JPS6235260B2 - - Google Patents

Info

Publication number
JPS6235260B2
JPS6235260B2 JP53080833A JP8083378A JPS6235260B2 JP S6235260 B2 JPS6235260 B2 JP S6235260B2 JP 53080833 A JP53080833 A JP 53080833A JP 8083378 A JP8083378 A JP 8083378A JP S6235260 B2 JPS6235260 B2 JP S6235260B2
Authority
JP
Japan
Prior art keywords
melt
substrate
deposited
layer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53080833A
Other languages
English (en)
Other versions
JPS5414669A (en
Inventor
Wairitsuhi Kurausu
Hosupu Uerunaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPS5414669A publication Critical patent/JPS5414669A/ja
Publication of JPS6235260B2 publication Critical patent/JPS6235260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B1/00Dumping solid waste
    • B09B1/008Subterranean disposal, e.g. in boreholes or subsurface fractures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/063Sliding boat system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 この発明は、スライド式液相エピタキシイによ
り一つの基板上に多数の単結晶層を順次に重ねて
析出させるための方法に関する。
基板上に析出させる各析出材料の融体を収容し
間隔を保つて配置された一つ以上の融体収容室を
備える第一部分と融体収容室と同じ間隔を保つて
配置された複数の基板収容室を備える第二部分と
から成るスライド装置によつて融体を順次基板上
に送り込み、融体温度を低下させることによりそ
れぞれの層を析出させた後融体を基板から取り去
ることにより一つの基板上に単結晶層を析出させ
る方法は、米国特許第3899371号明細書に記載さ
れ公知である。しかしこの方法は、単一の基板上
に二つの層を析出させるものであつて、同時に多
数の基板の上に多数の単結晶層を重ねて成長させ
ることは考慮されていない。
ある種の半導体デバイス例えば発光ダイオード
またはレーザーダイオードの製作に当つては、半
導体結晶上に一つまたはそれ以上の半導体材料層
をエピタキシヤル成長させることが必要となる。
特に―族金属間化合物およびその混合結晶か
ら成る半導体デバイスの製作に対しては、スライ
ド式液相エピタキシイが採用される。この方法で
は結晶として析出させる材料を含む融体をスライ
ダを使用して基板表面に送り込み、融体の温度を
僅かに低下させて所定材料を基板表面に単結晶と
して析出させる。単結晶析出層の厚さが予定値に
達すると、スライダを動かして基板表面上に残つ
た融体を送り出す。このスライド式のエピタキシ
ヤル成長法とそれを実施する装置は、例えば米国
特許第3753801号明細書に記載されている。発光
ダイオード又はレーザーダイオードのように厚さ
の異る多数のエピタキシヤル成長層が重ねられて
いる半導体デバイスを合理的に製作するために
は、連続操作が可能なスライド式液相エピタキシ
イ法が必要となる。特にコヒーレント光又はイン
コヒーレント光を放出する二重ヘテロ接合ダイオ
ード例えば(GaAl)As―GaAsダイオードおよ
びヘテロ接合マイクロ波デバイスの場合複数の層
を順次エピタキシヤル成長させる必要があり、こ
れらの層は少くとも部分的に成分組成を異にし、
例えばGaAs―(GaAl)As層列の場合アルミニ
ウム含有量が異る。層析出は常にスライダによつ
て融体を送り込むことによつて行われる。この融
体は析出材料を含んでいるから基板表面に冷却す
るとこの材料が単結晶として析出する。
二重ヘテロ接合構造のレーザーダイオードおよ
び発光ダイオードに要求される層配列は、通常組
成を異にする融体を入れる複数の収容室を備えた
スライダを使用するスライド装置によつて作られ
る。単結晶層が析出する基板はグラフアイトボー
トに入れ、等間隔で一列に並べるか同心的に配置
する。これに対応してスライダの融体収容室も一
列にまたは同心的に等間隔に配置されている。ス
ライダの直線移動または回転により融体は順次に
それぞれの基板上に移動し、その都度適当な温度
だけ冷却されて基板上に単結晶層がエピタキシヤ
ル成長する。成長した層の厚さは、融体の温度低
下値と基板上に存在する融体の厚さの外、融体中
に溶解している物質が全部基板上に析出してしま
わない限り融体の冷却速度によつて決定される。
基板上に極めて薄い層を析出させる場合には基板
材料で飽和した融体を使用し、融体の移動に際し
て基板結晶表面が溶解してコントロール不能の層
成長が起らないようにしなければらない。融体の
正確な飽和は、融体を本来の析出基板上に移す前
に予備基板上に充分長い時間保持して溶解平衡状
態とすることによつて簡単に達成される。複数の
基板上に同時に成長させる場合には、それぞれの
基板に析出する層に対して専属の融体収容室をス
ライダに設けなければならない。例えばそれぞれ
の層の析出に対して互に異つた冷却期間を必要と
する4層構造を製作するためには、析出基板数の
4倍の融体収容室を備えたスライダを使用する必
要がある。従つて基板数が少数であつても既にス
ライダおよび基板を入れるボートは極めて複雑な
構造となる。また収容室が多数になるとボートの
送りに際して故障が起り易い。更に予備基板が必
要となるため基板の数が2倍となり、製作費がそ
れだけ高くなる。
この発明の目的は、連続工程により同時に多数
の基板に多数の厚さを異にする層を重ねて設ける
ことを可能にするスライド式液相エピタキシイに
よる単結晶層形成方法を提供することである。
この目的はこの発明により、冒頭に挙げた単結
晶層成長方法に対して特許請求の範囲第1項に特
徴として挙げた工程を採用することによつて達成
される。この発明の有利な応用分野は特許請求の
範囲第2項に示されている。
この発明による方法の長所はまずそれぞれの基
板上の各成長層が同じ融体から析出し、また基板
上の各融体の温度が総て同じ値だけ低下すること
である。析出層の厚さの制御に対しては基板上に
存在する融体の厚さを変化させる。単結晶層を析
出させるそれぞれの融体は、基板結晶と平衡状態
に達するまで基板上にとどめる。この発明の方法
を実施する装置内において析出基板はスライダの
融体収容室の配置間隔と等しい間隔で並べて配置
される。析出基板と融体収容室は直線的に配置し
ても同心円上に配置してもよい。
この発明による単結晶層の成長は次のようにし
て実施される。
第一単結晶層を析出させるため第一融体を第一
基板上に送り込む。第一融体は場合によつては予
備基板上で溶解平衡状態にしておいてもよい。第
一融体が第一基板上に移された後、装置を一定温
度間隔例えば1℃だけ冷却する。これにより融体
中に溶解した材料が基板表面にエピタキシヤル成
長する。融体はこの新しい温度において平衡に達
するまで、即ちそれに含まれる結晶材料が全部析
出するまで基板上におく。融体からの結晶の成長
は融体中に溶け込んだ物質、例えばGaAs結晶の
場合Ga融体中のAs拡散によつて決まるものであ
り、冷却が終つた後の基板上の融体の最低滞留時
間tnioは次の式 tnio=Wnax /D で与えられる。ここでWnaxは基板上の析出融体
の最大の厚さであり、Dは溶解物質の拡散係数で
ある。この式は冷却速度をα、冷却温度間隔を△
tとしてα・△t≪tnioのとき有効である。
α・△t>tnioであれば冷却終了後の最低滞留
時間を更に短くすることができる。融体の冷却速
度を充分低くすれば、融体を基板上に保持する時
間を温度を更に下げる必要なく0にすることがで
きる。それぞれの単結晶層の析出のために基板上
に移される融体は異つた厚さとし、それによつて
総ての融体を同じ温度間隔だけ冷却してもそれぞ
れの基板上に析出する単結晶層の厚さを異つたも
のとすることができる。これはこの場合析出層の
厚さが基板上にある融体の厚さに比例することに
よるものである。冷却温度間隔△Tを1℃とし出
発温度を例えばGa―As融溶体からのGaAsの析出
として800℃とすれば、1μm厚さのGaAs層を析
出させるためには融体の厚さは約1mmとなり、最
低滞留時間tnioはDが約5・10-5cms-1であるか
ら、上記の式により約200sとなる。この滞留時間
の後スライダを動かして第一融体を第二基板上に
移す。同時に第二層の析出のために第二融体を第
一基板上に送り込む。ここで装置を前と同じ温度
間隔例えば1℃だけ冷却する。これが終ると第一
融体を第三基板上に、第二融体を第二基板上に移
し、第一基板上に第三融体を送り込み装置全体を
更に1℃だけ冷却する。この工程を基板と析出層
の数だけ繰り返す。例えば10枚の基板上にそれぞ
れ4層構成を成長させる場合には融体収容室は4
室となり、全体として15回の移動が必要である。
この場合全体の冷却温度は各段階毎の冷却を1℃
として15℃となる。15℃の温度範囲内で組成成分
とドープ物質の溶解度あるいは分配係数の温度依
存性は無視することができるから、それぞれの基
板上に析出した層は互に等しい厚さを持つ。
図面に示した実施例についてこの発明を更に詳
細に説明する。
第1図はGaAs基板上に4層構造を作る工程を
示すもので、例えばグラフアイト製のボート1中
に基板11,12,13,14および15が置か
れている。ボート1上に乗せられたスライダ2に
は4個の融体収容室があり、融体21,22,2
3および24が入れられている。基板上の各融体
の厚さは融体量によつて調整される。融体が少量
であるとき表面張力により滴状になることを防ぐ
ため押し棒3で押しつける。4層構造の析出に対
しては、スライダを最初融体21が基板11の上
に乗る位置に置き温度を1℃だけ下げる。これに
より基板11上に層111が析出する。次にスラ
イダを次の位置に移し融体21を基板12上に乗
せ、装置全体を1℃だけ冷却すると基板12上に
層121が析出し、同時に基板11上の融体22
から層112が基板11上の層111の上に析出
する。次の工程でスライダ2をまた矢印の方向に
動かし、融体21を基板13上に移す。この状態
が第1図に示されている。ここで装置の温度を更
に1℃だけ低下させると基板13上に第一エピタ
キシヤル層が析出し、基板12上に第二エピタキ
シヤル層が析出し、基板11上に第三エピタキシ
ヤル層が析出する。その後スライダ2を更に一区
間だけ動かして融体21が基板14上に乗るよう
にする。ここで基板11上には融体24が乗る。
同様な過程を繰り返して総ての基板の上にそれぞ
れ一つの4層構造を形成させる。
第2図は装置全体の温度経過を示す。初期温度
Aは例えば800℃であり、基板数と各基板上に析
出させる層の数に応じてそれぞれ温度範囲△T、
例えば1℃の温度降下を繰り返す。最終温度TE
は、基板数が10、層数が4であれば各温度降下を
1℃として15℃だけ初期温度より低い。
【図面の簡単な説明】
第1図はこの発明の方法を実施する装置の断面
略図、第2図はこの装置の温度経過曲線である。
第1図において1はグラフアイトボート、11乃
至15は析出基板、2はスライダ、21乃至24
はスライダの融体収容室に入れられた融体であ
る。

Claims (1)

  1. 【特許請求の範囲】 1 基板上に析出させる各析出材料の融体を収容
    し間隔を保つて配置された一つ以上の融体収容室
    を備える第一部分と融体収容室と同じ間隔を保つ
    て配置された複数の基板収容室を備える第二部分
    とから成るスライド装置によつて融体を順次基板
    上に送り込み、融体温度を低下させることにより
    それぞれの層を析出させた後融体を基板から取り
    去る方法において、複数の層を同時に基板上に析
    出させるため、基板をスライド装置の第二部分の
    基板の数に対応する個数の基板収容室内に配置
    し、スライド装置の第一部分の融体収容室と第二
    部分の基板収容室とはすべて互いに等間隔を保つ
    ようにし、すべての融体に対して共通の融体温度
    低下を順次連続的にそれぞれ同じ温度値(1℃)
    ずつ行い、予め定めた種々の厚さの層を析出させ
    るため、各融体の厚さを各析出させるべき層厚に
    対応する値に保持し、融体を基板上へ送り込み基
    板上から取り去るまでの間に最低滞留時間tnio
    を保持し、この時間tnioは次式 tnio=W nax/D Wnax=装置内に存在する融体の最大厚さ D=融体内に融け込んでいる物質の拡散係数 によつて定められることを特徴とするスライド式
    液相エピタキシイによる単結晶層成長方法。 2 ヘテロ接合半導体結晶の製作に使用されるこ
    とを特徴とする特許請求の範囲第1項記載の方
    法。
JP8083378A 1977-07-05 1978-07-03 Method of growing monocrystal layer by slide liquid phase epitaxy Granted JPS5414669A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2730358A DE2730358C3 (de) 1977-07-05 1977-07-05 Verfahren zum aufeinanderfolgenden Abscheiden einkristalliner Schichten auf einem Substrat nach der Flüssigphasen-Schiebeepitaxie

Publications (2)

Publication Number Publication Date
JPS5414669A JPS5414669A (en) 1979-02-03
JPS6235260B2 true JPS6235260B2 (ja) 1987-07-31

Family

ID=6013202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8083378A Granted JPS5414669A (en) 1977-07-05 1978-07-03 Method of growing monocrystal layer by slide liquid phase epitaxy

Country Status (6)

Country Link
US (1) US4149914A (ja)
EP (1) EP0000123B1 (ja)
JP (1) JPS5414669A (ja)
CA (1) CA1116312A (ja)
DE (1) DE2730358C3 (ja)
IT (1) IT1096839B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7712315A (nl) * 1977-11-09 1979-05-11 Philips Nv Werkwijze voor het epitaxiaal neerslaan van verscheidene lagen.
DE3036643C2 (de) * 1980-09-29 1984-09-20 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur Flüssigphasen-Epitaxie
US4319937A (en) * 1980-11-12 1982-03-16 University Of Illinois Foundation Homogeneous liquid phase epitaxial growth of heterojunction materials
US4342148A (en) * 1981-02-04 1982-08-03 Northern Telecom Limited Contemporaneous fabrication of double heterostructure light emitting diodes and laser diodes using liquid phase epitaxy
US4547230A (en) * 1984-07-30 1985-10-15 The United States Of America As Represented By The Secretary Of The Air Force LPE Semiconductor material transfer method
JPH07115987B2 (ja) * 1986-09-26 1995-12-13 徳三 助川 超構造および多層膜の製作法
TW460604B (en) 1998-10-13 2001-10-21 Winbond Electronics Corp A one-sided and mass production method of liquid phase deposition
CN102995115B (zh) * 2012-12-27 2015-07-29 中国电子科技集团公司第十一研究所 一种用于液相外延生长的石墨舟及液相外延生长方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE28140E (en) * 1971-11-29 1974-08-27 Bergh ctal
BE788374A (fr) * 1971-12-08 1973-01-02 Rca Corp Procede de depot d'une couche epitaxiale d'un materiau semi-conducteur sur la surface d'un substrat
US3933538A (en) * 1972-01-18 1976-01-20 Sumitomo Electric Industries, Ltd. Method and apparatus for production of liquid phase epitaxial layers of semiconductors
GB1414060A (en) * 1972-07-28 1975-11-12 Matsushita Electronics Corp Semoconductor devices
JPS5342230B2 (ja) * 1972-10-19 1978-11-09
US3899371A (en) * 1973-06-25 1975-08-12 Rca Corp Method of forming PN junctions by liquid phase epitaxy
US3899137A (en) * 1974-12-17 1975-08-12 Martin Shenker Cleaning device for photo-slides
US4028148A (en) * 1974-12-20 1977-06-07 Nippon Telegraph And Telephone Public Corporation Method of epitaxially growing a laminate semiconductor layer in liquid phase
US4032951A (en) * 1976-04-13 1977-06-28 Bell Telephone Laboratories, Incorporated Growth of iii-v layers containing arsenic, antimony and phosphorus, and device uses

Also Published As

Publication number Publication date
CA1116312A (en) 1982-01-12
US4149914A (en) 1979-04-17
DE2730358B2 (de) 1981-05-27
EP0000123B1 (de) 1981-02-25
DE2730358A1 (de) 1979-01-11
IT7825180A0 (it) 1978-06-30
JPS5414669A (en) 1979-02-03
DE2730358C3 (de) 1982-03-18
EP0000123A1 (de) 1979-01-10
IT1096839B (it) 1985-08-26

Similar Documents

Publication Publication Date Title
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
JPS6235260B2 (ja)
US3809584A (en) Method for continuously growing epitaxial layers of semiconductors from liquid phase
JPS63209122A (ja) 液相薄膜結晶成長方法及び装置
US4052252A (en) Liquid phase epitaxial growth with interfacial temperature difference
JPH04960B2 (ja)
JPS626338B2 (ja)
US4390379A (en) Elimination of edge growth in liquid phase epitaxy
JPS589794B2 (ja) 半導体の液相多層薄膜成長法および成長装置
JPH0243723A (ja) 溶液成長装置
JPH0330980B2 (ja)
US4412502A (en) Apparatus for the elimination of edge growth in liquid phase epitaxy
JPS59101823A (ja) 液相エピタキシヤル成長装置
JPH05206041A (ja) 半導体材料の液相成長法
JPS62241893A (ja) 液相エピタキシヤル成長方法
JPS60134418A (ja) 液相エピタキシヤル層の評価方法
JPH0519516B2 (ja)
JPS63138724A (ja) 液相エピタキシヤル成長装置
JPH01153592A (ja) エピタキシャル成長用ボート
JPS63199413A (ja) 液相成長用スライドボ−ト
JPS63308313A (ja) 半導体製造装置
JPS628518A (ja) 液相成長法
JPH0196091A (ja) 半導体結晶の液相エピタキシャル成長装置
JPS63310111A (ja) 化合物半導体ウェハ及びその製造方法
GB2064977A (en) Method of manufacturing semiconductor structures by liquid phase epitaxy