JPS61129811A - Manufacturing apparatus for semiconductor - Google Patents

Manufacturing apparatus for semiconductor

Info

Publication number
JPS61129811A
JPS61129811A JP25106684A JP25106684A JPS61129811A JP S61129811 A JPS61129811 A JP S61129811A JP 25106684 A JP25106684 A JP 25106684A JP 25106684 A JP25106684 A JP 25106684A JP S61129811 A JPS61129811 A JP S61129811A
Authority
JP
Japan
Prior art keywords
light source
light
reaction
substrate
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25106684A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Noriyoshi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25106684A priority Critical patent/JPS61129811A/en
Publication of JPS61129811A publication Critical patent/JPS61129811A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make it possible to form a film with uniform thickness by providing a light source transfer mechanism to transfer the light source. CONSTITUTION:When a reaction gas 4 is introduced into the reaction chamber 1, the gas is excited and decomposed by being lighted with the light from the light source 12, and the reaction products by this reaction deposit on the base board 5 to form a thin film on the base board 5. At this time, the light source 12 is transferred to the direction of the axis of the lamp through a light source transfer mechanism 18 so that the amount of the light energy fed on the base board 5 from the light source 12 will be uniform in this direction, being the integral value of the light energy distribution from the light source in this transfer direction. As a result, the amount of the light energy provided on the base board 5 is uniform in the transferring direction of the light source 12, thereby providing a uniform thickness of the thin film in this direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体製造装置に関し、特に光励起CV 
D (photo chemical vapour 
deposiLion )法により薄膜を形成する装置
に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to semiconductor manufacturing equipment, and in particular to optically pumped CV
D (photo chemical vapor
The present invention relates to an apparatus for forming thin films by the deposition method.

〔従来の技術〕[Conventional technology]

CVD法は集積回路装置における薄膜形成等において重
要な技術であるが、従来のCVD法は、主として反応ガ
スを加熱して化学反応を起こさせるようにしており、こ
のため反応温度が高温となり、これにより形成されるI
IIIll!はダメージを受は易いものである。
The CVD method is an important technology for forming thin films in integrated circuit devices, but in the conventional CVD method, the reaction gas is mainly heated to cause a chemical reaction, which results in a high reaction temperature. I formed by
IIIll! is easily damaged.

そこで最近、低温CVD技術として光励起CVD法が注
目されている。この光励起CVD法は、CVDのエネル
ギー源として光を用いるものであり、これによれば、従
来の熱励起CVD法、プラズマCVD法等に比較して反
応温度を低温にでき、薄膜へのダメージも少な(するこ
とができる。
Therefore, recently, a photo-excited CVD method has been attracting attention as a low-temperature CVD technique. This photo-excited CVD method uses light as an energy source for CVD. According to this method, the reaction temperature can be lowered compared to conventional thermally-excited CVD methods, plasma CVD methods, etc., and there is no damage to thin films. little (can be)

また、一般的に光励起CVD法では、光の強度が薄膜の
形成速度に大きな影響を与えることが知られており、基
板温度1反応ガスの組成比、圧力を一定に保った条件下
では、*i*の形成速度は光の照射強度に比例して速(
なることが知られている。
In general, in the photo-excited CVD method, it is known that the intensity of light has a large effect on the thin film formation rate, and under conditions where the substrate temperature, reaction gas composition ratio, and pressure are kept constant, * The formation speed of i* is proportional to the light irradiation intensity (
It is known that

第2図はこのような光励起CVD法による従来の薄膜形
成装置の基本的な構成を示し、図において、1は膜形成
時にその中が高真空状態に減圧される反応室、2は線状
ランプからなる光源、3は基板加熱用ヒータ、4はシラ
ン等の反応ガス、5は薄膜が形成される基板、6は光透
過材からなる光入射窓、7は反応ガス供給口、8は反応
後のガス10を排出するためのガス排出口、9は基板5
を載せる固定台である。
Figure 2 shows the basic configuration of a conventional thin film forming apparatus using such a photo-excited CVD method. In the figure, 1 is a reaction chamber whose inside is reduced to a high vacuum state during film formation, and 2 is a linear lamp. 3 is a heater for heating the substrate; 4 is a reactive gas such as silane; 5 is a substrate on which a thin film is formed; 6 is a light incident window made of a light-transmitting material; 7 is a reactive gas supply port; 8 is a post-reaction a gas exhaust port 9 for discharging the gas 10 of the substrate 5;
It is a fixed stand on which to place.

この装置では、反応ガス4が供給ロアから反応室1に導
入されると、該反応ガス4は入射窓6から投射された光
線により励起分解される。そしてこれにより生じた反応
生成物がヒータ3によって低温加熱された基板5上に堆
積し、該基板5上に薄膜が形成される0反応後のガス1
0は排出口8から排出される。
In this apparatus, when a reaction gas 4 is introduced into the reaction chamber 1 from the supply lower, the reaction gas 4 is excited and decomposed by the light beam projected from the entrance window 6. The resulting reaction products are deposited on the substrate 5 heated at a low temperature by the heater 3, and a thin film is formed on the substrate 5. Gas 1 after the reaction
0 is discharged from the discharge port 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、この従来装置では光源2として単一の線状ラ
ンプを用いているが、この線状ランプはその構造上ラン
プの両端はど光量が少なく、またこの線状ランプからの
光の基板5上での照度は、そのランプ軸と直角方向外方
はどランプから遠くなるため弱く、そのためこの従来装
置では、基板5の周縁部の膜形成速度が中央部分より遅
くなってその厚さが薄くなり、形成される薄膜の膜厚が
不均一になるという問題があった。
By the way, in this conventional device, a single linear lamp is used as the light source 2, but due to the structure of this linear lamp, the amount of light at both ends of the lamp is small, and the light from this linear lamp does not reach the substrate 5. The illumination intensity is weaker in the direction perpendicular to the lamp axis as it is farther away from the other lamps.Therefore, in this conventional device, the film formation rate at the periphery of the substrate 5 is slower than that at the center, resulting in a thinner film. However, there was a problem in that the thickness of the thin film formed was non-uniform.

この発明は、かかる従来の問題点に鑑みてなされたもの
で、光源から基板に与えられる光エネルギーの分布差を
なくして均一な膜厚の膜形成ができる半導体製造装置を
提供することを目的としている。
The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a semiconductor manufacturing apparatus capable of forming a film with a uniform thickness by eliminating differences in the distribution of light energy applied from a light source to a substrate. There is.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、半導体製造装置において、光源を移動させ
る光源移動機構を設けたものである。
According to the present invention, a light source moving mechanism for moving a light source is provided in a semiconductor manufacturing apparatus.

〔作用〕[Effect]

この発明に係る半導体製造装置では、光源が移動し、こ
れにより基板に与えられる光エネルギーの分布は上記移
動方向に均一になり、そのため該基板上に形成される薄
膜の厚さが均一となる。
In the semiconductor manufacturing apparatus according to the present invention, the light source moves, so that the distribution of light energy applied to the substrate becomes uniform in the moving direction, and therefore the thickness of the thin film formed on the substrate becomes uniform.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す0図において、第2図
と同一符号は同−又は相当部分を示し、12は線状ラン
プ12aからなる光源であり、この線状ランプ12aに
は光の方向を規制するためのガイドブレート12bが取
付けられている。
FIG. 1 shows an embodiment of the present invention, in which the same reference numerals as in FIG. 2 indicate the same or corresponding parts, and 12 is a light source consisting of a linear lamp 12a. A guide plate 12b is attached to regulate the direction of light.

そして上記線状ランプ12aは支持プレート13に反応
ガス4の流れ方向に向けて取付けられており、この支持
プレート13に一体形成された連結部13aにはボール
ネジ軸受14が固着されている。この軸受14にはボー
ルネジ15が螺合しており、該ボールネジ15の両端部
は反応室1に固着されたブラケット16により軸支され
、さらに上記ボールネジ15の一端には駆動モータ17
の出力軸が連結されており、このボールネジ15゜駆動
モータ17等により、上記線状ランプL2aをその軸方
向に移動させる光源移動機#R1Bが構成されている。
The linear lamp 12a is attached to a support plate 13 facing in the flow direction of the reaction gas 4, and a ball screw bearing 14 is fixed to a connecting portion 13a formed integrally with the support plate 13. A ball screw 15 is screwed into this bearing 14, both ends of the ball screw 15 are supported by a bracket 16 fixed to the reaction chamber 1, and a drive motor 17 is connected to one end of the ball screw 15.
This ball screw 15° drive motor 17 and the like constitute a light source moving machine #R1B that moves the linear lamp L2a in its axial direction.

次に作用効果について説明する。Next, the effects will be explained.

本実施例装置においても上記従来装置と同様に、反応ガ
ス4が反応室1内に導入されると、この導入された反応
ガス4は光源12からの光が照射されて励起分解し、こ
れにより生じた反応生成物が基板4上に堆積して該基板
4上に薄膜が形成される。
In the apparatus of this embodiment, as in the conventional apparatus, when the reactant gas 4 is introduced into the reaction chamber 1, the introduced reactant gas 4 is irradiated with light from the light source 12 and is excited and decomposed. The resulting reaction products are deposited on the substrate 4 to form a thin film on the substrate 4.

そしてこの際、従来装置においては、線状ランプの両端
部における光量が少ないことから、基板上における線状
ランプの軸方向両端部の照度が弱くなるという問題があ
ワたが、本実施例では光源12が光源移動機構1Bによ
りランプ軸方向に移動され、そのため該光源12から基
板4に与えられる光エネルギー量は、上記移動方向にお
ける光源からの光エネルギー分布の積分値となって該方
向に均一になり、その結果基板4上には上記移動方向に
均一な膜厚の薄膜が形成されることとなる。
At this time, in the conventional device, since the amount of light at both ends of the linear lamp is small, the illuminance at both ends of the linear lamp on the substrate in the axial direction becomes weak.However, in this embodiment, The light source 12 is moved in the direction of the lamp axis by the light source moving mechanism 1B, and therefore the amount of light energy given to the substrate 4 from the light source 12 is the integral value of the light energy distribution from the light source in the moving direction, and is uniform in the direction. As a result, a thin film having a uniform thickness in the moving direction is formed on the substrate 4.

このように本実施例では、基板4に与えられる光エネル
ギー量が光源12の移動方向において均一となり、該方
向における***の厚さを均一にできる。
In this manner, in this embodiment, the amount of light energy given to the substrate 4 is uniform in the moving direction of the light source 12, and the thickness of *** in this direction can be made uniform.

なお、上記実施例では、光源12をその線状ランプ12
aの軸方向に移動させるようにした場合について説明し
たが、この移動方向は上記軸方向に限定されるものでは
なく、例えば軸直角方向あるいはこの両方向に移動させ
てもよく、要は光源から基板に与えられる光エネルギー
量が均一になるように移動させればよい。
In the above embodiment, the light source 12 is the linear lamp 12.
Although the case has been described in which the movement is made in the axial direction of a, the direction of movement is not limited to the above-mentioned axial direction. For example, the movement may be made in the direction perpendicular to the axis or in both of these directions. What is necessary is to move the light energy so that the amount of light energy given to it becomes uniform.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る半導体製造装置によれば、光
源を移動させるようにしたので、基板に与えられる光エ
ネルギー量を均一にでき、膜厚の均一性を向上でき、高
精度の半導体が得られる効果がある。
As described above, according to the semiconductor manufacturing apparatus according to the present invention, since the light source is moved, the amount of light energy given to the substrate can be made uniform, the uniformity of film thickness can be improved, and high precision semiconductor manufacturing can be achieved. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体製造装置の断面
側面図、第2図は従来の半導体製造装置の断面側面図で
ある。 1・・・反応室、4・・・反応ガス、5・・・基板、1
2・・・光源、18・・・光源移動機構。
FIG. 1 is a cross-sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional side view of a conventional semiconductor manufacturing apparatus. DESCRIPTION OF SYMBOLS 1...Reaction chamber, 4...Reaction gas, 5...Substrate, 1
2...Light source, 18...Light source moving mechanism.

Claims (1)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ該反応ガス中に置かれた基板上に薄
膜を形成させる半導体製造装置において、上記光源をこ
れから基板に与えられる光エネルギーの分布が所定方向
に均一になるよう該方向に移動させる光源移動機構を備
えたことを特徴とする半導体製造装置。
(1) In a semiconductor manufacturing device that projects light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction and form a thin film on a substrate placed in the reaction gas, the light source is then applied to the substrate. 1. A semiconductor manufacturing apparatus comprising a light source moving mechanism that moves a light source in a predetermined direction so that the distribution of light energy becomes uniform in the predetermined direction.
JP25106684A 1984-11-28 1984-11-28 Manufacturing apparatus for semiconductor Pending JPS61129811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25106684A JPS61129811A (en) 1984-11-28 1984-11-28 Manufacturing apparatus for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25106684A JPS61129811A (en) 1984-11-28 1984-11-28 Manufacturing apparatus for semiconductor

Publications (1)

Publication Number Publication Date
JPS61129811A true JPS61129811A (en) 1986-06-17

Family

ID=17217118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25106684A Pending JPS61129811A (en) 1984-11-28 1984-11-28 Manufacturing apparatus for semiconductor

Country Status (1)

Country Link
JP (1) JPS61129811A (en)

Similar Documents

Publication Publication Date Title
US5645646A (en) Susceptor for deposition apparatus
US4597986A (en) Method for photochemical vapor deposition
EP0191855B1 (en) Barrel reactor and method for photochemical vapor deposition
US5252132A (en) Apparatus for producing semiconductor film
EP0766289A2 (en) Susceptor for deposition apparatus
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JPS61129811A (en) Manufacturing apparatus for semiconductor
JPS61131430A (en) Semiconductor manufacturing equipment
JPS61131415A (en) Semiconductor manufacturing equipment
JPS61131417A (en) Semiconductor manufacturing equipment
JPS61129813A (en) Manufacturing apparatus for semiconductor
JPS61128518A (en) Production equipment for semiconductor
JPS61131419A (en) Semiconductor manufacturing equipment
JPS61108123A (en) Semiconductor manufacturing equipment
JPS61131429A (en) Semiconductor manufacturing equipment
JPS61129819A (en) Semiconductor manufacturing apparatus
JPS61131420A (en) Semiconductor manufacturing equipment
JPS61108129A (en) Semiconductor manufacturing equipment
JPS61129821A (en) Semiconductor manufacturing apparatus
JPS61129820A (en) Semiconductor manufacturing apparatus
JPS61129816A (en) Semiconductor manufacturing apparatus
JPS61131418A (en) Semiconductor manufacturing equipment
JPS61108124A (en) Semiconductor manufacturing equipment
JPS61129814A (en) Manufacturing apparatus for semiconductor
JPS61131428A (en) Semiconductor manufacturing equipment