JPS63230553A - 超伝導材料 - Google Patents

超伝導材料

Info

Publication number
JPS63230553A
JPS63230553A JP62059931A JP5993187A JPS63230553A JP S63230553 A JPS63230553 A JP S63230553A JP 62059931 A JP62059931 A JP 62059931A JP 5993187 A JP5993187 A JP 5993187A JP S63230553 A JPS63230553 A JP S63230553A
Authority
JP
Japan
Prior art keywords
composite oxide
temperature
oxide
superconductive material
strontium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62059931A
Other languages
English (en)
Inventor
Hideaki Imai
秀秋 今井
Hiroshi Kurokawa
洋 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62059931A priority Critical patent/JPS63230553A/ja
Publication of JPS63230553A publication Critical patent/JPS63230553A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類−銅系組成からなる超伝導材料に関する
ものである。
(従来の技術) 従来、超伝導性を示す物質は数多く知られており、合金
系においてはNb、GaやNbNのようなNb系合金が
高い超伝導臨界温度(以下、Tcと記述する)を示し、
Nb、Geが23.6にというTcを有することが10
年程度前に報告されていたが(^pplied Phy
−sics Letters、 23480 (197
3))、最近までそれ以上のTcを有する物質は知られ
ていなかった。一方、複合酸化物系においては、LiT
i0aが13.7にというTcを有することが報告され
ているが(MaterialResearch Bul
letin、 8.777 (1973))、Tcが低
く超伝導材料としての実用性は低い。
超伝導材料の応用範囲は広く、中でも開発の主体となっ
ているのは、磁石用途であり、超伝導磁石は電気抵抗が
ゼロであるため冷却に要するわずかな電力だけで強い磁
場を発生することができる。
従って、核融合、磁気浮上列車、MHD発電、加速器、
モーター等強い磁場空間を必要とする分野での応用が期
待できる。電力分野においては、発電機、電力貯蔵や送
電線への応用があり、エレクトロニクス分野に対しては
、ロジックとかメモリーといったコンピューター素子(
ジョセフソン素子)、微弱な磁場を検出するセンサー(
1子干渉デバイス)やミリ波帯のミキサーや発信器に用
いることができるマイクロ波素子への応用がある。
このような用途に用いられる超伝導材料は、高いTcを
持つことが必要とされており、現在も材料の探索が続け
られている。高いTcを有する材料が開発されれば、冷
媒として高価で資源的に問題の多い液体ヘリウム(沸点
4.2K)ではなく、安価で資源的に豊富な液体窒素(
沸点77.3K)を用いることが出来るようになれば、
その用途はさらに飛躍的に広がるものと思われる。
最近、Ba −La −Cu −0系の希土類複合酸化
物が30にという高い↑Cを有することが報告され(Z
ei−tschrift fir Physik、 B
 64,189 (1986)) 、さらに高いTcを
有する物質についても提案されている。
(本発明が解決しようとする問題点) 本発明は以上の点を考慮してなされたもので、空気中に
おける安定性が良く、高いTcを有する超伝導材料を提
供するものである。
(問題を解決するための手段) 本発明者らは、前記問題点を解決すべく鋭意研究を重ね
た結果、ネオジム−銅系組成の複合酸化物において、ネ
オジムをカルシウム、ストロンチウム、あるいはバリウ
ムに置換することにより高いTcが発現することを見い
出し本発明を完成するに至った。
すなわち、本発明の超伝導材料は、組成(NdxM+−
x)s Curb (但し、MはCa、 SrおよびB
aから選ばれる少なくとも一種)において、0.5≦x
≦0.95 1≦a≦2.2.9≦b≦4.0 の超伝導材料である。
以下、本発明の超伝導材料について詳細に説明する。
本発明の超伝導材料は(NdxM+−x)m Cub>
の構造を有する複合酸化物であり、ネオジムを置換する
元素(M)としては、カルシウム、ストロンチウム、あ
るいはバリウムであることが必要であり、それれらの1
種または2種以上をもちいることができる。置換量は、
原子比で5〜50%とすることが必要であり、好ましく
は10〜30%である。5%以下、あるいは50%以上
では高いTcの複合酸化物を得ることはできない。
本発明の複合酸化物中の金属組成比としては、(Ndx
M+−x)−Curbの構造において、1≦a≦2とす
ることが必要である。aの値が1以下である場合は、生
成物中の酸化第21i1の含有量が、またaの値が2以
上では、生成物中の酸化ネオジムや間の含有量が多くな
るため、超伝導に関与する相の体積分率が低下するので
好ましくない。bの値は2.9≦b≦4.0であること
が必要で、bの値が2.9以下、あるいは4.0以上で
は高いTcを有する複合酸化物を得ることができない。
複合酸化物中の酸素イオン濃度の制御は、該複合酸化物
を加熱する雰囲気を調節することにより行うことができ
、化学量論量より酸素イオン濃度を小さくしたいときは
、還元性雰囲気において加熱すればよい。
また、本発明においては、複合酸化物中に通常の試薬中
に含まれる不純物が存在していても性能に殆ど影響せず
、例えば、Nd以外にSc、 L La+Ce、 Pr
、 Nd+ Sa++ Bu、Gd+ Tb+ Dyt
 Ilo+ Er、 Tm。
ybやLuのような希土類元素や、Ti+ Zr+ N
bt LMO,h、 St、 Bi、 AI、 Ge、
 Mgのような金属元素、あるいはC1やFのような陰
イオンが微量存在していてもTcには殆ど影響を与えな
い。
次に、本発明の超伝導材料の製造方法について説明する
。本発明の超伝導材料の製造方法は、例えば、酸化ネオ
ジムや水酸化ネオジム等のネオジム化合物、酸化ストロ
ンチウム、炭酸ストロンチウム、酸化バリウムや酸化カ
ルシウム等のアルカリ土類金属塩、および酸化第2銅や
炭酸第2銅のような銅の化合物を所定量混合して加熱し
てし固相反応させる方法、ネオジム、ストロンチウム。
バリウム、カルシウムや銅塩の塩化物や硝酸塩の可溶性
塩水溶液の混合物にシュウ酸塩の水溶液を添加して共沈
した後加熱して反応させる方法がある。また、これらの
うち2種の金属塩混合を共沈法によって製造した後、他
の金属化合物と混合して所定の複合酸化物を得ることも
できる。加熱反応する条件は、組成によって異なるが、
600℃から900℃において、0.5時間から24時
間所定の雰囲気中において行うことが好ましい。
上記のようにして得られる複合酸化物は、必要があれば
ボールミルやジェットミル等の粉砕手段を用いて、例え
ば10μ以下に粉砕した後に所定の形に成形し、焼結す
る。焼結温度は組成によって異なるが、650〜120
0℃が好ましく、10分から5時間行う。次いで、所定
の雰囲気中において、30分から10時間、600〜1
000℃の温度でアニールする。本発明において、複合
酸化物中の酸素含有量の制御も重要な因子であり、それ
はアニール時の雰囲気を変えることにより行なうことが
できる。
酸素含有量を化学量論量より少なくしたい場合には、窒
素、アルゴンやヘリウム等の不活性ガス雰囲気中におい
て、酸素分圧を調整しながらアニールを行う。
また、スパッタリング法をCVD法により基板上に目的
とする複合酸化物を形成することもできる。
本発明において得られる複合酸化物は、X線回折による
分析によれば、第1図に示すように、主にに、NiP、
型のNbzCuOaの結晶構造からなり、ネオジムの一
部がバリウム、ストロンチウムやカルシウムに置換され
ているものと考えられる。また、未知の結晶相が存在し
ているが、その結晶構造はまだはっきりしていない、該
複合酸化物が高いTcを有する理由についてはまだはっ
きりしていないが、結晶中のCu−0iの正八面体構造
において、Cu−0間の相互作用が大きくなるためと考
えられる。
(効果) 本発明の複合酸化物は空気中で安定であり高いTcを存
するため、種々の用途に応用できる工業材料として極め
て有用なものである。
(実施例) 以下、実施例によりさらに詳細に説明する。
実施例 1 塩化ネオジム、硝酸ストロンチウム、および硝酸銅をそ
れぞれ1 mole/ 1の濃度にイオン交換水中に溶
解した。塩化ネオジム水溶液song、硝酸ストロンチ
ウム水溶液20−1および硝酸銅100m1を採り、混
合水溶液とした。次いで、シュウ酸・2水塩33.3g
 (化学量論量の1.1倍当M&)を該混合水溶液中に
添加して、ネオジム、ストロンチウム、および銅のシュ
ウ酸塩を共沈せしめた。得られた沈殿は、ろ過、水洗し
た後、100℃において乾燥した。続いて、750℃の
温度において、空気中で2時間焼成した。該複合酸化物
の組成は(Ndo、 5Sro、 z)CuO1であり
、第1図のX線回折図に示すように主にNdzCu04
型の構造からなり、他に未知の成分が存在していること
がわかる。
得られた複合酸化物は、l  ton/−の圧力でプレ
ス成形した後、920℃の温度において、空気中で2時
間焼結して成形体を得た。
成形体をカントして電極を付け、クライオスタット(オ
ックスフォード社製)に取り付けた後、四端子法によっ
て電気抵抗を測定した。また、該複合酸化物の磁化率の
温度依存性についても振動試料型磁力計(東英工業製V
SM−3型)を用いて測定した。
第2図に電気抵抗の温度依存性を示すが、超伝導現象が
現れ始める温度は91にであり、完全に抵抗がゼロにな
る温度は78にであることがわかった。
第3図には磁化率の温度依存性を示すが、磁化率は89
Kから減少し始め、反磁性体であることがわかった。こ
れらのことから該複合酸化物は超伝導性を有することが
わかる。
実施例 2〜4 実施例1の方法と同様にして、塩化ネオジムと硝酸スト
ロンチウムの組成比を変えて共沈し、複合酸化物を得た
。得られた複合酸化物は実施例1と同様にして焼結し、
電気抵抗と磁化率の温度依存性を測定した。結果は第1
表に示す。
第1表 ()内は電気抵抗がゼロになる温度 実施例 5 実施例1において、硝酸ストロンチウムのかわりに硝酸
バリウムを用いる以外は同様の方法を用い、(Nd6.
 B Bao、z) CuO3の組成を有する複合酸化
物を得た。電気抵抗が下がり始める超伝導開始温度は8
1K、抵抗がゼロになる温度は65にであり、磁化率が
低下し始める温度は80にであった。
実施例 6 実施例1において、硝酸ストロンチウムのがわりに硝酸
カルシウムを用いる以外は同様の方法を用い、(NdO
,ll Cao、z) CuO3の組成を有する複合酸
化物を得た。超伝導開始温度は44にであり、抵抗がゼ
ロになる温度は27に、磁化率が低下し始める温度は4
0にであった。
実施例 7 実施例1において、ネオジム、ストロンチウム。
およびバリウムの組成比を80−10−10にする以外
は同様の方法を用いて、(Ndo、 s Sr6. I
 Bao、 +)CuOiの組成を有する複合酸化物を
得た。超伝導開始温度は76に、抵抗がゼロになる温度
は58にであり、磁化率が低下し始める温度は74にで
あった。
実施例 8 実施例1において、塩化ネオジム160rB!、硝酸ス
トロンチウム4Qtn!、および硝酸銅100−を用い
、シュウ酸・2水塩52.7gを添加して共沈させる以
外は同様の方法によって複合酸化物を得た。複合酸化物
の組成は、CNdo、a Sro、z>t Cubsで
あり、その超伝導開始温度は85K、抵抗がゼロになる
温度は71にであり、磁化率が低下し始める温度は82
にであった。
実施例 9 実施例1で得た複合酸化物を、アルゴン気流中で600
℃の温度で2時間加熱することにより、酸素含有量が化
学量論量より小さい複合酸化物を得た。該複合酸化物の
組成は(Ndo、 a Sro、 z)CuOz、 q
zであり、その超伝導開始温度は71K、抵抗がゼロに
なる温度は55にであり、磁化率が低下し始める温度は
69にであった。
比較例 1 実施例1において、ネオジムとストロンチウムの組成比
を98/2とした以外は同様の方法を用いて、(Ndo
、qs Sro、c+g) Cu0=の組成を有する複
合酸化物を得た。複合酸化物の超伝導開始温度は10に
、磁化率が低下し始める温度は7.3にであった。
比較例 2 実施例1において、ネオジムとストロンチウムの組成比
を40/60とした以外は同様の方法を用いて、(Nd
(1,4Sro、i) CL103の組成を有する複合
酸化物を得た。該複合酸化物の超伝導開始温度は7.4
K、磁化率が低下し始める温度は5.OKであった。
【図面の簡単な説明】
第1図は、本発明の(Nda、e Sro、z) Cu
O3のCuKα線によるX線回折図、第2図は該複合酸
化物の電気抵抗の温度依存性を示し、第3図は該複合酸
化物の磁化率の温度依存性を示す図である。 特許出願人  旭化成工業株式会社 第1図 28(CuK幻 (Nd  Sr  ) Cu 03 X ’tL [1
t’To、80.2 第2図 50      goo      150第3図 温iLK

Claims (1)

  1. 【特許請求の範囲】 組成(Nd_xM_1_−_x)_aCuO_b(但し
    、MはCa、SrおよびBaから選ばれる少なくとも一
    種)において、 0.5≦x≦0.95 1≦a≦2、2.9≦b≦4.0 であることを特徴とする超伝導材料
JP62059931A 1987-03-17 1987-03-17 超伝導材料 Pending JPS63230553A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62059931A JPS63230553A (ja) 1987-03-17 1987-03-17 超伝導材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62059931A JPS63230553A (ja) 1987-03-17 1987-03-17 超伝導材料

Publications (1)

Publication Number Publication Date
JPS63230553A true JPS63230553A (ja) 1988-09-27

Family

ID=13127364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62059931A Pending JPS63230553A (ja) 1987-03-17 1987-03-17 超伝導材料

Country Status (1)

Country Link
JP (1) JPS63230553A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649813A (en) * 1987-01-27 1989-01-13 Agency Ind Science Techn Superconductor and production thereof
JPS6414154A (en) * 1987-07-06 1989-01-18 Nec Corp Oxide superconductor composition
JPS6414152A (en) * 1987-07-06 1989-01-18 Nec Corp Oxide superconductor composition
JPH02296721A (ja) * 1989-05-12 1990-12-07 Mitsubishi Materials Corp 酸化物超電導体およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649813A (en) * 1987-01-27 1989-01-13 Agency Ind Science Techn Superconductor and production thereof
JPH0583486B2 (ja) * 1987-01-27 1993-11-26 Kogyo Gijutsuin
JPS6414154A (en) * 1987-07-06 1989-01-18 Nec Corp Oxide superconductor composition
JPS6414152A (en) * 1987-07-06 1989-01-18 Nec Corp Oxide superconductor composition
JPH02296721A (ja) * 1989-05-12 1990-12-07 Mitsubishi Materials Corp 酸化物超電導体およびその製造方法

Similar Documents

Publication Publication Date Title
US8688181B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
JPH01188456A (ja) 酸化物高温超電導体
JPS63230553A (ja) 超伝導材料
Fayek et al. On the cation distribution in Ni 1− x Cu x Fe 2− y Al y O 4 spinels
JPS63230523A (ja) 超伝導性材料
JPS63230554A (ja) 超伝導性複合酸化物
AU769751B2 (en) A Pb-Bi-Sr-Ca-Cu-oxide powder mix with enhanced reactivity and process for its manufacture
JPH0583486B2 (ja)
JP2603343B2 (ja) 混合金属酸化物から成る物品の製造方法
Negas et al. PHASES IN THE SYSTEMS Bao-Ni0-0-CO2 AND BaO-Co0-0-CO2
US8060169B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
JP2696689B2 (ja) 酸化物系超電導材料
JPS63303811A (ja) 超伝導性セラミックス
JPH01122959A (ja) 高配向性超伝導材料
JPH02199026A (ja) 超伝導性酸化物
JPS63252925A (ja) 超伝導性材料の製造方法
Misra et al. EPR of a Gd3+‐Doped NH4Pr (SO4) 2· 4 H2O Single Crystal. Study of Phase Transition and Superposition Model Calculation of Zero‐Field Splitting Parameters
JPH07102968B2 (ja) 超電導材料の製造方法
JP2696690B2 (ja) 酸化物系超電導材料
Chen et al. Synthesis and properties of the Y (Ba1− xSrx) 2Cu3− 0.15 xMo0. 15xO7− z superconductors
JPH026329A (ja) 超伝導材料組成物
JPH03112813A (ja) 超電導体
JPH0818834B2 (ja) 複合酸化物超電導材料及びその製造方法
JPS63288912A (ja) 無機酸化物超電導体の調製方法
JPH0446015A (ja) 酸化物超電導体およびその製造方法