素と全水素の比である。
  2.  式(2)にて示されるCTEに関する構造指標(NCSIC)が25.0を超え、式(3)にて示されるパッフィングに関する構造指標(NCSIP)が5.0よりも大きいことを特徴とする低CTE、低パッフィングニードルコークス。
    [式(2)]
      NCSIC=((Lc/d002)+(開気孔比率))/(σ(θ))
     ここで、Lc:結晶子サイズ、d002:面間隔、σ(θ):平均配向角度の標準偏差を示す。
    [式(3)]
      NCSIP=(開気孔量/閉気孔量)+(HIT/1000)/EIT
     ここで、HIT:押込み硬さ、EIT:押込み弾性率を示す。
  3.  主原料油が、コールタールを蒸留、脱QIして得られた水素供与性の小さい脱QIピッチである請求項1に記載の低CTE、低パッフィングニードルコークス。
  4.  主原料油が、コールタールを蒸留して脱QIした式(1)で計算されるPDQI値が2未満の水素供与性の小さい脱QIピッチであることを特徴とする請求項1に記載の低CTE、低パッフィングニードルコークス。
  5.  結晶子サイズLcが4.0~10.0nmであり、面間隔d002が0.340~0.350nmであり、開気孔比率が0.15~0.40であり、平均配向角度の標準偏差σ(θ)が0.01~0.85である請求項1又は2に記載の低CTE、低パッフィングニードルコークス。
  6.  開気孔量が0.040~0.070cm/gであり、閉気孔量が0.001~0.015cm/gであり、押込み硬さHITが800~1500MPaであり、押込み弾性率EITが5.0~15.0GPaである請求項1又は2に記載の低CTE、低パッフィングニードルコークス。 
     
PCT/JP2020/033267 2019-09-17 2020-09-02 低cte、低パッフィングニードルコークス WO2021054122A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/631,578 US20220267151A1 (en) 2019-09-17 2020-09-02 Low-cte, low-puffing needle coke
CN202080061166.8A CN114364769B (zh) 2019-09-17 2020-09-02 低cte、低膨化针状焦
EP20864460.9A EP4032962A4 (en) 2019-09-17 2020-09-02 LOW CTE AND LOW EXPANSION ACICULAR COKE
JP2021546589A JPWO2021054122A1 (ja) 2019-09-17 2020-09-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019168292 2019-09-17
JP2019-168292 2019-09-17

Publications (1)

Publication Number Publication Date
WO2021054122A1 true WO2021054122A1 (ja) 2021-03-25

Family

ID=74884071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033267 WO2021054122A1 (ja) 2019-09-17 2020-09-02 低cte、低パッフィングニードルコークス

Country Status (5)

Country Link
US (1) US20220267151A1 (ja)
EP (1) EP4032962A4 (ja)
JP (1) JPWO2021054122A1 (ja)
CN (1) CN114364769B (ja)
WO (1) WO2021054122A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433601B (zh) * 2022-08-31 2023-12-01 中钢集团鞍山热能研究院有限公司 一种制备多种用途高性能针状焦的联产工艺及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229801A (en) 1975-09-01 1977-03-07 Koa Sekiyu Kk Method for manufacturing high quality coke
US4490244A (en) * 1982-09-29 1984-12-25 Great Lakes Carbon Corporation Production of premium grade petroleum coke
JPS60149690A (ja) 1984-01-17 1985-08-07 Nippon Steel Chem Co Ltd ニ−ドルコ−クスの製造方法
JPS6121886A (ja) 1984-07-11 1986-01-30 Ishikawajima Harima Heavy Ind Co Ltd バラ物の運搬船
JPH04145193A (ja) 1990-10-05 1992-05-19 Nippon Steel Chem Co Ltd ニードルコークスの製造方法
JPH051288A (ja) * 1991-06-27 1993-01-08 Mitsubishi Kasei Corp ニードルコークスの製造法
JPH05163491A (ja) 1991-12-12 1993-06-29 Nippon Steel Chem Co Ltd ニードルコークスの製造方法
JPH05239466A (ja) * 1991-12-11 1993-09-17 Mitsubishi Kasei Corp ニードルコークスの製造方法
WO2009001610A1 (ja) * 2007-06-22 2008-12-31 Nippon Petroleum Refining Co., Ltd. 石油コークスの製造方法
JP2017019915A (ja) * 2015-07-09 2017-01-26 Jxエネルギー株式会社 黒鉛電極用石油ニードルコークスおよびその製造方法
WO2019188280A1 (ja) * 2018-03-26 2019-10-03 日鉄ケミカル&マテリアル株式会社 ニードルコークス用原料油及びニードルコークス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3432886A1 (de) * 1984-09-07 1986-03-20 Rütgerswerke AG, 6000 Frankfurt Verfahren zur herstellung von nadelkoks mit geringen irreversiblen volumenausdehnungen aus steinkohlenteerpech
US9777221B2 (en) * 2006-06-29 2017-10-03 Graftech International Holdings Inc. Method of producing needle coke for low CTE graphite electrodes
US8007658B2 (en) * 2008-06-03 2011-08-30 Graftech International Holdings Inc. Reduced puffing needle coke from coal tar
JP2015193805A (ja) * 2014-03-25 2015-11-05 三菱化学株式会社 水素化コールタールピッチの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229801A (en) 1975-09-01 1977-03-07 Koa Sekiyu Kk Method for manufacturing high quality coke
US4490244A (en) * 1982-09-29 1984-12-25 Great Lakes Carbon Corporation Production of premium grade petroleum coke
JPS60149690A (ja) 1984-01-17 1985-08-07 Nippon Steel Chem Co Ltd ニ−ドルコ−クスの製造方法
JPS6121886A (ja) 1984-07-11 1986-01-30 Ishikawajima Harima Heavy Ind Co Ltd バラ物の運搬船
JPH04145193A (ja) 1990-10-05 1992-05-19 Nippon Steel Chem Co Ltd ニードルコークスの製造方法
JPH051288A (ja) * 1991-06-27 1993-01-08 Mitsubishi Kasei Corp ニードルコークスの製造法
JPH05239466A (ja) * 1991-12-11 1993-09-17 Mitsubishi Kasei Corp ニードルコークスの製造方法
JPH05163491A (ja) 1991-12-12 1993-06-29 Nippon Steel Chem Co Ltd ニードルコークスの製造方法
WO2009001610A1 (ja) * 2007-06-22 2008-12-31 Nippon Petroleum Refining Co., Ltd. 石油コークスの製造方法
JP2017019915A (ja) * 2015-07-09 2017-01-26 Jxエネルギー株式会社 黒鉛電極用石油ニードルコークスおよびその製造方法
WO2019188280A1 (ja) * 2018-03-26 2019-10-03 日鉄ケミカル&マテリアル株式会社 ニードルコークス用原料油及びニードルコークス

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CARBON, vol. 19, no. 5, pages 347 - 352
JOURNAL OF THE FUEL SOCIETY OF JAPAN, vol. 65, no. 12, 1986, pages 1012 - 1019
See also references of EP4032962A4

Also Published As

Publication number Publication date
CN114364769B (zh) 2024-06-07
CN114364769A (zh) 2022-04-15
EP4032962A1 (en) 2022-07-27
US20220267151A1 (en) 2022-08-25
JPWO2021054122A1 (ja) 2021-03-25
EP4032962A4 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
JP5483334B2 (ja) 石油コークスの製造方法
US10253264B2 (en) Method of producing needle coke for low CTE graphite electrodes
EP0175518B1 (en) Process for the preparation of super needle coke
EP3088491B1 (en) Method for producing needle coke
WO2021054122A1 (ja) 低cte、低パッフィングニードルコークス
JP7252208B2 (ja) ニードルコークス用原料油及びニードルコークス
WO2011048920A1 (ja) 改質タール並びに改質タールの製造方法、生コークスの製造方法及びニードルコークスの製造方法
EP2336267B1 (en) Process for producing needle coke for graphite electrode and stock oil composition for use in the process
JP2008150399A (ja) 石油コークス及びその製造方法
JP2017048379A (ja) コールタールピッチ及びその製造方法
JP2024149662A (ja) 低cte、低パッフィングニードルコークス
RU2800053C1 (ru) Игольчатый кокс с низким коэффициентом теплового расширения и низким растрескиванием
JPWO2021054122A5 (ja)
JP2007002124A (ja) 含浸用ピッチ及びその製造方法
JP2775784B2 (ja) 石炭系ニードルコークスの製造法
JPS6278104A (ja) ニ−ドルコ−クスの製造方法
JP2008069026A (ja) 活性炭の製造方法および活性炭
JPH086092B2 (ja) 高配向性ニ−ドルコ−クスの製造方法
JP2002241763A (ja) 人造黒鉛用骨材コークスの製造方法
JP2009126765A (ja) 活性炭の製造方法
JPS6274989A (ja) 針状コ−クスの製造方法
JP2008156221A (ja) 活性炭の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864460

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021546589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020864460

Country of ref document: EP

Effective date: 20220419