JPS62219667A - 絶縁ゲ−ト型電界効果トランジスタ - Google Patents
絶縁ゲ−ト型電界効果トランジスタInfo
- Publication number
- JPS62219667A JPS62219667A JP61062330A JP6233086A JPS62219667A JP S62219667 A JPS62219667 A JP S62219667A JP 61062330 A JP61062330 A JP 61062330A JP 6233086 A JP6233086 A JP 6233086A JP S62219667 A JPS62219667 A JP S62219667A
- Authority
- JP
- Japan
- Prior art keywords
- region
- type
- base
- mosfet
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005669 field effect Effects 0.000 title claims description 4
- 238000009413 insulation Methods 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000015556 catabolic process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7395—Vertical transistors, e.g. vertical IGBT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Bipolar Transistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、高耐圧、大電流のスイッチング素子として用
いることができる伝導度変調型の絶縁ゲート型電界効果
トランジスタに関するものである。
いることができる伝導度変調型の絶縁ゲート型電界効果
トランジスタに関するものである。
従来の技術
近年、伝導度変調型の絶縁ゲート型電界効果トランジス
タ(以下MO8FETと記す)は、高耐圧素子の場合で
も伝導度の変調を用いて直列抵抗成分を低下させること
ができるため、大電流動作が可能であるという長所を有
するため、その開発が活発である。(例えば、I HD
M Thechnica12・( Digest 1982.PP264−267 )以下
、図面を参照し寿から、上述したような従来の伝導度変
調型MO8FETについて説明する。
タ(以下MO8FETと記す)は、高耐圧素子の場合で
も伝導度の変調を用いて直列抵抗成分を低下させること
ができるため、大電流動作が可能であるという長所を有
するため、その開発が活発である。(例えば、I HD
M Thechnica12・( Digest 1982.PP264−267 )以下
、図面を参照し寿から、上述したような従来の伝導度変
調型MO8FETについて説明する。
第3図は、従来の伝導度変調型MO8FETの構造断面
図を示すものである。第3図において、31は正孔を注
入するために設けているp+型嵩高濃度領域ある。32
は高電圧印加時に電界を緩和する低濃度n−型ドレイン
領域である。33はMOSFETのチャネルを形成する
だめのp型バックゲート領域である。34はソース領域
となる高濃度n+型領領域ある。35は絶縁のための5
i02膜である。36はゲート電極である。37はソー
ス領域3とバックゲート領域4とを電気的接続するため
のムl電極である。
図を示すものである。第3図において、31は正孔を注
入するために設けているp+型嵩高濃度領域ある。32
は高電圧印加時に電界を緩和する低濃度n−型ドレイン
領域である。33はMOSFETのチャネルを形成する
だめのp型バックゲート領域である。34はソース領域
となる高濃度n+型領領域ある。35は絶縁のための5
i02膜である。36はゲート電極である。37はソー
ス領域3とバックゲート領域4とを電気的接続するため
のムl電極である。
第4図は、第3図の伝導度変調型MO8FETの等何回
路をあられしたものである。41は第3図におけるソー
ス領域37の端子を意味する。42は第3図におけるゲ
ート領域36の端子を意味する。43は第3図における
p++域31の端子を意味している。44は第3図にお
いてゲート36゜3ベー。
路をあられしたものである。41は第3図におけるソー
ス領域37の端子を意味する。42は第3図におけるゲ
ート領域36の端子を意味する。43は第3図における
p++域31の端子を意味している。44は第3図にお
いてゲート36゜3ベー。
ソース34.ドレイン32からなるMOSFETをあら
れしている。46は第3図においてエミッタ31.ベー
ス32.コレクタ33からなる内蔵されたpnp )ラ
ンジスタをあられしている。R1は第3図における低濃
度n−型領域32の直列抵抗成分をあられしている。
れしている。46は第3図においてエミッタ31.ベー
ス32.コレクタ33からなる内蔵されたpnp )ラ
ンジスタをあられしている。R1は第3図における低濃
度n−型領域32の直列抵抗成分をあられしている。
以上のように構成された伝導度変調型MO8FIETに
ついて、以下その動作を説明する。
ついて、以下その動作を説明する。
まず、第4図において、端子41を接地し、端子43に
正のDC電圧を与えておき、ゲート42に正の電圧を印
加するとMOSFET44はオンになシ、内蔵pnp)
ランジスタ46のベース電位は低下する。この結果、p
npトランジスタ46がオンになシ素子に電流が流れる
。
正のDC電圧を与えておき、ゲート42に正の電圧を印
加するとMOSFET44はオンになシ、内蔵pnp)
ランジスタ46のベース電位は低下する。この結果、p
npトランジスタ46がオンになシ素子に電流が流れる
。
発明が解決しようとする問題点
しかしながら、上記のような構成では、内蔵されたpn
pトランジスタ46のオン時のベース電位は、MO8F
ICT44の状態によってのみ決定されておシ、pnp
)ランジスタのベースはエミッタに対して過大な順バイ
アスを与えられることになるため、内蔵pnp )ラン
ジスタで決まるスイッチング時間が大きくなる。また、
ゲートを切り換えて接地した場合、ベースの電位は電気
的に浮いた状態となるため、内蔵pnp)ランジスタの
耐圧は、BVal(0)で決まる低い耐圧しか得られず
、耐圧の低い素子しか得られないという欠点がある。
pトランジスタ46のオン時のベース電位は、MO8F
ICT44の状態によってのみ決定されておシ、pnp
)ランジスタのベースはエミッタに対して過大な順バイ
アスを与えられることになるため、内蔵pnp )ラン
ジスタで決まるスイッチング時間が大きくなる。また、
ゲートを切り換えて接地した場合、ベースの電位は電気
的に浮いた状態となるため、内蔵pnp)ランジスタの
耐圧は、BVal(0)で決まる低い耐圧しか得られず
、耐圧の低い素子しか得られないという欠点がある。
本発明は上記欠点に鑑み、スイッチング速度を短くする
とともに耐圧を向上させることのできる伝導度変調型M
O8FIETを提供するものである。
とともに耐圧を向上させることのできる伝導度変調型M
O8FIETを提供するものである。
問題点を解決するための手段
上記問題を解決するために、本発明の伝導度変調型MO
87XTは、内蔵トランジスタのベース領域を、エミッ
タとなる高濃度領域と接続して構成されている。
87XTは、内蔵トランジスタのベース領域を、エミッ
タとなる高濃度領域と接続して構成されている。
作用
この構成によって、内蔵トランジスタのベースがエミッ
タと接続されているため、このトランジスタのベースに
過大な順バイアスがかからない。
タと接続されているため、このトランジスタのベースに
過大な順バイアスがかからない。
したがって、過剰な注入が生じず、スイッチング6ペー
ン 速度、特に立ち下がり時間が短くなる。また、素子の耐
圧はトランジスタのBVal俤)と等しくなるため、B
Vcx(o)よシも高耐圧となる。
ン 速度、特に立ち下がり時間が短くなる。また、素子の耐
圧はトランジスタのBVal俤)と等しくなるため、B
Vcx(o)よシも高耐圧となる。
実施例
以下、本発明の一実施例を図面にもとすいて説明する。
第1図は本発明の伝導度変調型MO8FICTの構造断
面図を示すものである。第1図におい°て、1はドレイ
ン領域となるp+型である。2は高電圧印加時に電界を
緩和する低濃度n−型ドレイン領域である。3はMOS
FETのチャネルを形成するためのp型バックゲート領
域である。4はMOSFETのソース領域となる高濃度
n+型領領域ある。6は絶縁のための5i02膜である
。6はゲート電極である。7はソース領域3とバックゲ
ート領域4と電気的接続をとるためのムl電極である。
面図を示すものである。第1図におい°て、1はドレイ
ン領域となるp+型である。2は高電圧印加時に電界を
緩和する低濃度n−型ドレイン領域である。3はMOS
FETのチャネルを形成するためのp型バックゲート領
域である。4はMOSFETのソース領域となる高濃度
n+型領領域ある。6は絶縁のための5i02膜である
。6はゲート電極である。7はソース領域3とバックゲ
ート領域4と電気的接続をとるためのムl電極である。
8は内蔵pnp )ランジスタのn+ベース電位をとる
ためのn++散領域である。9は内蔵りnp)ランジス
タのベース電極である。n+ベース領域8は素子全体の
周囲を完全にとシ囲むよ61・−7 うに形成されている。10はp 型領域1とベース電極
9とを結線した端子である。
ためのn++散領域である。9は内蔵りnp)ランジス
タのベース電極である。n+ベース領域8は素子全体の
周囲を完全にとシ囲むよ61・−7 うに形成されている。10はp 型領域1とベース電極
9とを結線した端子である。
以上のように構成された伝導度変調型MOi9FETの
動作を等価回路図を用いて説明する。
動作を等価回路図を用いて説明する。
第2図は第1図の伝導度変調型MO8FETの等何回路
をあられしたものである。21は第1図におけるソース
領域の端子7を意味する。22は第1図におけるゲート
電極6の端子を意味する。
をあられしたものである。21は第1図におけるソース
領域の端子7を意味する。22は第1図におけるゲート
電極6の端子を意味する。
23は第1図における端子10を意味している。
24は第1図において6をゲート、7をソース。
2をドレインとするMOSFETをあられしている。2
6は第1図において1をエミッタ、2をベース、3をコ
レクタとする内蔵されたpnl))ランジスタをあられ
している。R1は第1図における低濃度n−型領域2の
直列抵抗成分をあられしている。R2は第1図のMOS
FETのドレイン側チャネル端から端子9までの低濃度
n−領域の直列抵抗成分をあられしている。
6は第1図において1をエミッタ、2をベース、3をコ
レクタとする内蔵されたpnl))ランジスタをあられ
している。R1は第1図における低濃度n−型領域2の
直列抵抗成分をあられしている。R2は第1図のMOS
FETのドレイン側チャネル端から端子9までの低濃度
n−領域の直列抵抗成分をあられしている。
以上のように構成された伝導度変調型MO8FETにつ
いて、以下その動作を説明する。
いて、以下その動作を説明する。
7・;−7
まず、第2図において端子21を接地し、端子23に正
の電圧を与えておき、ゲート22に正の電圧を印加する
とMO3FIET24はオンになり、内蔵pnp トラ
ンジスタ260ベース電位は低下する。この結果、pn
pトランジスタ26がオンになる。この時に、ベース電
位は抵抗R2を介して結線されているため、ベース電位
はMO8FIETのオン抵抗とR2で分圧された電圧と
なる。仁のため過大な順バイアス電圧が印加されず、従
って過剰な正孔の注入が生じにくいためスイッチングス
ピードが向上する。また、ベース電位は、MOSFET
がオフの場合、エミッタ電位と等しくなるため、pnl
))ランジスタの耐圧はBVcX(I6となり、素子の
耐圧が向上する。以上のように、本実施例によれば、内
蔵pnp)ランジスタのベース領域の電位を、エミッタ
となるp+型嵩高濃度基板等しくなるように接続するこ
とにより、スイッチング特性の向上と高耐圧化を行なう
ことができる。
の電圧を与えておき、ゲート22に正の電圧を印加する
とMO3FIET24はオンになり、内蔵pnp トラ
ンジスタ260ベース電位は低下する。この結果、pn
pトランジスタ26がオンになる。この時に、ベース電
位は抵抗R2を介して結線されているため、ベース電位
はMO8FIETのオン抵抗とR2で分圧された電圧と
なる。仁のため過大な順バイアス電圧が印加されず、従
って過剰な正孔の注入が生じにくいためスイッチングス
ピードが向上する。また、ベース電位は、MOSFET
がオフの場合、エミッタ電位と等しくなるため、pnl
))ランジスタの耐圧はBVcX(I6となり、素子の
耐圧が向上する。以上のように、本実施例によれば、内
蔵pnp)ランジスタのベース領域の電位を、エミッタ
となるp+型嵩高濃度基板等しくなるように接続するこ
とにより、スイッチング特性の向上と高耐圧化を行なう
ことができる。
なお、第1の実施例ではn+領領域素子周辺部に設けた
が、n+領領域素子周辺部に形成することに限定される
ものではなく、n ベース電位をp+エミッタと同電位
にとるという機能を有するものであれば何でもよい。例
えば、側面あるいは裏面にn+領領域設けることができ
る。
が、n+領領域素子周辺部に形成することに限定される
ものではなく、n ベース電位をp+エミッタと同電位
にとるという機能を有するものであれば何でもよい。例
えば、側面あるいは裏面にn+領領域設けることができ
る。
発明の効果
以上のように本発明は、内蔵pnpトランジスタのベー
スとエミッタの電位を等しくすることにより、スイッチ
ング速度の向上、特に立ち下がり時間を短くすることが
できるとともに、素子の耐圧を向上させることができ、
その実用的効果は大なるものがある。
スとエミッタの電位を等しくすることにより、スイッチ
ング速度の向上、特に立ち下がり時間を短くすることが
できるとともに、素子の耐圧を向上させることができ、
その実用的効果は大なるものがある。
第1図は本発明の第1の実施例における伝導度変調型M
O8FETの断面構造図、第2図はその等価回路図、第
3図は従来の伝導度変調型MOgI!Tの断面構造図、
第4図は従来の構造における等価回路図である。 1・・・・・・p型窩濃度領域、2・・・・・・低濃度
n型ドレイン領域、3・・・・・・p型バックゲート領
域、4・・・・・・9I゛−ゾ 高濃度n型ソース領域、6・・・・・・5102膜、6
・・・・・・ゲート電極、7・・・・・・ソース電極、
8・・・・・・n ベースコンタクト領域、9・・・・
・・ベース電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名N
〜I?)1号bN さるぐ\ 区 禮 h へ1 覧− ?I−−−ソースm子 z2−−−ゲ−)缶部テ 23−m−トレイン塙手 24−−−7+咋ヤンネルMO5FETFz−−−ドレ
インオペ打らC1嬢1個Lf第2図 ?3 第3図 第4図
O8FETの断面構造図、第2図はその等価回路図、第
3図は従来の伝導度変調型MOgI!Tの断面構造図、
第4図は従来の構造における等価回路図である。 1・・・・・・p型窩濃度領域、2・・・・・・低濃度
n型ドレイン領域、3・・・・・・p型バックゲート領
域、4・・・・・・9I゛−ゾ 高濃度n型ソース領域、6・・・・・・5102膜、6
・・・・・・ゲート電極、7・・・・・・ソース電極、
8・・・・・・n ベースコンタクト領域、9・・・・
・・ベース電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名N
〜I?)1号bN さるぐ\ 区 禮 h へ1 覧− ?I−−−ソースm子 z2−−−ゲ−)缶部テ 23−m−トレイン塙手 24−−−7+咋ヤンネルMO5FETFz−−−ドレ
インオペ打らC1嬢1個Lf第2図 ?3 第3図 第4図
Claims (1)
- ドレイン領域の一部が、前記ドレイン領域との間でpn
接合を形成する領域と、電気的に結線されていることを
特徴とする絶縁ゲート型電界効果トランジスタ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61062330A JPH0783115B2 (ja) | 1986-03-20 | 1986-03-20 | 絶縁ゲ−ト型電界効果トランジスタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61062330A JPH0783115B2 (ja) | 1986-03-20 | 1986-03-20 | 絶縁ゲ−ト型電界効果トランジスタ |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62219667A true JPS62219667A (ja) | 1987-09-26 |
JPH0783115B2 JPH0783115B2 (ja) | 1995-09-06 |
Family
ID=13197015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61062330A Expired - Lifetime JPH0783115B2 (ja) | 1986-03-20 | 1986-03-20 | 絶縁ゲ−ト型電界効果トランジスタ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0783115B2 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0450082A1 (en) * | 1989-08-31 | 1991-10-09 | Nippondenso Co., Ltd. | Insulated gate bipolar transistor |
US5309002A (en) * | 1992-03-30 | 1994-05-03 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device with protruding portion |
WO2007010646A1 (ja) * | 2005-07-15 | 2007-01-25 | Sanken Electric Co., Ltd. | 半導体装置 |
JP2008258643A (ja) * | 2008-05-19 | 2008-10-23 | Sanken Electric Co Ltd | 半導体装置 |
WO2012153473A1 (en) * | 2011-05-06 | 2012-11-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS594077A (ja) * | 1982-06-30 | 1984-01-10 | Toshiba Corp | 電界効果トランジスタ |
-
1986
- 1986-03-20 JP JP61062330A patent/JPH0783115B2/ja not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS594077A (ja) * | 1982-06-30 | 1984-01-10 | Toshiba Corp | 電界効果トランジスタ |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0450082A1 (en) * | 1989-08-31 | 1991-10-09 | Nippondenso Co., Ltd. | Insulated gate bipolar transistor |
US5519245A (en) * | 1989-08-31 | 1996-05-21 | Nippondenso Co., Ltd. | Insulated gate bipolar transistor with reverse conducting current |
US5309002A (en) * | 1992-03-30 | 1994-05-03 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device with protruding portion |
WO2007010646A1 (ja) * | 2005-07-15 | 2007-01-25 | Sanken Electric Co., Ltd. | 半導体装置 |
US8143645B2 (en) | 2005-07-15 | 2012-03-27 | Sanken Electric Co., Ltd. | Semiconductor device having a stacked multi structure that has layered insulated gate-type bipolar transistors |
JP2008258643A (ja) * | 2008-05-19 | 2008-10-23 | Sanken Electric Co Ltd | 半導体装置 |
WO2012153473A1 (en) * | 2011-05-06 | 2012-11-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPH0783115B2 (ja) | 1995-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0439770B2 (ja) | ||
JPH0312783B2 (ja) | ||
JP2003218348A (ja) | 二重拡散型mosfetおよびこれを用いた半導体装置 | |
JP3149773B2 (ja) | 電流制限回路を備えた絶縁ゲートバイポーラトランジスタ | |
JPS62219667A (ja) | 絶縁ゲ−ト型電界効果トランジスタ | |
JPH08502858A (ja) | 電界効果により制御される半導体素子 | |
JP3249891B2 (ja) | 半導体装置およびその使用方法 | |
JP2601862B2 (ja) | アノードショート型導電変調mosfet | |
JP3206395B2 (ja) | 半導体装置 | |
JPS6350070A (ja) | 縦型mos電界効果トランジスタ | |
JP3193368B2 (ja) | 集積回路の入力端保護回路 | |
JPH05283622A (ja) | 半導体装置 | |
JPH0638500B2 (ja) | 伝導度変調型たて型mosfet | |
JP3116667B2 (ja) | 半導体装置 | |
JP2581233B2 (ja) | 横型伝導度変調mosfet | |
Chow et al. | A new hybrid VDMOS-LIGBT transistor | |
JP2746325B2 (ja) | 伝導度変調型たて型mos−fet | |
JP2526960B2 (ja) | 導電変調型mosfet | |
JP2856257B2 (ja) | pチャネル絶縁ゲートバイポーラトランジスタ | |
JPH05121425A (ja) | バイポーラ静電誘導トランジスタ | |
JP2523466Y2 (ja) | トランジスタ | |
JP2629437B2 (ja) | 横型絶縁ゲート型バイポーラトランジスタ | |
JPH04320377A (ja) | 絶縁ゲート型バイポーラトランジスタ | |
JP2700026B2 (ja) | 絶縁ゲートバイポーラ導通形トランジスタ | |
JP3112376B2 (ja) | 縦型半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |