JPS62232169A - 3−v族化合物半導体デバイス - Google Patents

3−v族化合物半導体デバイス

Info

Publication number
JPS62232169A
JPS62232169A JP61076234A JP7623486A JPS62232169A JP S62232169 A JPS62232169 A JP S62232169A JP 61076234 A JP61076234 A JP 61076234A JP 7623486 A JP7623486 A JP 7623486A JP S62232169 A JPS62232169 A JP S62232169A
Authority
JP
Japan
Prior art keywords
group
film
carbon atoms
compound semiconductor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61076234A
Other languages
English (en)
Inventor
Masakazu Kamikita
正和 上北
Hiroshi Awaji
弘 淡路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP61076234A priority Critical patent/JPS62232169A/ja
Priority to EP87104708A priority patent/EP0239980A3/en
Priority to CA000533451A priority patent/CA1256592A/en
Publication of JPS62232169A publication Critical patent/JPS62232169A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • B05D1/202Langmuir Blodgett films (LB films)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/062Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the metal-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0037Devices characterised by their operation having a MIS barrier layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気絶縁性にすぐれた耐熱性ポリイミド薄膜と
m−v族化合物半導体とからなるデバイスに関し、エレ
クトロニクス分野で利用される。
〔従来の技術と問題点〕
GaAsのようなm−v族化合物半導体は、その電子移
動度が■族半導体の代表であるSiより大きく高速・高
周波デバイスに適しているが、m−v族化合物半導体に
はシリコン集積回路で重要な役割を果たしている良好な
酸化膜(SiOz)が存在しない、そのためブレーナ化
と問S構造による集積回路の大規模化が進展しておらず
シリコンの酸化膜のような良好な絶縁膜の開発がまたれ
ている。
最近注目されているラングミュア、プロジj−7ト膜(
以下LB膜)は、GJ、Roberts (Dur−h
am Uniν、Uに)らによって示されているように
、m−v族化合物半導体上の良好な絶縁膜となりうる可
能性をもっている。これまでの研究は、 EIectron、Lett、、 13(1977)5
81Solid 5tate Electron De
vices、2(1’J78)169Thin 5ol
id Films、99(1983)283等にみられ
るが、それにみられるLB膜はほとんどが直鎖飽和脂肪
酸あるいは重合可能な基をもった脂肪酸あるいはそのエ
ステル等で初期特性においては、興味ある結果が報告さ
れているが、それらデバイスは使用されているLB膜の
耐熱性、機械的強度、耐薬品性等の欠点のために実用的
な信頼性に欠けていた。
本発明は耐熱性、機械的強度、耐薬品性、電気絶縁性に
優れた耐熱性ポリイミド薄膜とm−v族化合物半導体と
からなる実用的なデバイスを提供することを目的とする
ものである。
〔問題点を解決するための手段〕
本発明は、我々が先に提案した厚みが1000Å以下で
絶縁破壊強度がI X 10’V/(3以上で且つ耐熱
性が400℃以上の耐熱性ポリイミド薄膜を利用してm
−v族化合物半導体を含むデバイスを作成することによ
ってなされたものであり、例えば我々が特願昭60−1
57,354に提案した一般式(1): (式中、R1は少なくとも2個の炭素原子を含有する4
価の基、eは少なくとも2個の炭素原子を含有する2価
の基、R3、R4、a%およびR4はいずれも炭素原子
数1〜30の1価の脂肪族の基、l僅の環状脂肪族の基
、芳香族の基と脂肪酸の基との結合した1価の基、それ
らの基がハロゲン原子、ニトロ基、アミノ基、シアノ基
、メトキシ基、アセトキシ基で1喚された基または水素
原子であり、R3、R4、R1およびR1の少なくとも
2個は炭素原子数1〜11の前記の基または水素原子で
はない)で表される繰り返し単位を有する両性ポリイミ
ド前駆体をラングミュア・プロジェット法によって必要
なら前もって加工されたm−v族化合物半導体基板上に
累積し、それにつづいてイミド化反応を好ましくは熱的
に行い耐熱性ポリイミド薄膜を形成し、その後必要なら
後加工を行うことによって本発明のデバイスが作成され
る。
本発明の耐熱性ポリイミド薄膜を形成するための両性ポ
リイミド前駆体は、例えば一般式(1): で表される繰り返し単位を有する数平均分子量が2,0
00〜300,000のものである。数平均分子量が2
,000〜300,000の範囲をはずれると、膜を作
製したときの強度が低すぎたり、粘度が高すぎて膜の作
製がうまくいかないなどの傾向が生ずる。
一般式+1)におけるR1は少なくとも2個の炭素原子
を含有する、好ましくは5〜20個の炭素原子を含有す
る4価の基であり、芳香族の基であってもよく、環状脂
肪族の基であってもよく、芳香族の基と脂肪族の基との
結合した基であってもよく、さらにはこれらの基が炭素
数1〜30の脂肪族の基、環状脂肪族の基あるいは芳香
族の基と脂肪族の基とが結合した基、それらの基がハロ
ゲン原子、ニトロ基、アミノ基、シアノ基、メトキシ基
、アセトキシ基などの1価の基で、あるいは該1価の基
が−0−、−Coo−、−NHCO−、−Go−、−S
−、−CSS−、−NHCS−、−CS−などに結合し
た基で1喚され誘導体となった基であってもよい、しか
し、R1が少なくとも6個の炭素原子数を有するペンゼ
ノイド不飽和によって特徴づけられた基である場合には
、耐熱性、耐薬品性や機械的特性などの点から好ましい
前記のごときR1の具体例としては、たとえば、 CHs          CFs   、などがあげ
られる。
本明細書にいうヘンゼノイド不飽和とは、炭素環式化合
物の構造に関してキノイド構造と対比して用いられる述
語で、普通の芳香族化合物に含まれる炭素環と同し形の
構造をいう。
R1の4個の結合手、すなわち一般式F11で表される
繰り返し単位において、 R3−0−C−、−C−0−R’  、−N  −C−
、−C−N−R”II   II     1111 R’OOR” が結合する手の位置には特に限定はないが、4個の結合
手の各2個づつがR1を構成する隣接する2個の炭素原
子に存在する場合には、両性ポリイミド前駆体を用いて
形成した膜などをポリイミド化する際に5員環を形成し
ゃすくイミド化しやすいため好ましい。
前記のごときR1の好ましい具体例としては、たとえば
、 CI *          CF s−a式(1)に
おけるR2は、少なくとも2個の炭素原子を含有する2
価の基であり、芳香族の基であってもよく、脂肪族の基
であってもよく、環状脂肪族の基であってもよく、芳香
族の基と脂肪族の基との結合した基であってもよく、さ
らにはこれらの2価の基が炭素数1〜30の脂肪族の基
、環状脂肪族の基あるいは芳香族の基と脂肪族の基とが
結合した基、それらの基がハロゲン原子、ニトロ基、゛
アミノ基、シアノ基、メトキシ基、セアトキシ基などの
1価の基で、あるいはこれらの1価の基が−0−、−C
00−、−NIICO−、−Co−、−S−、−C5S
−、−NIICS−、−CS−などに結合した基で置換
された基であってもよい、しかし、R2が少なくとも6
個の炭素原子数を有するベンゼノイド不飽和によって特
徴づけられた基である場合には、耐熱性、耐薬品性や機
械的特性などの点から好ましい。
前記のごときR2の具体例としては、 R2の具体例(1) ここではR9は−(CL)m −(+s・1〜3の整数
)、−c−、−c−、−o−、−co−1−3−、−5
ot−、−N−,CH3Ch            
          R’・「・     R16R1
@      R111RIOおよびR目はいずれも炭
素原子数1〜30のアルキルまたはアリール基 CHs       CH3CHsO0C1hR2の具
体例(2) C5・ −(Clli) P−(P・2〜10)C1(。
ツ ー (CHl) 4−C−(C1h) 1−CH3Cl
l i                 1− (C1h
) 5−C−(CL) 3−  − (Ctlt) −
C−(CL) s−CL             C
H3C1+30急 −(CHm) IoCH−CHi         −
(Cllt) 5−C−(CHi) !−宴 −(C1lt) 3−0− (CHt) !0− (C
L) x−CHz    CHs −CH*−C(CHz) zC−CIlz−CH,CH
3 −(CIlz) z C(C1h) tc−CIlz−
等であり、前記のごとき1rtの好ましい具体例として
は、例えば C1h    CF3 一←C111←m (a・1〜3の整数) 、−C−、
−C−1I C)13   CFi −〇−、−s−、−co−、−3O,−、−NR’・−
、(R111およびR11はいずれも炭素原子数1〜3
0のアルキル基またはアリール基)などがあげられる。
一般式tr) ニオけるH*SR4、Rs、 Rhはい
ずれも炭素原子数1〜30、好ましくは1〜22の1価
の脂肪族の基、1価の環状脂肪族の基、芳香族の基と脂
肪族の基との結合した1価の基、それらの基がハロゲン
原子、ニトロ基、アミノ基、シアノ基、メトキシ基、ア
セトキシ基などで置換され、それらの基の誘導体となっ
た基または水素原子である。なお一般式(11において
R3、R4、R5およびR4はいずれも一般式(8): (式中、R1、R2は前記と同じ)で表されるポリアミ
ック酸単位に疏水性を付与し、安定な凝msをうるため
に導入される基であり、R31i4、R1,Rhのうち
の少なくとも2個、好ましくは2個が炭素原子数1〜1
1、好ましくは1〜15の前記の基あるいは水素原子で
ないことが水面上に安全な凝縮膜が形成され、それがL
B法により基板上に累積されるために必要である。
前記のごときR3、R4、R8,phの水素原子以外の
具体例としては、たとえば CHs(CHD−rゴ、(CH3)zcH(CH*ト1
T「、(CHz)sC(CHzhl、こHCH8hπ、
(以上のnはいずれも12〜30、好ましくは16〜2
2)などがあげられる、ただ本発明の目的を達するため
には、CHs(CHs)、−+であられされる直鎖アル
キル基を利用するのが、性能的にもコスト的にももっと
も望ましい、前述したようなハロゲン原子、ニトロ基、
アミノ基、シアン基、メトキシ基、アセトキシ基などは
必須ではない。しかしフッ素原子により疏水性は水素原
子とくらべ飛躍的に改善されるので、フッ素原子を含む
ものを利用するのが好ましい。
R3、R゛、R’、 Rhのうちの2個が水素原子の場
合の本発明の両性ポリイミド前駆体の繰り返し単位の具
体例としては、一般式(2):(式中、R1、R2、R
3、R4は前記と同じ、ただし「およびR4は炭素原子
数1〜11の基または水素原子ではない)で表される繰
り返し単位や、一般式(3): (式中、R1、R2、R5、Rもは前記と同じ、ただし
 R5、およびR6は炭素原子数1〜11の基または水
素原子ではない)で表される繰り返し単位などがあげら
れる0本発明の両性ポリイミド前駆体の繰り返し単位が
一般式(2)や一般式(3)で表されるものである場合
には、製造が容易である、コスト的にも安価であるなど
の点から好ましい。
一般式fil〜(3)で示される繰り返し単位を有する
本発明の両性ポリイミド前駆体の具体例としては、たと
えば、 (式中、R3、R4具体例としては、CH3(CHm)
 + + −Cl5(CH2)+3− 、CHs(CH
t)++−、CHs(C)Ii)+t−5CI+3(C
11り+9− 、C1h(CL)z+−、Ch(CH,
)++−など)、 (式中のR’、 Rhの具体例としては、CL(CL)
++−Cl1s(CHz)++−、C11s(CIlx
)++−、CHs(C1h)++−C1h(Cllz)
++−、CHi(C)Ixh+−、CF3(CIりIs
−など)、 (式中、R3、R4の具体例としては、C1,(C11
)++−、C1h(CHt)++−、C11s(CHi
)++−、CHs(CHz)++−、C1b(C1h)
++−、CHs(C1h)z+−、CF3(C)I□)
8.−など、R5,Rhの具体例としては、CI、−1
CH*(CHz)よ−、CHs (CHz) 5−1C
L (CHり s−など)、 (式中のR3、R4具体例としては、CHt3 (CH
z) + +−、CHt3(CHtよ)+3− 、CH
3(C8り ++−、CH3(CL)++−、C)+3
(CHz)++−、CH3(CHz)t+−、CF*(
CH2)1.−など)などの繰り返し単位を含むものあ
げられる。
式中−は異性を表す0例を次式 で説明すれば、 および を表す。
本発明は(a) 、(b)が単独である場合、(a) 
、(b)が共存する場合を含んでいる。
前記のごとき本発明の両性ポリイミド前駆体は、−iに
N、N−ジメチルアセトアミド、N。
N−ジメチルホルムアミド、N、N−ジエチルホルムア
ミド、ヘキサメチルホスホルアミドなどの有機極性溶剤
に易溶、上記有機極性溶剤とクロロホルムなどの通常の
有a溶剤などの混合溶剤に溶、通常の有jaig剤、た
とえばヘンゼン、エーテル、クロロホルム、アセトン、
メタノールなどに難溶〜不溶で、赤外線吸収スペクトル
分析でアミド、カルボン酸(場合によってはカルボン酸
エステル)および長鎖アルキル基の特徴的な吸収が存在
する。熱分析結果にも特徴があり、約200℃で!!量
の急激な減少がはじまり、約400℃で完結する。
完結したのちには、アミド、カルボン酸く場合によって
はカルボン酸エステルおよび長鎖アルキル基の吸収が消
失し、イミド環の吸収があられれる。
これまでの説明は一般式+11であられされる繰り返し
単位をもつ両性ポリイミド前駆体についてであるが、こ
れらから容易に類推されるように種々の共重合体が存在
する。まず第1に一般式+11におけるR1、R1、R
3、R4、R5、R”の少なくとも1つが先に挙げられ
た具体例から選ばれた少なくとも2種から成ることによ
って実現される。
例えばR−として2種選ばれたとき、 0、    0            0     
   αIf     If           I
I       1l(X、Yは比率を表しO<X<1
.0<y<1.X+Y−1テある(以下同じ)〕 さらにR2として2種選ばれたとき、 II   II                  
 II   11などで、以上の例はほんの一例であり
、又R3R4、R85R&についてはこれまでの説明で
いくつもの例が凹けるが、 1111               II  II
などである。
第2にさらに重要な共重合体はpiSR2の少なくとも
1方或両方の一部を価数の異なる基で置き(負えること
によって実現される。
まずR1の一部を置換する基は少なくとも2個の炭素原
子を含存する4価以外の基から選ばれ2.3価が使える
が、好ましい具体例は3価であり、この場合の一般式は
次のようになる。
R’ (左側) R”、 R3、R4、R5,R6は前
記に同じR’ (右側)は少なくとも2個の炭素原子を
含有するそれぞれ2価3価の基である。
次にR1の一部を置換する基は少なくとも2個の炭素原
子を含有する2価以外の基から選ばれ3価、4価の恭が
好ましい。
これらの場合の一般式は次のようになる。
R’、 R” (左側)、R3、R4、R5,R6は前
記に同しR” (右側)は少なくとも2個の炭素原子を
含有するそれぞれ3価、4価の基である、XはR2に対
する=換基で−NOR,−CONHJ等が好ましい例で
ある(Rはアルキル基又は水素原子)。
これら共重合による両性ポリイミド前駆体の修飾は、該
前駆体のラングミエア・プロジット法による累積特性や
基板上に累積したあとイミド化して得られるポリイミド
薄膜の物性改善のために重要であり、本発明の好ましい
実施態様の1つである。
R1,1の少なくとも1方或は両方の1部を置換する基
の具体例は、以下のとおりである(ここでR9は前出に
同じ) R16、R11はアルキルまたはアリール基CI(3 C11゜ −(CHz)r  −Cp” 2〜10)  、−(C
1h) a−C−(C1h) x−、C11,0 −(CHz) +。CH−CH3、−(C)lり−C−
(CHり!−1−(CHx) 5−0− (CHz) 
t−0−(Clh) 5−1−CHz−C(CHt) 
zC−CHt−、−CHzC(CHx) IC−Cl!
−、(R”は前出に同じ) (R”は前出に同じ) 以上の中からR1、R意のさらに好ましい例をあげれば
、 (R”は前出に同じ)である。
更に詳しく共重合体について説明するために具体的な例
を挙げれば、 5−=7 等である。
又、これまでの説明においては前駆体の繰り返し単位に
おいてR3、R4、R5,phの少なくとも2個は炭素
数1〜11の前記の基又は水素原子ではない場合であっ
たが、繰り返し単位のうちの30%以下の範囲であれば
、一般式(9):(式中、R+、Hpは前記と同じ、R
は炭素原子数1〜11の1価の脂肪族の基、1価の環状
脂肪族の基、芳香族の基と脂肪族の基とが結合した1価
の基、これらの基がハロゲン原子、ニトロ基、アミノ基
、シアノ基、メトキシ基、アセトキシ基などで置換され
た基または水素原子であり、4個のRは同じでもよく異
なっていてもよい)で表されるような繰り返し単位が含
まれていてもよい。
つぎに本発明の前駆体の製法について説明する。
−C式11)で表される繰り返し単位を有する本発明の
前駆体は、まず一般式(4):(式中、litは前記と
同じ)で表されるテトラカルボン酸ジ無水物に、R30
HおよびI?’OI+([71およびPは前記と同じ)
を反応させてえられる一般式(5): (式中、R1,R3、R4は前記と同じ)で表される化
合物を製造し、実質的に無水の極性溶媒中、−10℃以
上、好ましくはO〜40℃程度でチオニルクロライド、
五塩化リン、ベンゼンスルホニルクロライドなどを用い
て酸ハライドにし、さらに一般式(6): %式%(6) (式中、R2,R5,R&は前記と同し)で表される化
合物を添加するときは一1O〜−20℃、好ましくは0
〜−10℃で反応させるが、反応を完結させるためには
添加後20℃以上で反応させてもよい。
一般式(4)で表される化合物の具体例としては、例え
ば、 11          II       II  
        IIo              
     o、o                 
  。
11I II              IIoO などが挙げられる。
またR30HおよびR’OI+の具体例としては、たと
えばCH30H、CHaCHzOIl  、CL(CH
t)zoll 、CH3(CHり30H、C1h(Cl
lz)sOHlClh(CHt)tOH、C11s(C
ut)、OH、C1h(CI(t)++0■、CHs(
CH8)+10H1C1h(CH□)+5OH1CHs
(Ctli)+tOH,Cl1s(Cut) +*OI
I、CHt3(CHり!IOH,CH3(CHり!30
H,CF、(CHり15011SH(CHx)x(C1
lt)+aO)I。
H(Ch)a(C1l□)+5011、F(CFt)I
(CIりtOH、F(CF■−(C1h) + 30+
1イ)(CHx) 1go)Iなどがあげられる。
−a式(4)で表されるテトラカルボン酸ジ無水物とR
’OHおよびR’ONとから一般式(5)で表される化
合物を製造する際の反応条件などにはとくに限定はなく
、たとえば約IOθ℃で窒素気流下、撹拌を数時間続け
ることによってもえられるし、ヘキサメチレンホスホル
アミドのような溶剤中、室温で約4日間攪拌をつづける
というような一般的な条件が採用されうる。
前記反応を約100℃、窒素気流下で攪拌しながら3時
間加熱することによって行い、冷却後へキサメチレンホ
スホルアミドに溶解し、ひきつづき行わしめる酸ハライ
ド化を行うのが反応時間の短縮化、すなわち生産性の向
上などの点から好ましい。
前記酸ハライド化を行う際の極性溶媒の具体例としては
、たとえばヘキサメチレンホスホルアミド、N、N−ジ
メチルアセトアミド、N。
N−ジメチルホルムアミドなどがあげられ、これらの溶
媒を実質的に無水の状態、すなわち酸ハライド化の際に
用いるチオニルクロライド、五塩化リン、ベンゼンスル
ホニルクロライドなどが分解せず、定量的に近い状態で
酸ハライド化反応が行わしめられる。
酸ハライド化の際の温度が一10℃未満になると、長鎖
アルキル基の影響による凍結固化のため反応が不均一系
となるため好ましくないが、それ以上であれば酸ハライ
ドの沸点程度の温度まで特に限定されることなく用いる
ことができる。
このようにして製造された酸ハイライドにさらに一般式
(6)で表される化合物が反応せしめられ、本発明の前
駆体が製造される。
この際使用される酸ハイライドは、製造されたのちその
まま用いるのが作業性などの面で好ましい。
さらに該酸ハイライドと一般式(6)で表される化合物
とを反応させる際には、それらの化合物に存在するR3
、R4、R1,R4、などにより反応物及び生成物のい
ずれも凍結固化する傾向があるなどするために、N、N
−ジメチルアセトアミド、N、N−ジメチルホルムアミ
ドなどの溶媒を用いるのが一般的であり、反応温度とし
ては一1O〜+20℃、好ましくは0〜+10℃である
0反応温度が一10℃未満になると凍結固化により反応
が不均一系となり、+20℃をこえると望ましくない反
応がおこりやすくなると考えられ、いずれも好ましくな
い、勿論、反応を完結させるために添加後20℃以上の
温度で続いて反応を行ってもよい。
前記一般式(6)で表される化合物の具体例としては、
たとえば、 +1.N      Nll。
C)1゜ C11゜ C11゜ (式中のRs 、R,の具体例としては、CHI3− 
、 C1hCL−、CHa(Cth)t −、CHs(
C)It)1− 、 Cth(C1lx)s −、CT
o(CHり11− 、 C)13(C1lt)13− 
、CH3(CHり15− 、 C11s(C1lz)+
t−、CHI3(ClbLw−、C1h(C1lt)x
+−、CH3(C11り!3− 、 CFz(CIIz
Ls−、tl(CFt)z(CHt)+s−、H(CF
t)a(CHILn−、F(CFz)a(CIlx)t
 −、F(CFI)I(CHI)4−など) などがあげられる。
前記酸ハライドと一般式(6)で表される化合物との反
応比は、えられる本発明の前駆体の分子量などを所望の
値にするために適宜選択すればよいが、通常モル比で1
/ 0.8〜1.2である。高分子量のものをうるため
には化学量論の精製したモノマーと精製した溶剤とを用
いるのが好ましい。
一般式(4)で表されるテトラカルボン酸ジ酸無水物に
反応させるR30+1およびR’OIIのR3およびR
oかいずれも炭素原子数1〜11の基または水素原子で
ない場合には、一般式(6)で表される化合物のIts
およびRhがいずれも水素原子であってもよく、この場
合には一般式(2)で表される繰返し単位を有する本発
明の前駆体かえられる。
一般式(6)で表される化合物のR5およびR“がいず
れも水素原子の場合には、反応性が良好であり、原料コ
ストも安価となり好ましい。
またえられる前駆体もカルボン酸のところがエステルと
なっているため熱的に安定で、単離乾燥という操作によ
り反応がすすまないので固体粉末として分離でき、また
これにより精製も容易であるという特徴を有するものと
なる。
以上説明したような方法により本発明の前駆体が製造さ
れるが、一般式filで表される繰返し単位のR3およ
びR4がいずれも水素原子の場合には、前記のごとき方
法によらずに直接一般式(4)で示されるテトラカルボ
ン酸ジ酸無水物に、一般式(7): %式% (式中、R7、R1は前記と同じ)で表される化合物を
反応させることにより、−1’IQ式(3)で表される
繰返し単位を有する本発明の前駆体かえられる。
前記一般式(7)で表される化合物の具体例としては、
たとえば NIIR@ (前記式中のR7、eの具体例としては、C1(3(C
llt)11−+−(n−12〜30)、CFs(CH
t) +s−,)l(CFz)i(CHz)+s−,H
(CFよ)4(Cll□)+s−,F(CFt)s(C
Ht)x−1H(Ch) s (CHtり a−など)
などがあげられる。
一般式(4)で表されるテトラカルボン酸ジ酸無水物と
一般式(7)で表される化合物とを反応させる際の条件
は、通常のポリアミック酸を製造する際の条件とほぼ同
様でよく、たとえばN、N−ジメチルアセトアミド、N
、N−ジメチルホルムアミドなどの実質的に無水の有機
極性溶媒中、反応温度50℃以下、好ましくは室温で、
−a式(4)で表されるテトラカルボン酸ジ酸無水物1
モルに対して一般式(7)で表される化合物を0.8〜
1.2モル反応せしめられる。
このようにしてえられる一般式(3)で表される繰返し
単位を有する本発明の前駆体は、製造が容易であるだけ
でなく、LB法で成膜でき、加熱によりポリイミドを与
えるという特徴を有するものである。
又、先に説明された共重合体については、両性ポリイミ
ド前駆体の製造と同様の方法によって作ることができる
つぎにこれまで述べた前駆体を用いラングミュア・プロ
ジェフト法によって1−■族化合物半導体基板上に累積
し、それぞれに続いてイミド化反応を行う方法について
述べる。
本発明の前駆体を用いたLB膜の製法としては、該前駆
体を水面上に展開し、一定の表面圧で圧縮して単分子膜
を形成し、その膜を基板上にうつしとる方法であるLB
法のほか、水平付着法、回転円筒法などの方法(新実験
化学講座 第13巻 界面とコロイド、408〜508
頁)などがあげられ、通常行われている方法であればと
くに限定されることなく使用しうる。
−aにLB膜を形成させる物質を水面上に展開する際に
、水には解けないで気相中に蒸発してしまうベンゼン、
クロロホルムなどの溶媒が使用されるが、本発明の前駆
体の場合には、溶解度をあげるために有機酸性冷奴を併
用することが望ましい、このように有機掻性溶媒として
は、たとえばN、N−ジメチルホルムアミド、N、N−
ジメチルアセトアミド、N、N−ジエチルホルムアミド
、N、N−ジエチルアセトアミド、N、N−ジメチルメ
トキシアセトアミド、ジメチルスルホキシド、N−メチ
ル −2ピロリドン、ピリジン、ジメチルスルホン、ヘ
キサメチルホスホルアミド、テトラメチレンスルホン、
ジメチルテトラメチレンスルホンなどがあげられる。
ベンゼン、クロロホルムなどと有機極性溶剤とを併用す
る場合には、水面上へ展開するとベンゼン、クロロホル
ムなどは気相中に蒸発し、有機極性溶剤は大量の水に溶
解すると考えられる。
本発明の前駆体を水面上に展開する際に使用する溶液の
4度にはとくに限定はないが、通常2〜5 X 10−
”M程度が用いられ、良好な製膜性を得るために金属イ
オンの添加やPH副調整必ずしも必要ではな(、金属イ
オンの排除はエレクトロニクス分野等で使うさいに有利
な点となると考えられる。
叉、本発明のポリイミド前駆体をm−v族化合物半導体
基板上に累積する際に我々が先に提案したように公知の
ラングミュア・プロジェット膜化合物との混合物を使用
すると製膜性能が向上し本発明の望ましい実施態様であ
る。
公知のラングミュア・プロジェット膜化合物とは、先に
引用された文献なども記載され、当業界で公知の化合物
である。特に炭素数が16から22位の炭化水素基と親
水基とからなる下式の化合物が好ましい。
C113(CHI)−−+  Z CL −CH(CHz) 、l−x ZCL(C1lz
) ICMac −CxC(CL)mZここで、n−1
6〜22、l+m鴎n−5、Z =OL NHz、C0
OH,C01iH,、COO[l’(R’は低級脂肪族
炭化水素基)である。
製膜性の改善のためにはCHs(CHx)□1Zの式で
表されるものがコスト面ですぐれているが、不飽和結合
を含むものは光や放射線などを照射することによって重
合させることができる特徴を有する。
これらから選ばれた少なくとも1つの化合物と高分子化
合物との混合比率については特に限定はない、叉、先に
挙げたポリイミド前駆体あるいは共重合体から選ばれた
2種以上を混合して製膜することも出来る。
本発明に使用されるm−v族化合物半導体について説明
する。
m−v族化合物半導体とは周期律表のmb族とvb族を
組合わせて得られる半導体の一群である。
mb族元素はB、At、GaS In、TI、■b族元
素はN、P、As、Sb、BiであるがTI、Biは金
属性化合物を与え、通常m−v族化合物には含まれない
このm−v族化合物は結晶構造が閃亜鉛鉱型(Zinc
 blend)とウルツ鉱型(Wurz i te)で
存在する。GaP 、 GaAs、が実用の立場がらは
最もよく使われるがこれとAIP 、 AlAs、 A
bSb等の混晶も重要である。特にGaAsにX原子パ
ーセントのAlAsを加えていくと、Gap−、AlX
A3となり、バンドギャップ等の物性を連続的に変化さ
せることができる。又InP s InPとGaAsと
の混晶化合物も重要なm−v族化合物半導体の例である
勿論、半導体がp型、n型であってもよいし、p型とn
型部分が共に存在していてもよい。
本発明の半導体としては単結晶、多結晶いずれからも選
ばれてもよく、それが半絶縁性等のm−v族半導体基板
上に形成されてもよいし、ガラス、アルミナ、石英等の
ような無機基板やシリコン基板等の上に形成されてもよ
い。
その方法については特に限定はないが、通常使用される
液相エピ法(LPE)、ハロゲン輸送法或いはハイドラ
イド法(V P E)、存機金属分解法(MOCVD)
、分子線エピタキシ法(LPE)等であり、イオン打込
みもドーピングを行う際、有効な方法である。
上記説明したm−v族化合物半導体の一部から選ばれた
基板を用いてラングミュア・プロジェット法によりポリ
イミド前駆体が累積されるが、前もって加工され素子が
部分的に形成されているものでもよい、又、これらの基
板は通常行われるような表面処理を施して用いてもよい
ことは勿論のことである。
本発明のポリイミド前駆体が選ばれた■−V族化合物半
導体表面に対して接着強度が弱い場合にはシランカップ
リング剤、特にアミノ基やエポキシ基とアルコキシ基を
有するシランカップリング剤(例えばUCCの^−11
00やA−187など)で処理するか、アルミニウム金
属を含むキレートで処理し酸化アルミの層を形成させる
と製膜特性や接着強度が改善され、本発明の好ましい実
施態様である。勿論、当業界で行われるように基板が高
級脂肪酸の金属で数層処理されてもよい。
本発明の前駆体を用いるとLB法で基板上に、耐熱性、
機械的特性、耐薬品性、電気絶縁性の良好なIllを形
成することができ、さらにこの薄膜をイミド化させるこ
とによって、さらに耐熱性の優れた薄膜をうろことがで
きる。
イミド化の方法についてはとくに限定はないが、300
〜400℃近辺の温度で加熱するのが−a的であり、レ
ーザー光などを用いて行ってもよい。
勿論、ポリアミック酸のイミド化の際に触媒として使わ
れる無水酢酸やイソキノリンあるいはピリジンを使うか
、それとも熱反応を併用することは出来るが、この場合
には反応がこれら化合物の膜中への拡散によって律速さ
れ、反応が遅かったり不完全になったり低分子量化等の
副反応が起こったりする傾向がある。又、膜中に反応試
剤や反応生成物が残存したりする傾向もあり望ましくな
い。
イミド化を化学的にではなく熱や光等を使って行うのが
本発明の望ましい実施態様である。
イミド化反応はたとえば、一般式(2)で表される繰返
し単位のばあいには、 なる反応がおこり、また一般式(3)で表される繰返し
単位の場合には、 なる反応がおこってポリイミド化物となる。
勿論、一般式(8)で表されるポリアミック酸単位の場
合にもH2Oが生成してポリイミド化物となるが、この
場合にはLB膜用としての材料とはなりえない。
又、R1,R1の少なくとも一方或いは両方の一部を価
数の異なる基で置き換えた場合にもイミド化反応と同様
の条件で次のような反応が起こる。
伽      ロ:lJ  (J:Ooxとくに、後半
の2例では、耐熱性の高い骨格が導入されるので、耐熱
性の改善のために好ましい。
以上のイミド化や他の閉環反応がおこるときに、疏水化
のために導入した基がアルコールとして脱離するが、こ
の脱離したアルコールは300゜〜400℃近辺の温度
で必要ならガスの流れの下に置くか、真空下に置くこと
によって飛散させることができるので非常に耐熱性で電
気絶縁性のよいポリイミド薄膜を得ることができる。
又、!!IIIg性を改善させるために使用された公知
のラングミュア・プロジェット膜化合物も、イミド化や
他の閉環反応の条件化、飛散させることが出来るものを
先に挙げた例の中から選ぶことによって、非常に耐熱性
で電気絶縁性のよいポリイミド薄膜I膜を得ることがで
きる。
以上述べたように、両性ポリイミド前駆体をラングミュ
ア・プロジェット法により基板上に!A積し、それに続
くイミド化反応によって作られた■−■族化合物半導体
基板上のポリイミド薄膜は耐熱性、機械的特性、耐薬品
性も良好で優れた電気絶縁性をもち、そのうえ、100
00Å以下という非常に薄い膜であり5000人、20
00人、望むなら10−1000人にもしうるという特
徴をもっている。特に1000Å以下、数百人、50〜
100人程度でも程度な物性、なかでもl×10  V
/c+s以上の絶縁破壊強度を実現できるので種々の電
気・電子デバイスの中に使用することができる。中でも
50人程度から数百人程度の薄膜では特異な膜厚の効果
、例えばトンネル効果が期待され、それを利用した多く
の興味ある応用が可能となる。
本発明の耐熱性ポリイミド薄膜はその分子構造によって
耐熱性が変化するが、本発明の望ましい実施態様である
ヘンゼノイド不飽和によって特徴づけられた基をR+、
Rxとして用いる場合には400℃程度の耐熱性をもた
せることが出来る。
更に本発明の実施態様であるR2の一部を3価、4価の
基で置換した共重合体の場合には450℃程度の耐熱性
を実現できる。
しかし、逆にR+ 、Rz等の基として脂肪族基か脂肪
族部分の多い基を選ぶとポリイミド薄膜の耐熱性は低下
する。適当な基を選べば200℃程度の耐熱性をもつよ
うに、あるいは300℃程度の耐熱性をもつようなポリ
イミド薄膜を設計することが可能である。
次に、耐熱性ポリイミド薄膜とm−v族化合物半導体と
からなるデバイスについて述べる。
第1に、重要なデバイスは金17に/絶縁膜/半導体構
造(以下、MISという)のデバイスであり、プレーナ
デバイスや集積回路の基本となる構造である。
第1〜7図が代表的模式図である。第1図は半導体基板
(S)に絶縁膜として耐熱性ポリイミド薄膜を形成させ
、その上に金属電極(M)を設けたものである0例えば
太陽電池のような光電変換素子、LED、EL、フォト
ダイオードのような発光素子、受光素子、光検出素子の
他、ガスセンサ、温度センサのような各種トランスデユ
ーサ−を構成することができる0図で半導体はIII−
V族化合物半絶縁性等の基板上に先に述べた方法で■−
V族化合物半導体を形成させたものをも含んでいる。
第2図は第1図と同等であるが、1つの基板上に2個以
上の素子を作る場合にこのような電極がつけられる。こ
のような構成によってCOD (Charge−cou
pled devices)のようなii薄荷移動デバ
イスが作られ興味ある応用である。
次に、第3図は電極(M)<i3明電極であってもよく
、勿論パターン化されていてもよい)をもつ絶縁基板(
Is)上に、半導体、多くの場合は半導体TR膜(S)
が形成され、その上に耐熱性ポリイミド薄膜A膜(■)
、電極(M)が設けられた構造になっている。第4図は
耐熱性ポリイミド薄膜(1)が絶縁基板側電極CM>と
半導体重111(S)との間に設けられている点に第3
図との違いがある。
半導体薄膜は分子線エピタキシ(MBB)、有機金属気
相成長法(MOCVD)原子層、エピタキシ(ALE)
蒸着法、スパ7り法、スプレーパイロリシス法、塗布法
など通常半導体薄膜を作製するのに使われる方法で作ら
れ限定されない。
半導体としては先に第1.2図で挙げたものを同様に使
うことが出来、作られたデバイスも同様である。
第4図の構成では、耐熱性ポリイミド薄膜の上に半導体
薄膜が形成されるので形成時の熱が耐熱性ポリイミド薄
膜の耐熱性を越えると望ましくないが、半導体も低温形
成技術が進んでいるので、今後多くのm−v族化合物半
導体が使えるようになるであろう。
MIS構造デバイスのもっとも重要なデバイスの構造は
第5.6図で代表的に表されるゲート電極でチャンネル
電流を制御して駆動するタイプのいわゆる電界効果トラ
ンジスター(FET)構造をもつものである。第5図は
半導体基板(SS)を使っているのに対し、第6図では
絶縁基板(IS)上に形成された半導体、多くの1合半
導体薄膜を使っている違いがある。
M I S F E Tはデバイスの基本型の1つであ
り、これにより種々のデバイスを作ることが出来る、大
面積基板上に作れば液晶ディスプレイを駆動させるyi
膜トランジスターや集積度を上げれば集積回路を構成で
きる。
第5図で半導体がn−タイプm−v族化合物半導体でも
よいが、特に第7図のようにp−タイプm−v族化合物
半導体を使って構成したn−チャンネルMISFETは
、Ga八へでは通常電子の方が正孔にくらべて高移動度
で、又ピークの速度も大きくなることから望ましい。
第7図ではソース、ドレインとしてn0層がつくられP
型の上にゲート部分がつくられている。
ゲート電極に大きなプラスのバイアス電圧をかけた時キ
ャリヤの逆転(Carrier 1nversion)
がおこり、n型のチャンネルがゲート′rl掻下に形成
され、ソースからドレインへの電子の流れを可能にする
他の興味ある応用は第5.6図でゲート電極を取り外し
た構造であり、絶縁膜あるいはそれと併用してイオン、
ガスや活性物質に感応する膜をつけることにより、イオ
ン感応FET (ISFETメやガス感応EET (C
hew、  FET) 、免疫FET (IMFET)
 、酵素FET (ENFET)を構成できる。
動作原理はイオンやガス活性物質がゲート絶縁膜表面と
作用することによる電界効果によって説明できるが、本
発明のように耐熱性ポリイミド薄膜を用いる場合には、
その上に種々の有機物でさらに修飾する際に従来の無機
物にくらべて有利となる。
第2に重要な耐熱性ポリイミド薄膜と■−■族化合物半
導体とからなるデバイスは金属/絶縁膜/金属/半導体
構造のデバイスである。
第9図のように、半導体或半導体デバイス上にキャパシ
ターを作ることによって、VLS Iのメモリセルのキ
ャパシターとして使うことができる、第9図の構成で、
熱電子を半導体中に注入するようなタイプのデバイスも
作成できる。
以上、我々の耐熱性ポリイミド薄膜とm−v族化合物半
導体とからなるデバイスについて述べたが、他の応用例
は前記に挙げた文献の中やP、S、Vi−ncett、
 G、G、Robertsの総説(↑hin 5oli
d Films 68135〜171  (1980)
 )に求めることができる。
その他のm−■族化合物半導体及びそのデバイスについ
ては、E、S、 Yang+ ’Fundamenta
ls ofSemiconductor  Devic
es  ”MaGraw−H4ll+  1978  
、今井ら編著、化合物半導体デバイス(1)  CI+
)、工業調査会(1984)の底置を参考にすることが
出来る。
「実施例」 次に、本発明の両性ポリイミド前駆体の製法と製膜の方
法及び耐熱性ポリイミド薄膜とm−v族化合物半導体と
からなるデバイスの例を実施例に基づき説明するが、本
発明はこれらにより何ら制限されないことは勿論である
実施例1 ピロメリット酸ジ無水物2.18g(0,01モル)と
ステアリルアルコール5.40g(0,02モル)とを
フラスコ中、乾燥チッ素流通下、約100℃で3時間反
応させた。
えられた反応物をヘキサメチレンホスファミド40cc
に溶解して0〜5℃に冷却してチオニルクロライド2.
38 gを約5℃で滴下し、滴下後約5℃で1時間保持
し、反応を終了させた。
そののちジメチルアセトアミド5Qccに溶解させたジ
アミノジフェニルエーテル2g<0.01モル)を0〜
5℃で滴下し、滴下後約1時間反応させたのち、反応液
を蒸溜水600cc中に注いで反応生成物を析出させた
。析出物を濾過し、約40℃で減圧乾燥して約9gの淡
黄色粉末を得た得られた粉末についてIRスペクタル分
析、熱分析(TGA−DTA) 、GPCによる分子量
測定を行なった。
(IRスペクトル分析) KBrディスク法で測定した!Rスペクトラムを第10
図に示す、IRスペクトルにはエステル、アミドI吸収
帯、■吸収帯、■吸収帯、アルキル鎖およびエーテルの
特徴的な吸収があられれている。
(熱分析(TGA−DTA)) 理学電機■製のRTG−DTA (H)typeでフル
ス)r−JL/テTGA 10tag、 DTA 10
0 p V。
温度1000℃で昇温lO℃/a+insチッ素気流(
30m j! /ll1n )中で測定した結果を第1
1図に示す。
TGAには271318.396.592℃に変曲点が
あり、DTAには657℃付近に特徴的なピークがある
また第12図は得られた前駆体を400℃まで10℃/
鶴i11で昇温し、400℃に1時間保ったのち室温ま
でもどし、10℃/sinで1000℃まで昇温したと
きの結果を示す。
400℃に1時間保つことによってほぼ重量は恒量に達
し、ポリイミド化反応が終結する。これを室温にもどし
て再び昇温しでも重量変化は450℃をすぎるまでなく
、ポリイミドフィルムの示す熱分解温度と同じ584℃
で熱分解が始まることが明らかになり、ポリイミド化の
反応を終結することによりポリイミドフィルムと同様の
耐熱性のものが得られることがわかる。
(G P Cによる分子量測定) N、N−ジメチルアセトアミド溶媒で測定されたGPC
の結果をポリスチレン標準サンプルと比較することによ
って算出された数平均分子量は約5ooooであった。
実施例2 実施例1で生成物55.1 mgを蒸溜したクロロホル
ム/ジメチルアセトアミド−8/2 (容量比)の混合
液に溶解して25m1の溶液にしたLB膜用展開液を調
製した。
得られた展開液を用いて再蒸溜水上、20℃で表面圧π
と繰返し単位<unit)当りの面積との関係を測定し
たところ、第13図に示す結果かえられた。75人”/
unitぐらいから表面圧は急激にたちあがり、良好な
凝1M膜を形成した。橿限面積は60人2/unitで
あり、崩壊圧力も55dyne/cmと高分子膜として
は非常に高い値を示した。また表面圧を25dyne/
amに保って膜を水面上に保持しても2時間にわたって
面積の減少が認められず、安定な膜であった。
次に水面上の膜の表面圧を20℃で25dyne/cI
lに保って累積速度Ioms/winでLB法でガラス
基板あるいはCaF2板上に90J!累積させた。
CaFz板上に形成された膜をFT−ART−I R分
析すると第14図のようなスペクトラムが得られ、実施
例1で得られた化合物の累積膜であり、面積一時間曲線
からY型膜であることが確認された。なお本実施例で用
いた水層にはCd”イオンなどが含まれていないにもか
かわらす90Jiiの累積膜のX線回折法による分析で
はピークが2θ−4゜65°に一本だけ観測された。
ブラッグ回折条件nλ=2dsin θでn−3、λ−
1,5418人としたときのd (一層の膜厚)は28
.5人と計算され、両性ポリイミド前駆体において長鎖
アルキル基が垂直に立っているとしたときの値とほぼ一
致する。
さらに咳!A積膜を400℃で1時間加熱することによ
って、α、β−不飽和5員環イミドが生成することがF
T−ATR−I R分析による1790cIm−1、l
 710ca+−”のピークにより確認されたなお実施
例1の生成物を400℃で1時間加熱すると58%(重
量%、以下同様)の減少がおこり、イミド化することが
赤外線吸収スペクトル分析などにより確認されている。
前記の重量減少はイミド化によりステアリルアルコール
が消失する場合の計算1M 58.7%ともよく一致し
た。
比較例1 実IUj41と同様にし・てステアリルアルコールのか
わりにn−デシルアルコール(n−C□。H2□OH)
を用いてポリイミド前駆体を合成した。
このポリイミド前駆体はIRスペクトル分析、熱分析、
GPCによる分子量測定の結果、はぼ実施例1のポリイ
ミド前駆体と同じ特徴を有するものであったが、表面圧
面積曲線の測定結果は第15図に示す通りであり、液体
膨張相のみで凝縮相の存在を示さなかった。従って炭素
数10のアルキル基を用いたものでは安定な凝縮相をう
るためには短すぎることが明らかとなった。
実施例3〜5 実施例1と同様にしてステアリルアルコールのかわりに
炭素数12.14.16のラウリルアルコール、ミリス
チルアルコール、七チルアルコールを用いてポリイミド
前駆体を合成した(それぞれ実施例3〜5に相当)。
炭素数12.14のアルコールを用いた場合には炭素数
10と18との中間的な挙動を示したが、水相を5℃程
度にすると安定な凝縮相が得られた。
炭素数16のアルコールを用いたものでは炭素数18の
場合のものと同様安定な凝1il膜を作ることが明らか
になった。
実施例6 ビロメリツト酸ジ無水物10.91gとステアリルアル
コール27.05 gを120℃で3時間反応させ、生
成物を200mj!エタノールで再結晶して融点133
〜137℃のジステアリルピロメリテートを得た。
このジステアリルビロメリテー)3.79gを6Qcc
のへキサメチレンホスファミドに溶解して5℃に冷却し
てチオニルクロライド1.19 gを約5℃で滴下し、
滴下後約1時間保持し、反応を終了させた。その後ジメ
チルアセトアミド30ccに溶解させた1、2gのジア
ミノジフェニルエーテルを約10℃で滴下し、約20℃
に反応温度をあげて2時間反応させた後、400ccの
エタノールに注いで反応生成物を析出させた。析出物を
濾過、40℃で乾燥して約3.4gの淡黄色粉末を得た
IRスペクトル分析、熱分析(TC;A−DTA)、G
PCによる分子量測定を行ったところ下記の結果が得ら
れた。
IRスペクトル分析 KBr disc法でとられたIRチャートは第16図
のようでエステル、アミド11■、■、アルキル鎖およ
びエーテルの特徴的な吸収があられれた。
熱分析(TGA−DTA) 理学電機製RTG−DTA (H)タイプでフルスケー
ルTGA I Omg、 DTA I OOμ■、温度
1000℃で界atO℃/sin、窒素気流(30m/
m1n)中で測定された結果が第17図の通りである。
TGAには203.270.354.403.580℃
に変曲点があるが、DTAには特徴的なピークは存在し
ない。
cpcによる分子量測定 クロロホルム、N、N−ジメチルアセトアミド(8: 
2)混合溶媒で測定された数平均分子量はポリスチレン
換算で約15000であった。
実施例7 実施例6の生成物55.1 mgを1溜したクロロホル
ム/ジメチルアセトアミド−872(容量比)の混合液
に溶かして25mj+のLB膜用展開液を調製した。
再蒸溜水上、20℃で表面圧と繰返し単位当たりの面積
との関係を測定したところ、第18図に示す結果が得ら
れた。65人2/unitぐらいから表面圧は急激に立
ち上がり、良好な凝縮膜を生成した。極限面積は約55
人2/unitであり、崩壊圧は45dyne/cmで
あった(第18図中のA)。
上記の溶液と同じモル1度のステアリルアルコールの溶
液を同じ容量まぜ合わせ、実施例6の生成物の繰返し単
位の数とステアリルアルコールの分子数の合計が第18
図中のAと等しくなるようにして表面圧面積曲線を評価
したところ同図中のBのような結果が得られた。ステア
リルアルコールの添加により曲線の立ち上がりがさらに
急になり、崩壊圧も約60dyne/cmに上昇して、
膜が安定化していることがわかる。
アルミニウムを蒸着したガラス基板(シランカップリン
グ剤A−1100或はA−187を処理したガラス基板
)上への累積は、ステアリルアルコールを添加するしな
いにかかわらずY型であり、良好な累積膜が得られた。
さらに実施例6の生成物とステアリルアルコールの1:
1 (モル比)の混合物をゲルマニウム基板上に累積し
、400℃、窒素気流下、1時間加熱すると、FT−A
TR−IR法によりステアリル基の消失と1790,1
710cm+  の5員環イミドの出現が観測された。
実施例8 実施例7と同様にステアリルアルコールのかわりに、ス
テアリン酸、ω−へブタデセン酸、オクタデカンを用い
て表面圧面積曲線を評価したところ、いずれの場合もス
テアリルアルコールの場合と同じように曲線の立ち上が
りが急になり、崩壊圧も上昇することがわかった。
ステアリン酸、ω−ヘプタデセン酸の崩壊圧はステアリ
ルアルコールとほぼ同じで、オクタデカンよりも優れて
いた。
また、ステアリン酸、ω−へブタデセン酸、オクタデカ
ンを溶加した膜は、アルミニウムを蒸着したガラス基板
上へY型で累積され、良好な累積膜が得られた。
実施例9 n−型GaAs基板(約300.cam層Nt−5×I
 Q 140ffi−3)の片側を0.5%シランカッ
プリング剤A−1100水溶液で処理し、110℃で1
時間熱処理した0反対側にはAu−Ga−Niからなる
合金を形成し500℃で熱処理しオーミック接触を形成
した。シランカップリング剤を熱処理した側に実施例6
の化合物とステアリルアルコール1:1 (モル比)の
混合物を使う他は実施例2と同様の条件で31層の累積
膜を作成した。累積後1夜間乾燥して400℃、窒素流
通下1時間加熱し累積膜をイミド化した。
更に上部半透明電極として150℃人厚のAuを10−
”torrで蒸着してMIS構造の太陽電池を作成した
。AMI下での効率は11%で良好な特性を示した。
実施例1O p−型GaAs基板(約300μmFJ、N a −5
X l 01hc+w−’)の片側を0.5%シランカ
ップリング剤A−1100水溶液で処理し110℃で1
時間熱処理した0反応側にはAu−Znからなる合金を
形成し500℃で熱処理しオーミック接触を形成した。
実施例9と同じように1011のポリイミド前駆体累積
膜を作成した。累積後1夜間乾燥して400℃、窒素気
流下1時間加熱し累積膜をイミド化した。更に上部電極
としてAuあるいはAIを蒸着して第8図のようなデバ
イスを作成した。このデバイスのバイアス電圧(VG)
をかえて1KHzでキャンパシタンスを測定しこれヲc
/CI  (C: トータルキャンパシタンス、CIは
ポリイミド膜のキャパシタンス)vsVGでプロットす
ると明らかに累積、空乏、反転領域が存在することが確
認された。
第8図は第7図のMISFETのゲート部分をとりだし
た構造になっており、本実施例の結果は第7図の構造の
MISFETを作成すれば、動作することを充分示唆す
るものである。
〔発明の効果〕
本発明の耐熱性ポリイミド薄膜とm−v族化合物半導体
とからなるデバイスでは、従来困難であったMIS構造
のm−v族化合物半導体デバイスの作成を可能にし、し
かも薄い1000Å以下の良好な絶縁特性をもった絶縁
膜を含んでいるのでデバイスの駆動電圧を低下させる効
果がある。
又、高電界の絶縁膜中で作られるホットエレクトロンや
トンネル効果などの特異な効果を利用したデバイスを作
成することを可能にする。
【図面の簡単な説明】
第1図〜第8図は代表的なM I S構造デバイスの模
式図であり、第9図はMIM構造ののそれである。 第1O図は実施例1で得られた前駆体のIRスペクトラ
ム、第11図は実施例1で得られた前駆体の熱重量分析
(TGA−DTA)結果を示すグラフ、第12図は実施
例1で得られた前駆体を室温から400℃まで昇温し、
そこに1時間保って、室温まで下げ、さらに1000℃
まで昇温したときの熱重量分析(TGA−DTA)結果
を示すグラフ、第13図は実施例1で得られた前駆体を
実施例2に従って水面上に展開した場合の表面圧と繰返
し単位当たりの面積との関係を測定した結果を示すグラ
フ、第14図は前記水面上に展開した膜をCaf2板上
へLB法で累積したもののFT−ATR−1rlの測定
結果を示すスペクトラム、第15図は比較例1で得られ
た前駆体の表面圧と繰返し単位当たりの面積との関係を
測定した結果を示すグラフである。 第16図は実施例6で得られた前駆体の赤外吸収スペク
トル、第17図は熱分析の結果である。 第18図は実施例6で得られた前駆体とそれをステアリ
ルアルコールとモル比で1:lに混合した場合の表面圧
、面積曲線である。 M・・・電橋 !・・・絶縁膜 S・・・半導体 Is・・・絶縁基板 SS・・・半導体基板 図面の11書(内容に変更なし) 第1図        第2図 第3因        @4図 第7図 第8図 第9図 七呵竹(内 第11図 TGAぐ会11)DTA(熟→【ン 吾 第13図 fa ’4 (A’7’unit) 青憎什(’) 第15図 面強(A@シunit) ・如l15I8t & 頑(A2/unit) 手続主11i正書    6.補 昭和61年5月8日     容 口  提 特許庁長官  宇 賀 道 部 殿       し1
.1S件の表示 昭和61年特許願第7G234号 2、発明の名称 m−v族化合物半導体デバイス 3、補正をする者 事件との関係:特許出願人 住所 大阪市北区中之、賭三丁目2番4号電話(06)
 3G5−9078 5、補正の対象 明細書の全文及び図面の全部 旧の内容 111紙の通り、ワープロ印書した明細書(内:こ変更
なし)と図面(内容に変更なし)を11シます。願書に
添付の明細書、図面と差陸えます。 以上

Claims (1)

  1. 【特許請求の範囲】 1、厚みが1000Å以下で絶縁破壊強度が1×10^
    6V/cm以上で且つ耐熱性が400℃以上の耐熱性ポ
    リイミド薄膜と、III−V族化合物半導体とからなるデ
    バイス。 2、両性ポリイミド前駆体をラングミュア・プロジェッ
    ト法により基板上に累積し、それに続くイミド化反応に
    より作られた耐熱性ポリイミド薄膜を含む特許請求の範
    囲第1項記載の電気・電子デバイス。 3、金属/絶縁膜/半導体構造をもつ特許請求の範囲第
    1項又は第2項記載のデバイス。
JP61076234A 1986-04-01 1986-04-01 3−v族化合物半導体デバイス Pending JPS62232169A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61076234A JPS62232169A (ja) 1986-04-01 1986-04-01 3−v族化合物半導体デバイス
EP87104708A EP0239980A3 (en) 1986-04-01 1987-03-31 Electric-electronic device including polyimide thin film
CA000533451A CA1256592A (en) 1986-04-01 1987-03-31 Electric-electronic device including polyimide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61076234A JPS62232169A (ja) 1986-04-01 1986-04-01 3−v族化合物半導体デバイス

Publications (1)

Publication Number Publication Date
JPS62232169A true JPS62232169A (ja) 1987-10-12

Family

ID=13599475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61076234A Pending JPS62232169A (ja) 1986-04-01 1986-04-01 3−v族化合物半導体デバイス

Country Status (1)

Country Link
JP (1) JPS62232169A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291120A (ja) * 1986-06-11 1987-12-17 Niles Parts Co Ltd 表面安定化膜を被着した半導体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291120A (ja) * 1986-06-11 1987-12-17 Niles Parts Co Ltd 表面安定化膜を被着した半導体

Similar Documents

Publication Publication Date Title
JPS62129316A (ja) ポリイミド前駆体を部分的に閉環させた薄膜
JPS63124A (ja) ポリイミド薄膜を含む電気・電子デバイス
US4839219A (en) Thin film and device having the same
US4910293A (en) Langmuir-Blodgett films of polymers having pendent C10 -C30 hydrocarbon groups
JPS63139916A (ja) 共重合両性ポリイミド前駆体およびその製法
US4801420A (en) Process for forming a film
JPS62180777A (ja) 製膜の方法
JPS63141673A (ja) 基板との接着性が改良された超薄膜とその製法
JPS62232169A (ja) 3−v族化合物半導体デバイス
JPS63126578A (ja) 薄膜を含む複合物品
JPS62232168A (ja) 耐熱性ポリイミド薄膜を含む電気・電子デバイス
EP0239980A2 (en) Electric-electronic device including polyimide thin film
JPS62241371A (ja) 2−6族化合物半導体デバイス
JPH058094B2 (ja)
JPS6349274A (ja) ポリイミド前駆体薄膜を含む複合物品
JPS63218728A (ja) 両性高分子化合物およびその製造法
JPH0671575B2 (ja) 薄 膜
JPS62230827A (ja) 耐熱性ポリイミド薄膜
JPS633027A (ja) 両性ポリイミド前駆体およびその製法
JPH0259069A (ja) パターン化された超薄膜の製法
JPH01232037A (ja) 感光性両性高分子化合物の薄膜を含む複合物品
JPS6322831A (ja) 両性ポリイミド前駆体およびその製法
JPH0258539A (ja) 感光性両性高分子化合物およびその製造法
JPH03121129A (ja) ポリイミド単分子膜もしくは累積膜
JPH0236237A (ja) パターン化された簿膜およびその製法