JPS62204579A - 電界効果トランジスタの製造方法 - Google Patents

電界効果トランジスタの製造方法

Info

Publication number
JPS62204579A
JPS62204579A JP4759286A JP4759286A JPS62204579A JP S62204579 A JPS62204579 A JP S62204579A JP 4759286 A JP4759286 A JP 4759286A JP 4759286 A JP4759286 A JP 4759286A JP S62204579 A JPS62204579 A JP S62204579A
Authority
JP
Japan
Prior art keywords
gate pattern
gate
forming
film
conductive layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4759286A
Other languages
English (en)
Inventor
Shuji Asai
浅井 周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4759286A priority Critical patent/JPS62204579A/ja
Publication of JPS62204579A publication Critical patent/JPS62204579A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタの製造方法に関し、特に
グー1〜部に接近して高濃度成長層を有する電界効果ト
ランジスタの製造方法に関する。
〔従来の技術〕
GaAsを代表とする化合物半導体はSiに比べて大き
な電子移動度を有することに特長があり、超高速集積回
路に応用する研究開発が活発に行なわれている。ここで
は、GaAsのショットキーバリアゲート型電界効果ト
ランジスタ(以下MESFETと記す)を例に説明する
このMESFETの製造方法の一例として、特開昭60
−15978号公報に提案している。第2図(a)〜(
11)はこの製造方法を説明するための図で主要工程に
おける素子の断面図である。
すなわち第2図(a>に示すように半絶縁性GaAs基
板(以下半導体基板と記す)4にSi+を加速電圧30
keV、ドース量2 X 1012cm−2でイオン注
入しチャネル層5を形成する。次に、第2図(b)に示
すようにこの半導体基板4上にシリコン酸化膜を厚さ0
.8μm気相成長し、ホトレジスト膜をマスクとして平
行平板型ドライエツチングにより酸化膜をエツチングし
、ゲート長1.0μmの仮ゲートパターン6を形成する
。次に、第2図(C)に示すように仮ゲートパターン6
をマスクとしてSi+を加速電圧100keV、ドース
量3×10”C11−、”でイオン注入して高濃度導電
層10a。
10bを形成する0次に、第2図(d)に示すように反
転膜10として厚さ0.3μmのシリコン窒化膜で全面
を覆い、水素中で8oO℃20分間の熱処理によりチャ
ネル層5および高濃度導電層10a、10bの結晶性を
回復させる。次に、第2図(e)に示すようにホI・レ
ジスト膜11を厚さ1.0μm塗布するとホトレジスト
膜11の表面は平滑になり、仮ゲートパターン6上のホ
トレジスト膜6は薄くなり形成される。次に、第2図(
f)に示すように平行平板型ドライエツチングによりC
F4ガスを用いて全面をエツチングし、酸化膜の仮ゲー
トパターン6を露出させる。次に、第2図(g)に示す
ように残ったホトレジスト膜12をはくり液で除去し、
バッファド弗酸液により仮ゲートパターンの酸化膜6を
除去してゲート開口14を形成する。次いで、第2図(
h)に示すようにゲート開口14にアルミニウムのゲー
ト電極1、および高濃度導電層10a、10b上にオー
ム性金属Au:Ge−Niのソース電極2.ドレイン電
極3を形成するとMESFETが完成する。
この製造方法の特徴は、高温の熱処理後にゲート電極1
を形成できるなめ、ゲート電極の選定に自由度が大きい
ことである。
〔発明が解決しようとする問題点〕
FETの相互コンダクタンス(gm)を大きくするには
、ゲート長を短かくしてソースとゲート電極間の抵抗(
ソース抵抗)を小さくする必要がある。しかし、イオン
注入により形成する高濃度導電層は、さきに示した従来
例のような通常のアニール条件では、8X l O”C
11−’以上に活性化することは難しい、そして、ソー
ス抵抗を下げようとして高濃度導電層を深く厚くすると
、ゲート下への注入不純物の横方向拡散や基板リーク電
流が大きくなるため、ドレイン電流の飽和性が悪くなり
相互コンダクタンスも低下する。
本発明の目的は、ゲート長を短かくしてもドレイン電流
の飽和性や相互コンダクタンスが良好な電界効果トラン
ジスタを提供することにある。
〔問題点を解決するための手段〕
本発明の電界効果トランジスタの製造方法は、半導体基
板上に電界効果トランジスタ部となるチャネル層を形成
する工程と、前記チャネル層上にゲート形状を決めるた
めの仮ゲートパターンを形成する工程と、前記仮ゲート
パターンをマスクとしてイオン注入法により中濃度導電
層を形成する工程と、前記仮ゲートパターンの側面に側
壁を形成する工程と、前記仮ゲートパターンおよび側壁
をマスクとして前記中濃度導電層上に高濃度導電層を成
長する工程と、表面に反転膜を形成する工程と、前記反
転膜および側壁よりなる膜に前記仮ゲートパターンをゲ
ート開口とする開口を形成する工程と、前記ゲート開口
にゲート電極を形成する工程とを含んで構成される。
〔作用〕
本発明の製造方法は、イオン注入により設ける導電層(
中濃度導電層)を浅く低濃度にすることによりアニール
に伴なう横方向拡散や基板リークを少なくし、ゲート電
極に接近して中濃度導電層上に高濃度導電層を成長する
ことによりソース抵抗を小さくするものである。
〔実施例〕
次に、本発明の実施例について図面を参照して説明する
。第1図(a)〜(h)は本発明の一実施例を説明する
ために工程順に示した主要製造、工程における素子の断
面図である0本実施例においては、MESFETの製造
方法につき説明する。
まず、第1図(a)に示すように半絶縁性GaAs基板
4上にSi+を加速電圧30keV、ドース量2X I
 Q ”cm−2でイオン注入しチャイ・ル層5を形成
する。そし、て、表面に酸化膜を0.8μmの厚さに形
成し、ホトレジスト膜をマスクとして平行平板型ドライ
エツチングにより酸化膜を加工し、高さ0、Sノzm、
ゲー)−長OA1cmの仮ゲートパターン6を形成する
。次に、第1図(b)に示すように仮ゲータパターン6
をマスクにSi”を加速電圧30keV、ドース量7 
X 1012cyo−2でイオン注入し中濃度導電JW
7a、7bを設ける。次に、第1図(c)に示すように
厚さQ、3Ωmのスパッタシリコン窒化膜15で全面を
覆い、水素中800℃20分間の熱処理をおこない、チ
ャネル層5および中濃度導電層7a、7bの結晶性を回
復する。次に、第1図(d)に示すようにCF4ガスを
用いて平行平板型ドライエツチングをおこない、仮ゲー
)・パターン6の側面に厚さ0.3μmの側壁8を残す
。次に、第1図(e)に示すように有機洗浄によりGa
As表面を浄化した後、有機金属気相成長法によりキャ
リア密度1.2 X 1018cry−’の高濃度導電
19a、9bを露出した中濃度導電層7a、7bhに厚
さ0.3μm成長する。この時の成長条件は、アルシン
(^5+13) : トリメチルガリウム(TMG):
硫化水素(II2S)= 7 : 1 : 0.04の
ガス比で、成長温度は620°Cである。ここで11□
8はキャリアのドーパントガスである。次に、第1図(
f)に示すように反転膜11としてスパッタシリコン窒
化膜を厚さ0.3μm全面に設ける。次いで、第1図(
g)に示すように平行平板型ドライエツチングによりC
F4ガスを用いて全面をエツチングし、酸化膜の仮ゲー
■・パターン6を露出させ、次いで反転膜11及び側壁
8のシリコン窒化膜をマスクとして、バッファド弗酸液
により酸化膜の仮ゲートパターンを除去してゲート開口
14を形成する。次に、第1図(h)に示すようにゲー
1へ開口14にアルミニウムのゲート電極1と設け、引
きつづき高濃度導電!9a、9b上に反転膜としての窒
化膜13を平行平板型ドライエッヂングにより除去し、
高濃度導電層9a、9b上にゲート電極1から各2μm
離してオーム性金属人u:Ge−Niのソース電極2と
ドレイン電極3を設けてMESFETを完成する。
上記実施例により得られなFET特性としては、ゲート
しきい電圧vT=−o、s v <標準偏差50mv)
において、ゲート電圧OVにおける相互コンダクタンス
gm=420ms/關、ソース抵抗Rs=0.4Ω・C
l11、ゲート逆耐圧−BV、=6Vであった。またド
レイン電流の飽和性を示すドレイン帰還率γ=−ろV 
t 、/ a V o = 0.05であった。
従来方法においてイオン注入で高濃度導電層を形成し、
グー1−長が0.3μmの場合は、VT=−1、OVに
おいて、標準偏差130mv、gm=230mS/1I
I1.Rs=0.7Ω・mu、−BV、=4■、γ=0
.+2であった。
このように、本実施例では、ゲートしきい電圧の標準偏
差、ソース抵抗R5、ドレイン帰還率γが小さくなり、
相互コンダクタンスgm、グー1−逆耐圧−BVoが向
上していることが分かる。
またイオン注入による高濃度導電層はピークキャリア密
度7 x 10 +7CI!l−3であるが、有機金属
気相成長法による高濃度導電層は1.2 X 1018
cm−’と高く均一な濃度分布となり、ソース抵抗R5
を下げることができる。
高濃度導電層の気相成長方法としては、有機金属気相成
長法により説明したが、ハロゲン化物輸送法などであっ
てもよい。
〔発明の効果〕
以上、説明したように本発明の製造方法によれば、イオ
ン注入による中濃度導電層を浅く低い濃度で設けること
により、横方向拡散や基板リークが少くなり、ドレイン
電流の飽和性やゲートしきい電圧のばらつきが改善でき
る。そして、気相成長によるキャリア密度の高い高濃度
導電層を、中濃度導電層の表面に設けることによりソー
ス抵抗を下げて相互コンダクタンスを増大させることか
できる。
また、本発明の製造方法では、ゲート電極を後で形成す
るため、ゲート電極に抵抗率の低い材料を厚く用いてゲ
ート抵抗を下げることなどもできる。
【図面の簡単な説明】
第1図(a)〜(h)は本発明の一実施例を説明するた
めに工程順に示した主要製造工程の素子の断面図、第2
図(a)〜(h)は従来の電界効果トランジスタの製造
方法を説明するために工程順に示した主要製造工程の素
子の断面図である。 1・・・ゲート電極、2・・・ソース電極、3・・・ド
レイン電極、4・・・半導体基板、5・・・チャネル層
、6・・・仮ゲートパターン、7a、7b・・・中濃度
導電層、9a”、9b、10a、10b−−−高濃度導
電層、8・・・側壁、11・・・反転膜、12・・・レ
ジスト膜、13・・・反転パターン、14・・・ゲート
開口、15・・・窒化茅 I 詔 茅 lWJ 第 2 間

Claims (1)

    【特許請求の範囲】
  1. 半導体基板上に電界効果トランジスタ部となるチャネル
    層を形成する工程と、前記チャネル層上にゲート形状を
    決めるための仮ゲートパターンを形成する工程と、前記
    仮ゲートパターンをマスクとしてイオン注入法により中
    濃度導電層を形成する工程と、前記仮ゲートパターンの
    側面に側壁を形成する工程と、前記仮ゲートパターンお
    よび側壁をマスクとして前記中濃度導電層上に高濃度導
    電層を成長する工程と、基板表面に反転膜を形成する工
    程と、前記反転膜、側壁よりなる膜に前記仮ゲートパタ
    ーンをゲート開口とする開口を形成する工程と、前記ゲ
    ート開口にゲート電極を形成する工程とを含むことを特
    徴とする電界効果トランジスタの製造方法。
JP4759286A 1986-03-04 1986-03-04 電界効果トランジスタの製造方法 Pending JPS62204579A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4759286A JPS62204579A (ja) 1986-03-04 1986-03-04 電界効果トランジスタの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4759286A JPS62204579A (ja) 1986-03-04 1986-03-04 電界効果トランジスタの製造方法

Publications (1)

Publication Number Publication Date
JPS62204579A true JPS62204579A (ja) 1987-09-09

Family

ID=12779519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4759286A Pending JPS62204579A (ja) 1986-03-04 1986-03-04 電界効果トランジスタの製造方法

Country Status (1)

Country Link
JP (1) JPS62204579A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517726A (ja) * 2002-07-16 2006-07-27 クリー インコーポレイテッド 窒化物ベースのトランジスタ及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517726A (ja) * 2002-07-16 2006-07-27 クリー インコーポレイテッド 窒化物ベースのトランジスタ及びその製造方法

Similar Documents

Publication Publication Date Title
JP2001185717A (ja) 半導体装置及びその製造方法
JP3368449B2 (ja) 半導体装置及びその製造方法
JPS62204579A (ja) 電界効果トランジスタの製造方法
JPH03145139A (ja) 電界効果トランジスタとその製造方法
JPS62204578A (ja) 電界効果トランジスタの製造方法
US5413947A (en) Method for manufacturing a semiconductor device with an epitaxial void
JPH0212927A (ja) Mes fetの製造方法
JP2541230B2 (ja) 電界効果トランジスタの製造方法
JPH10173036A (ja) 半導体装置および半導体の高抵抗化方法
JP3438124B2 (ja) 半導体装置
JP2691572B2 (ja) 化合物半導体装置の製造方法
JP2707436B2 (ja) 電界効果トランジスタの製造方法
JPS6115375A (ja) ヘテロ接合電界効果トランジスタ
JPS6356959A (ja) 電界効果トランジスタの製造方法
JP3018885B2 (ja) 半導体装置の製造方法
JP4186267B2 (ja) 化合物半導体装置の製造方法
JP3090787B2 (ja) 半導体装置の製造方法
JPS60136264A (ja) 半導体装置の製造方法
JPS6332273B2 (ja)
JPH02295135A (ja) 半導体装置
JP2682032B2 (ja) 半導体装置の製造方法
JP3109097B2 (ja) 電界効果トランジスタの製造方法およびエッチング方法
JPH02199843A (ja) 化合物半導体装置およびその製造方法
JPH08191080A (ja) 化合物半導体装置及びその製造方法
JPH0521467A (ja) 電界効果トランジスタの製造方法