JPS6160785A - 炭素繊維用プリカ−サ−ピツチの製造方法 - Google Patents

炭素繊維用プリカ−サ−ピツチの製造方法

Info

Publication number
JPS6160785A
JPS6160785A JP18275484A JP18275484A JPS6160785A JP S6160785 A JPS6160785 A JP S6160785A JP 18275484 A JP18275484 A JP 18275484A JP 18275484 A JP18275484 A JP 18275484A JP S6160785 A JPS6160785 A JP S6160785A
Authority
JP
Japan
Prior art keywords
pitch
mesophase
solvent
hydrogenated
produce
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18275484A
Other languages
English (en)
Inventor
Kozo Yumitate
弓立 浩三
Yukihiro Oosugi
大杉 幸広
Mamoru Kamishita
神下 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd, Kawasaki Steel Corp filed Critical Nitto Boseki Co Ltd
Priority to JP18275484A priority Critical patent/JPS6160785A/ja
Publication of JPS6160785A publication Critical patent/JPS6160785A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高性能炭素繊維を製造するのに用いるプリカー
サ−ピンチの製造方法に関し、熱安定性が高く、低粘度
のプリカーサ−ピッチを製造する技術に属するものであ
る。
(従来の技術) 高性能炭素繊維の製造は、原料から大別するとポリアク
ソロニトリル(PAN)と、石油ピンチやコールタール
とに分類できる。ポリアクソロニトリルを原料とする場
合には原料繊維の価格が高いこと、原料繊維の炭化収率
が低いことが欠点として挙げることができる。
一方、石油ピッチやタールピンチを原料とする場合、高
性能炭素繊維とするには、いわゆる、光学的異方性ピッ
チであるメソフェーズピッチを出発原料としなければな
らない、従来、ピッチを原料とする繊維は汎用グレード
である弾性率の低いものであるが、この場合原料ピッチ
は光学的等方性ピッチである。この等方性ピッチを用い
て高性能炭素繊維用原料に改質しようとして不活性ガス
雰囲気中で適当な温度(350〜500℃)に加熱すれ
ば、まず光学的に異方性の相が等方性融体中に生成し、
これらが次第に合体成長してバルクのメソフェーズピッ
チとなる。このメソフェーズピッチを原料とすることに
より高強度、高弾性を有する高性能炭素繊維を得ること
は可能である。これはメソフェーズピッチを原料として
溶融紡糸すると規則的に配列された縮合環よりなる高分
子成分が繊維軸方向に配列し、高強度、高弾性の炭素繊
維が得られるからである。しかるに、このようにして得
られたメソフェーズピッチの粘度は等方性ピッチの粘度
よりはるかに太き(、メソフェーズピンチの紡糸は等方
性ピッチの紡糸に比べて一層困難であることはよく知ら
れていることである。
また、長繊維である高性能炭素繊維を経済的な速度で製
造するには、メソフェーズピッチの溶融紡糸を速やかに
達成することが最も重要であり、このためには紡糸性に
優れたメソフェーズピンチを用いる必要がある。この紡
糸性に優れたメソフェーズピッ・チと云うことは、紡糸
工程において長時間にわたり糸切れが少なく、かつ繊維
径が細く、均一な繊維を与えるメソフェーズピッチであ
ることを意味し、このためにメソフェーズピッチの粘度
は、例えば溶融紡糸温度において数10から数100ポ
イズとできるだけ低い方が好ましく、更に組成的な面か
ら見ると高度に均質で単−相の組成から成るものでなけ
ればならない、更に、メソフェーズピッチを溶融し、紡
糸温度(330〜380°C)にまでピッチを保持した
時に、ピッチの変質や揮発分の発生がないような熱的に
安定なものでなければならない。
また、コークス製造時における副成物であるコールター
ルを蒸留して得られるタールピッチ中には、固体粒子と
して直径1μm以下の微粒子であるフリーカーボンを1
〜20重量%および灰分となる無機質を0.3〜1重量
%含んでいる。更に、タールピッチは複雑な芳香族分子
を主成分とする数10、000程度の分子よりなる混合
物であり、熱反応性に冨む成分を含んでいるから、これ
らの成分がコールタールの熱安定性、または組成的に見
てピッチの□均質性を阻害している。このピッチを原料
として水素化処理、更に引き続いてメソフェーズ化処理
しても、結局は原料ピッチ中の固体粒子や熱反応性に冨
む成分がメソフェーズピンチ中に残在し、これらがメソ
フェーズピッチの熱安定性および均質性を阻害し優れた
高性能炭素繊維用プリカーサ−ピッチピッチとはならな
い。
(発明が解決しようとする問題点) 本発明は上述する問題点に着目して高性能炭素繊維の製
造に用いるプリカーサ−ピッチとして、特に紡糸性や熱
安定性に優れたピッチを製造することを目的とする。
(問題点を解決するための手段) 本発明者らは上記の目的を達成するために、鋭意研究の
結果、タールピッチを水素化溶剤でテトラリンの存在下
で水素化処理し、更に不活性ガスの雰囲気下0.1〜1
0トルの減圧下で450〜500℃の熱処理を行いメソ
フェーズピッチを生成する方法において、原料のタール
ピッチとして、特にフリーカーボン、ヘテロ原子、無機
物などの不純物の少ないピッチを用いることによって高
性能炭素繊維用のプリカーサ−ピッチを製造する方法を
開発し、本発明に到達したものである。
すなわち、本発明の方法はコークス製造時での副生成物
であるコールタールを蒸留して得られる安価なり−ルピ
ッチを350〜500℃に加熱してメソフェーズを生成
させ、これを芳香族系溶剤で抽出してメソフェーズを含
む溶剤不溶解骨を除去し、溶剤を除去してフリーカーボ
ン、ヘテロ原子、無機物などの不純物の少ない精製され
たタールピッチを出発原料とすることにより紡糸性や熱
安定性に優れた高性能炭素繊維用プリカーサ−ピッチを
製造することができる。この精製されたタールピッチを
水素供与性を有する溶剤であるテトラリンを用いて40
0〜450℃の温度で水素化処理して水素ピッチを得、
この水素化ビ7ヂを不活性ガスの雰囲気下0.1〜10
トルの減圧下において410〜500℃の温度で比較的
に短時間加熱処理し、ピッチ中の低分子量成分や昇華性
成分を除去してピッチのメソフェーズ化を進め、低粘度
で、しかも非常に均質な単−相からなる高性能炭素繊維
用プリカーザービッチを製造することである。
ピッチを熱処理した時のメソフェーズの発生と、その成
長、合体の進行とは当然ピッチの種類によって若干具な
るが、通常メソフェーズは350℃位から発生し始め、
更に温度を上げると発生量が増加すると共に、大きな球
体に成長し、約470℃位からメソフェーズの合体が起
こり、更に500℃付近になると全面的な異方性化にな
る。この反応の過程において、直径1μm以下の微粒子
であるフリーカーボン、および灰分となる無機質はメソ
フェーズ球体の周囲に付着するために、これらを容易に
除去できるようになる。
更に、フリーカーボンのみではなく、ピッチ中に存在す
る熱反応性の大きい高分子量成分や微量の官能基を有す
る成分は優先的に重縮合し、メソフェーズとなるために
、これらが除去されたピッチはへテロ原子が低下し熱安
定性に非常に優れたものになる。
本発明においてはメソフェーズの発生温度の約350℃
から全面的なコークス化が進行する約500℃までの温
度で熱処理したピッチを使用するものであるが、熱処理
温度が500℃以上に高い場合にはメソフェーズが多く
発生し、その結果として精製ピッチの収率が低下し、逆
に熱処理温度が350℃以下と低い場合には精製ピッチ
中に熱反応性の大きい成分が残在しやすくなる欠点を生
ずる。この2つの相反する条件を考慮すると、好ましく
は上述する約350〜500℃の熱処理温度においてメ
ソフェーズを約10〜30重量%程度発生させるように
することが望ましい。
この条件で熱処理し、メソフェーズを発生させたピンチ
に芳香族系の溶剤を添加することにより自然沈降または
濾過によって容易にメソフェーズを分離することができ
る。このメソフェーズの濾過による分離はフリーカーボ
ンの濾過と異なり目づまりを起こすことなく極めて容易
となる。その後、蒸留により溶剤を除去してフリーカー
ボン、ヘテロ原子、無機物などの不純物の少ない精製さ
れたピッチを得ることができる。
このようにして得た精製されたピッチは石炭およびター
ルピッチの水素化溶剤として、よく知られている1、2
.3.4−テトラヒドロキノリン(THQ)、石炭系の
溶剤を水素化処理した水素化−アントラセン油、更には
テトラリン、ジヒドロアントラセンおよびジヒドロフェ
ナンスレンの如き2環または3環の芳香族系炭化水素の
水素化物を用いて水素化処理する。このように水素化溶
剤を使用して精製ピッチの水素化処理を行い、引き続い
て加熱処理してメソフェーズピンチを得、高性能炭素繊
維用プリカーサ−ピンチとしての特性を調べた結果、テ
トラリン処理のメソフェーズピッチが最も優れたピッチ
であることを確かめた。
従来において、石炭およびタールピッチなどの重質瀝青
物の水素化処理としてクレオソート油、アントラセン油
の如き芳香族性の溶剤を使用し、適当な触媒の存在下で
水素ガス雰囲気において高温(400〜450℃)高圧
下(150〜250kg/cm” )で処理する方法、
すなわち、直接水添法が知られているが、テトラリン、
T)(Q、水素化−アントラセン油の如き溶剤それ自体
が水素供与能を有する水素化溶剤を使用してもタールピ
ッチの水素化処理を行うことができる。この場合、系内
の圧力は水素化溶剤の蒸気圧や分解によって示される自
生圧程度(10〜30kg/ as” )でよく、水素
ガスを用いる直接水添の場合よりも一層低い圧力での水
素化処理が可能であり、設備上非常に大きいメリットが
ある。更に、水素ガスよりも水素化溶剤中の水素の方が
はるかに活性であり、水素供与能力という点において格
段に優れている。水素供与能力が大きく、工業的規模で
の入手が容易で、しかも一度使用した溶剤の再生が簡単
であると云う点からすればテトラリン、T HQ、水素
化−アントラセン油が有用である。
そこで、本発明者らは上述する有用な水素化溶剤につい
て、タールピッチの水素化処理を行い、次いで加熱処理
してメソフェーズピッチを作り、炭素繊維用プリカーサ
−ピンチとしての特性を調べたところテトラリン処理の
メソフェーズピッチが最も優れたピッチであることを突
き止めた。
THQおよび水素化−アントラセン油の場合、分子内に
窒素や酸素の如きヘテロ原子が含まれており、これらの
原子が精製ピッチの水素化処理においてピッチ中に混入
したり、更にはこれら溶剤の一部が水素化処理およびこ
れに引き続くメソフェーズ化処理の過程で重質化し、ピ
ッチ化し、メソフェーズピッチ中に残在する。このよう
な現象は高性能炭素繊維用プリカーサ−ピッチとして糸
の均質性や粘度という面から望ましくない。更に、ヘテ
ロ原子を多く含むピッチはメソフェ−ズ化に際して三次
元的に高度に架橋された高分子成分になりやすく、これ
らの成分がメソフェーズピッチの粘度を上げる結果とな
る。上述する理由により、水素化溶剤としてテトラリン
が好ましく、テトラリンは水素供与能も大きく、構成原
子として炭素および水素のみであり、沸点も低く、しか
も重質化しない。
本発明において実施する水素化処理は上述する精製ピッ
チを上記テトラリンの存在下で400〜450 ’Cの
加熱温度において行う、この場合、精製ピッチとテトラ
リンとの混合比は1:I〜1;5、好ましくは1:2〜
1:3とする。
精製ピッチとテトラリンとの混合比(精製ピッチ/テト
ラリン)が1以上の場合では、精製ビ。
チの水素化が充分に行われないために、引き続いて加熱
処理しても低粘度のプリカーサ−ピッチにはならない、
逆に、混合比が175以下の場合では精製ピッチの水素
化が進みすぎてピッチの低分子化が起こるために引き続
いて行う加熱処理においてプリカーサ−ピッチの収率が
極端に低下する。
以上の理由により、精製ピッチとテトラリンとの混合比
は上述する1:1〜1:5の範囲にするのが望ましい。
また、雰囲気内圧力は精製ピンチおよびテトラリンの自
生圧力で十分である10〜30kg/ cm”とする。
上述するように水素化処理を行い、溶剤を除去した水素
化ピッチはフリーカーボンや灰分の如き不純物を全く含
んでおらず、かつヘテロ原子の少ないクリーンなピッチ
である。
次いで、上述するようにして得た水素化ピッチを不活性
ガス雰囲気中0.1〜10トルの減圧下で、410〜5
00℃の温度にて比較的に短時間加熱処理することによ
ってメソフェーズ化の進んだプリカーサ−ピッチにする
ことができる。この水素化ピッチのメソフェーズ化を0
.1〜10トルの減圧下で行う理由はプリカーサ−ピッ
チとしての紡糸性、不融化性および炭化・黒鉛化特性を
悪くするようなピッチ中の低分子成分や昇華成分を十分
に除去するためである。
精製ピッチをテトラリンで処理した水素化ピッチの場合
には、このピッチはへテロ原子の含有量の少ないクリー
ンなピッチであり、かつ熱反応性の高い成分が除去され
た非常に分子量のそろった均質なピッチであるから熱安
定性にも優れている。
従って、熱処理におけるメソフェーズ化(生成、合体)
もゆっくりと進行し、かなり大きい異方性Mi織ドメイ
ンが生成しやすくなる。この事は、低Ql値(キノリン
ネ溶分値)でバルクメソフェーズになることを意味して
おり、ピッチ粘度も低くなる。しかも、メソフェーズピ
ッチ中のキノリンネ溶分とキノリン可溶分との組成が似
かよったものとなり、ピッチとして均質である。例えば
キノリンネ溶分として10〜30重量%で、偏光顕微鏡
下での観寒で100%の光学的異方性組織からなる非常
に均質で、かつ紡糸性の優れたプリカーサ−ピッチを得
ることができる。
(発明の効果) 上述するように本発明においては安価に、かつ大量に容
易に入手できるタールピッチを熱処理してメソフェーズ
を性成させ、これを芳香族系溶剤で抽出してメソフェー
ズを含む溶剤不溶解分を除去した生成ピッチを原料とす
ることによって、高性能炭素繊維の製造に用いることの
できる低粘度で、熱安定性で、かつ紡糸性の優れた炭素
繊維用プリカーサ−ピッチを得ることができた。
(実施例1) タールピッチ軟ピンチ(軟化点80.4℃、ベンゼン不
溶分16.8ffiffi%、キノリンネ溶分3.6m
1i1%)を460℃で60分間にわたり熱処理し、約
30%のメソフェーズを生成させ、タール油で抽出し、
メソフェーズを主体とする高分子量成分を濾別した。
濾液を真空蒸留によって溶剤を回収し、軟化点100.
2℃、ヘンゼン不溶分14.8重量%およびキノリンネ
溶分痕跡量の情製ピフチを得た。
この精製ピッチ1重量部に水素化溶剤であるテトラリフ
2重量部を混合し、430℃で30分間にわたり水素化
処理した。水素化終了後の圧力は30kg/CllI2
であった0反応終了後、溶剤を回収して水素化ピッチを
得た。この水素化ピンチは軟化点80.9℃、ベンゼン
不溶分8.9重量%およびキノリンネ溶分痕跡量の分析
値を有していた。
次いで、上記水素化ピッチをN2ガス雰囲気下、lOト
ルの減圧下で480℃に30分間保持してメソフェーズ
ピッチを得た。このメソフェーズピッチはベンゼン不溶
分が95.2重量%およびキノリンネ溶分が27.5重
世%で、かつ偏光顕微鏡下で観察して全面的異方性Mi
織を有しており、しかも粘度は325°Cにおいて10
00ボイズおよび350℃において100ボイズであっ
た。
このメソフェーズピッチを345℃の温度で、N2ガス
の加圧下において溶融紡糸した。この結果、1時間以上
にわたって糸切れすることなく紡糸でき、しかも繊維径
は11〜12μ旧と非常に均一であった。この繊維を空
気中350℃で30分間にわたり不融化処理した後、A
r中1000℃で炭化処理した。
この炭素繊維は繊維径10〜11μm、引張強度205
kg/ ca+” オヨび弾性率14.8L/mn” 
(7)特性を有していた。更に、この繊維を2600℃
で黒鉛化処理すると繊維径9〜10μ鋼、引張強度32
0kg/ cm2および弾性率44t/u”の高性能炭
素繊維が得られた。
(実施例2) タールピッチ軟ピンチ(軟化点81.5℃、ベンゼン不
溶分15.9重量%、キノリンネ溶分3.2重量%)を
460℃で60分間にわたり熱処理し、約30%のメソ
フェーズを生成させ、タール油で抽出し、メソフェーズ
を主体とする高分子量成分を濾別した。
濾液を真空蒸留によって溶剤を回収し、軟化点90.0
℃の軟ピッチを得、更にこの軟ピッチを430℃、真空
度20龍Hgで真空蒸留し、軟化点260°C、ベンゼ
ン不溶分51 、3重量%およびキノリンネ溶分痕跡量
の精製ピッチを得た。
この精製ピッチ1重量部に水素化溶剤であるテトラリン
2重量部を混合し、430℃で30分間にわたり水素化
処理した。水素化終了後の圧力は28kg/CrAzで
あった。
反応終了後、溶剤を回収して水素化ピンチを得た。この
水素化ピッチは軟化点180°C、ベンゼン不溶分33
.3重世%およびキノリンネ溶分痕跡量の分析値を有し
ていた。
次いで、上記水素化ピッチをNtガス雰囲気下、10ト
ルの減圧下で480℃に15分間保持してメソフェーズ
ピッチを得た。このメソフェーズピッチはベンゼン不溶
分が89.3重量%およびキノリンネ溶分が30.3重
量%で、かつ偏光顕微鏡下で観察して全面的に異方性組
織を有しており、しかも粘度は340℃において100
0ボイズおよび365°Cにおいて100ボイズであっ
た。
このメソフェーズピッチを355℃の温度でN2ガスの
加圧下において溶融紡糸した。この結果、1時間以上に
わたって糸切れすることなく紡糸でき、しかも繊維径は
12〜13μmと非常に均一であった。この繊維を空気
中350°Cで30分間にわたり不融化処理した後、A
r中1000℃で炭化処理した。
この炭素繊維は繊維径11〜12μm、引張強度195
kg/ co+”および弾性率13.8t/龍2の特性
を存していた。更に、この繊維を2600℃で黒鉛化処
理すると繊維径10〜11μm、引張強度310kg/
am”および弾性率42t/mu”の高性能炭素繊維が
得られた。

Claims (1)

    【特許請求の範囲】
  1. 1、タールピッチ中の軟ピッチまたは中ピッチを第1段
    階において350℃〜500℃の温度で熱処理し、メソ
    フェーズを生成させ、溶剤で抽出してメソフェーズを含
    む溶剤不溶分を分離除去した後、得られたフリーカーボ
    ンを含まないピッチを第2段階において水素化溶剤であ
    るテトラリンを用いて400〜450℃の温度で水素化
    処理して水素化ピッチを得、この水素化ピッチを第3段
    階において不活性ガス雰囲気下0.1〜10トルの減圧
    下で410〜500℃の温度で熱処理してメソフェーズ
    を生成させることを特徴とする炭素繊維用プリカーサー
    ピッチの製造方法。
JP18275484A 1984-09-03 1984-09-03 炭素繊維用プリカ−サ−ピツチの製造方法 Pending JPS6160785A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18275484A JPS6160785A (ja) 1984-09-03 1984-09-03 炭素繊維用プリカ−サ−ピツチの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18275484A JPS6160785A (ja) 1984-09-03 1984-09-03 炭素繊維用プリカ−サ−ピツチの製造方法

Publications (1)

Publication Number Publication Date
JPS6160785A true JPS6160785A (ja) 1986-03-28

Family

ID=16123849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18275484A Pending JPS6160785A (ja) 1984-09-03 1984-09-03 炭素繊維用プリカ−サ−ピツチの製造方法

Country Status (1)

Country Link
JP (1) JPS6160785A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250226A (ja) * 1986-04-18 1987-10-31 Mitsubishi Chem Ind Ltd 炭素繊維の製造法
US9656783B2 (en) 2010-05-18 2017-05-23 Intercontinental Great Brands Llc Reclosable flexible packaging and methods for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250226A (ja) * 1986-04-18 1987-10-31 Mitsubishi Chem Ind Ltd 炭素繊維の製造法
US9656783B2 (en) 2010-05-18 2017-05-23 Intercontinental Great Brands Llc Reclosable flexible packaging and methods for manufacturing same

Similar Documents

Publication Publication Date Title
JPS59216921A (ja) 炭素繊維の製造方法
US4589975A (en) Method of producing a precursor pitch for carbon fiber
JPH0321588B2 (ja)
JPH0150272B2 (ja)
JPS5938280A (ja) 炭素繊維プリカ−サ−ピツチの製造方法
JPS6160785A (ja) 炭素繊維用プリカ−サ−ピツチの製造方法
JPH058238B2 (ja)
JP2917486B2 (ja) 炭素材料用メソフェースピッチ
JPH0432118B2 (ja)
JPH0532494B2 (ja)
JPH058755B2 (ja)
JPS60106882A (ja) 重質瀝青物の精製方法
JPH0583115B2 (ja)
JPH0150271B2 (ja)
JP2533487B2 (ja) 炭素繊維の製造法
JPH0455237B2 (ja)
JPS6233330B2 (ja)
JPS6018573A (ja) 炭素繊維用プリカ−サ−ピツチの製造方法
JP3018660B2 (ja) 炭素繊維用紡糸ピッチ及びその製造方法
JPS61190586A (ja) 炭素繊維用プリカ−サ−ピツチの製造方法
JPS58156027A (ja) 炭素繊維の製造法
JPS58113289A (ja) 炭素繊維の製造方法
JPS6123685A (ja) 炭素繊維プリカ−サ−ピツチの製造方法
JPH0629437B2 (ja) 炭素繊維用プリカ−サ−ピツチの製造方法
JPS59155494A (ja) 炭素繊維の原料用ピツチの製造法