JPS61128518A - Production equipment for semiconductor - Google Patents

Production equipment for semiconductor

Info

Publication number
JPS61128518A
JPS61128518A JP25106584A JP25106584A JPS61128518A JP S61128518 A JPS61128518 A JP S61128518A JP 25106584 A JP25106584 A JP 25106584A JP 25106584 A JP25106584 A JP 25106584A JP S61128518 A JPS61128518 A JP S61128518A
Authority
JP
Japan
Prior art keywords
reaction
substrate
concentration
reaction gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25106584A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Noriyoshi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25106584A priority Critical patent/JPS61128518A/en
Publication of JPS61128518A publication Critical patent/JPS61128518A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

PURPOSE:To improve the uniformity of film thickness, to inhibit the concentration and pressure change of a reaction gas and to manufacture a semiconductor having high performance efficiently at low cost by moving a substrate while closing a clearance formed between a table and the inner wall surface of a reaction chamber. CONSTITUTION:A moving table 19 is rocked and moved in the direction that reaction gases flow, and all of each section of the surface of a substrate 5 in the direction are exposed to the reaction gases having several concentration at respective position in said direction at every same time. Consequently, even when concentration distribution in the direction that the reactions gased flow is made unequal by the change of the concentration of the reaction gases due to the diffusion and the disturbance of flow of the reaction gases, a thin-film having uniform film thickness is formed. A clearance is shaped between the table 19 and the inner wall surface 1b of a reaction chamber with the movement of the table 19, but the clearance is closed by a peripheral closing member 25, and a reaction gas 4 hardly flows to the lower section 1a of the reaction chamber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、反応ガスに光を投射して光化学反応を生じ
させ、反応ガス中に置かれた基板に薄膜を形成させる方
法(photo chemical vapourde
position :以下光励起CVD法と称す)を用
いて薄膜を形成する半導体製造装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] This invention is a method of projecting light onto a reaction gas to cause a photochemical reaction and forming a thin film on a substrate placed in the reaction gas.
The present invention relates to a semiconductor manufacturing apparatus that forms a thin film using a photo-excited CVD method (hereinafter referred to as photo-excited CVD method).

〔従来の技術〕[Conventional technology]

CVD法は集積回路装置における薄膜形成等において重
要な技術であるが、従来のCVD法は、主として反応ガ
スを加熱して化学反応を起こさせるようにしており、こ
のため反応温度が高温となり、これにより形成される薄
膜はダメージを受けやすいものである。
The CVD method is an important technology for forming thin films in integrated circuit devices, but in the conventional CVD method, the reaction gas is mainly heated to cause a chemical reaction, which results in a high reaction temperature. The thin film formed by this method is easily damaged.

そこで最近、低温CVD技術として光励起CVD法が注
目されている。この光励起CVD法は、CVDのエネル
ギー源として光を用いるものであり、これによれば、従
来の熱励起CVD法、プラズマCVD法等に比較して反
応温度を低温にでき、薄膜へのダメージも少な(するこ
とができる。
Therefore, recently, a photo-excited CVD method has been attracting attention as a low-temperature CVD technique. This photo-excited CVD method uses light as an energy source for CVD. According to this method, the reaction temperature can be lowered compared to conventional thermally-excited CVD methods, plasma CVD methods, etc., and there is no damage to thin films. little (can be)

また、一般的に光励起CVD法は、反応ガスの濃度及び
光の照度が薄膜の形成速度に大きな影響を与えることが
知られている。
Furthermore, it is generally known that in the photo-excited CVD method, the concentration of the reactant gas and the illuminance of light have a large effect on the thin film formation rate.

第2図はこのような光励起CVD法による従来の薄膜形
成装置の基本的な構成を示し、第3図は第2図の■−■
線断面図を示す。
Figure 2 shows the basic configuration of a conventional thin film forming apparatus using such a photo-excited CVD method, and Figure 3 shows the configuration of ■-■ in Figure 2.
A line cross-sectional view is shown.

両図において、1は膜形成時にその中が高真空状態に減
圧される反応室、2は線状ランプからなる光源、3は基
板加熱用ヒータ、4は反応ガス、5は基板、6は光透過
材からなる光入射窓、7は反応ガス供給口、8は反応後
のガス4aを排出するためのガス排出口、9は基板5を
載せる台である。
In both figures, 1 is a reaction chamber in which the pressure is reduced to a high vacuum during film formation, 2 is a light source consisting of a linear lamp, 3 is a heater for heating the substrate, 4 is a reaction gas, 5 is a substrate, and 6 is a light source. A light entrance window made of a transparent material, 7 a reaction gas supply port, 8 a gas discharge port for discharging the gas 4a after the reaction, and 9 a table on which the substrate 5 is placed.

この従来装置では、反応ガス4が供給ロアから反応室1
に導入されると、該反応ガス4は入射窓6から投射され
た光線により励起分解される。そしてこれにより生じた
反応生成物がヒータ3によって低温加熱された基板5上
に堆積し、該基板5上に薄膜が形成される0反応後のガ
ス4aは排出口8から排出される。
In this conventional device, the reaction gas 4 is supplied from the supply lower to the reaction chamber 1.
When introduced into the reactor gas 4, the reaction gas 4 is excited and decomposed by the light beam projected from the entrance window 6. The resulting reaction products are deposited on the substrate 5 heated at a low temperature by the heater 3, and the gas 4a after the zero reaction in which a thin film is formed on the substrate 5 is discharged from the exhaust port 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような従来の薄膜形成装置では、反応室1の一端に
反応ガス供給ロアを設け、他端にガス排出口8を設け、
反応ガス4を反応室1内に流すようにしているが、反応
ガス4を供給ロアから排出口8まで一様な濃度に保って
流すということば非常に困難である。即ち、反応ガス4
が反応室1内で拡散したり、該反応ガス4の流れが反応
室壁近くで乱れることなどから、反応ガス4の流れ方向
に沿った基板5上の反応ガス濃度は一定ではな(、通常
は反応ガス供給口の近傍で反応ガス濃度が高(ガス排出
口8に近づくに従い反応ガス濃度は低くなる。このため
、上記従来装置においては、光化学反応を生じさせる光
線の強度、基板温度等を一定に保っても反応ガス4の濃
度が基板5上で異 、なることから、均一な膜厚の高性
能な半導体を効率よく生産することが困難であった。
In such a conventional thin film forming apparatus, a reaction gas supply lower is provided at one end of the reaction chamber 1, a gas exhaust port 8 is provided at the other end,
Although the reaction gas 4 is made to flow into the reaction chamber 1, it is extremely difficult to maintain a uniform concentration of the reaction gas 4 from the supply lower to the discharge port 8. That is, reaction gas 4
The reaction gas concentration on the substrate 5 along the flow direction of the reaction gas 4 is not constant (usually The reaction gas concentration is high near the reaction gas supply port (the reaction gas concentration decreases as it approaches the gas discharge port 8). Therefore, in the conventional device described above, the intensity of the light beam that causes the photochemical reaction, the substrate temperature, etc. Even if the concentration of the reactant gas 4 is kept constant, it varies on the substrate 5, making it difficult to efficiently produce a high-performance semiconductor with a uniform film thickness.

また上記従来装置では光源2に線状ランプを用いていた
ので、該線状ランプ2による基板5上の照度分布がラン
プの軸方向、軸直角方向ともに均一ではなく、これによ
っても基板5上に均一な膜厚の薄膜を形成するのが困難
であった。
In addition, since the above conventional device uses a linear lamp as the light source 2, the illuminance distribution on the substrate 5 due to the linear lamp 2 is not uniform both in the axial direction of the lamp and in the direction perpendicular to the axis. It was difficult to form a thin film with uniform thickness.

さらにまた、上記従来装置では、反応ガス4が反応室1
の底部にも流れ、そのために反応ガス4の濃度が不均一
になったり、圧力が変動したりするという問題があった
Furthermore, in the conventional apparatus described above, the reaction gas 4 is supplied to the reaction chamber 1.
The reaction gas 4 also flows to the bottom of the reactor gas 4, which causes problems such as uneven concentration of the reaction gas 4 and pressure fluctuations.

この発明は、このような従来の問題点を解消するために
なされたもので、反応ガスの濃度の不均一性、圧力変動
を抑制でき、またたとえ基板上の反応ガス濃度が不均一
になったり、照度が不均一になったりしても、基板上に
均一な膜厚の薄膜を形成することができる半導体製造装
置を提供することを目的とするものである。
This invention was made to solve these conventional problems, and can suppress non-uniformity in the concentration of the reaction gas and pressure fluctuations, and even if the concentration of the reaction gas on the substrate becomes non-uniform. It is an object of the present invention to provide a semiconductor manufacturing apparatus that can form a thin film of uniform thickness on a substrate even if the illuminance becomes non-uniform.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体製造装置では、基板を載置するテ
ーブルを移動させるためのテーブル移動機構を設けると
ともに、上記テーブルに、該テーブルと反応室壁面との
間にできる隙間を閉塞する周縁閉塞部材を形成したもの
である。
In the semiconductor manufacturing apparatus according to the present invention, a table moving mechanism for moving a table on which a substrate is placed is provided, and a peripheral closing member is provided on the table to close a gap formed between the table and the wall surface of the reaction chamber. It was formed.

〔作用〕[Effect]

この発明においては、基板を反応室内でテーブル移動機
構にて揺動運動させるから、基板の各部の膜形成に寄与
する反応ガス量、光エネルギー量は該基板の移動範囲に
わたる反応ガス濃度分布。
In this invention, since the substrate is oscillated in the reaction chamber by a table moving mechanism, the amount of reactive gas and the amount of light energy that contribute to film formation on each part of the substrate are determined by the concentration distribution of the reactive gas over the movement range of the substrate.

光の照度分布の積分値に相当する量となり、従って該各
分布が不均一であっても基板上に形成される薄膜の膜厚
は該方向に均一となり、また上記テーブルの移動に伴な
ってテーブルと反応室壁面との間にできる隙間は周縁閉
塞部材により閉塞されるから、反応ガスの反応室下部に
流れる量が低減されて反応ガスの濃度、圧力変動が抑制
される。
The amount corresponds to the integral value of the illuminance distribution of light, so even if the respective distributions are non-uniform, the thickness of the thin film formed on the substrate will be uniform in the direction, and as the table moves, Since the gap formed between the table and the wall surface of the reaction chamber is closed by the peripheral closing member, the amount of reaction gas flowing to the lower part of the reaction chamber is reduced, and fluctuations in the concentration and pressure of the reaction gas are suppressed.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による半導体製造装置の断面
図である。図において、1は反応室、4は反応ガス、1
2は複数の線状ランプを適当な間隔をおいて上記反応ガ
ス4の流れ方向に向けて該方向と直角方向に並列配置し
た光源、3は基板加熱用ヒータ、5は基板、6は光透過
材からなる光入射窓である。また7は反応ガス供給ノズ
ル、8は反応後のガス4aを排出するためのガス排出ノ
ズルであり、この両ノズル7.8の反応室側端部は基板
積載用の移動テーブル19上に延びている。
FIG. 1 is a sectional view of a semiconductor manufacturing apparatus according to an embodiment of the present invention. In the figure, 1 is a reaction chamber, 4 is a reaction gas, 1
2 is a light source in which a plurality of linear lamps are arranged in parallel at appropriate intervals in a direction perpendicular to the flow direction of the reaction gas 4; 3 is a heater for heating the substrate; 5 is a substrate; 6 is a light transmitting device. This is a light entrance window made of wood. Further, 7 is a reaction gas supply nozzle, and 8 is a gas discharge nozzle for discharging the gas 4a after the reaction, and the ends of both nozzles 7.8 on the reaction chamber side extend onto the moving table 19 for loading the substrate. There is.

20は上記移動テーブル19を反応ガス4の流れる方向
に沿って揺動運動させるテーブル移動機構であり、これ
は上記テーブル19に固着された連結子19aに螺合し
たボールネジ23と、これを回転駆動するモータ24と
から構成されている。
Reference numeral 20 denotes a table moving mechanism that swings the moving table 19 along the flow direction of the reaction gas 4, and this mechanism includes a ball screw 23 screwed into a connector 19a fixed to the table 19, and a ball screw 23 that is driven to rotate. It is composed of a motor 24 that operates.

また、上記テーブル19の周縁には周縁閉塞部材25が
取付けられており、これは上記テーブル19の移動に伴
なってこれと反応室内壁1bとの間にできる隙間を閉塞
するためのものである。
Further, a peripheral edge closing member 25 is attached to the periphery of the table 19, and is used to close a gap formed between the table 19 and the reaction chamber wall 1b as the table 19 moves. .

次に動作について説明する。Next, the operation will be explained.

本実施例装置では、上記従来装置と同様に、反応室1に
導入された反応ガス4は入射窓6から投射された光線に
より光化学反応を生じ、これによりヒータ3によって低
温加熱された基板5上に薄膜が形成される。
In the apparatus of this embodiment, similarly to the conventional apparatus described above, the reaction gas 4 introduced into the reaction chamber 1 causes a photochemical reaction by the light beam projected from the entrance window 6, and this causes the substrate 5 to be heated at a low temperature by the heater 3. A thin film is formed on the surface.

そしてこの際、移動テーブル19は反応ガスの流れる方
向に沿って揺動運動され、該方向に沿った基板5の表面
各部は、すべて上記方向に沿った各位置の各濃度の反応
ガスに同一時間ずつさらされることとなり、そのため上
記表面各部がさらされる反応ガスの量は積分の結果すべ
て同一ということになる。このため、反応ガスの拡散や
流れの乱れによる反応ガスの濃度の変化により、反応ガ
スの流れの方向に沿う濃度分布が不均一であっても、均
一な膜厚の薄膜が形成されることとなる。
At this time, the moving table 19 is oscillated along the direction in which the reaction gas flows, and each part of the surface of the substrate 5 along the direction is exposed to the reaction gas at each concentration at each position along the direction for the same time. Therefore, the amount of reaction gas to which each part of the surface is exposed is the same as a result of integration. Therefore, even if the concentration distribution along the flow direction of the reactant gas is uneven due to changes in the concentration of the reactant gas due to diffusion of the reactant gas or disturbances in the flow, a thin film with a uniform thickness can be formed. Become.

また本実施例では光源12に線状ランプを上記反応ガス
の流れ方向と直角方向に複数並列配置したものを用いて
おり、上記反応ガス4の流れる方向と直角方向、即ちラ
ンプの軸と直角方向に沿う基板5上での照度分布は均一
になるものの、上記ガスの流れ方向であるランプの軸方
向に沿って基板5上で照度分布の不均一が生じることと
なるが、これも上記のように基板5を上記軸方向に揺動
運動させることによって該方向の基板表面各部は同一強
度の光線の下に同一時間さらされることとなり、膜厚の
分布は均一となる。
Furthermore, in this embodiment, a plurality of linear lamps arranged in parallel in a direction perpendicular to the flow direction of the reaction gas 4 is used as the light source 12. Although the illuminance distribution on the substrate 5 along the direction becomes uniform, the illuminance distribution becomes uneven on the substrate 5 along the axial direction of the lamp, which is the flow direction of the gas, as described above. By swinging the substrate 5 in the axial direction, each part of the substrate surface in that direction is exposed to the same intensity of light for the same amount of time, and the film thickness distribution becomes uniform.

また本実施例では、テーブル19の移動に伴なって、こ
れと反応室内壁面に1bとの間に隙間が生じることとな
るが、この隙間は周縁閉塞部材25により閉塞され、こ
れにより反応ガス4は反応室下部1aにはほとんど流れ
ない。
Further, in this embodiment, as the table 19 moves, a gap is created between the table 19 and the wall surface of the reaction chamber 1b, but this gap is closed by the peripheral edge closing member 25, so that the reaction gas 4 hardly flows into the lower part 1a of the reaction chamber.

このように本装置では、基板5上への薄膜の形成速度が
光線の強度変化及び反応ガスの濃度の不均一による影響
を受けず、基板5全面にわたり均一な膜厚の薄膜を効率
よく形成することができ、また反応室下部へ流れる反応
ガス量を低減でき、反応ガスの濃度変化、圧力変化を抑
制でき、また上記反応室下部へ流れるガス量を低減でき
る分だけ加工準備時間を短縮でき、その結果、高性能の
半導体を効率よく安価に製造できる。
In this way, in this apparatus, the speed of forming a thin film on the substrate 5 is not affected by changes in the intensity of the light beam or uneven concentration of the reactant gas, and a thin film with a uniform thickness can be efficiently formed over the entire surface of the substrate 5. In addition, the amount of reaction gas flowing to the lower part of the reaction chamber can be reduced, and changes in concentration and pressure of the reaction gas can be suppressed, and processing preparation time can be shortened by the amount of gas flowing to the lower part of the reaction chamber. As a result, high-performance semiconductors can be manufactured efficiently and at low cost.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体製造装置によれば
、基板を移動させるとともに、テーブルと反応室内壁面
にできる隙間を閉塞するようにしたので、膜厚の均一性
を向上でき、また反応ガスの濃度、圧力変化を抑制でき
、高性能の半導体を効率よく安価に製造できる効果があ
る。
As described above, according to the semiconductor manufacturing apparatus according to the present invention, since the substrate is moved and the gap between the table and the wall surface of the reaction chamber is closed, the uniformity of the film thickness can be improved, and the reaction gas This has the effect of suppressing changes in concentration and pressure, allowing high-performance semiconductors to be manufactured efficiently and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体製造装置の断面
側面図、第2図は従来の半導体製造装置の断面側面図、
第3図は第2図の可−■線断面図である。 ■・・・反応室、12・・・光源、4・・−反応ガス、
5・・・基板、19・・・テーブル、20・・・テーブ
ル移動機構、25・・・周縁閉塞部材。 なお図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a cross-sectional side view of a conventional semiconductor manufacturing apparatus,
FIG. 3 is a cross-sectional view taken along the line II-II of FIG. 2. ■...Reaction chamber, 12...Light source, 4...-Reaction gas,
5... Board, 19... Table, 20... Table moving mechanism, 25... Peripheral closing member. In the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ該反応ガス中に置かれた基板上に薄
膜を形成させる半導体製造装置において、上記基板を載
置するテーブルを移動させるテーブル移動機構が設けら
れ、上記テーブルは該テーブルの移動に伴ない該テーブ
ルと上記反応室壁面との間にできる隙間を閉塞する周縁
閉塞部材を有するものであることを特徴とする半導体製
造装置。
(1) In a semiconductor manufacturing apparatus that projects light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction and form a thin film on a substrate placed in the reaction gas, a table on which the substrate is placed is used. Semiconductor manufacturing, characterized in that a table moving mechanism for moving the table is provided, and the table has a peripheral closing member that closes a gap formed between the table and the wall surface of the reaction chamber as the table moves. Device.
JP25106584A 1984-11-28 1984-11-28 Production equipment for semiconductor Pending JPS61128518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25106584A JPS61128518A (en) 1984-11-28 1984-11-28 Production equipment for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25106584A JPS61128518A (en) 1984-11-28 1984-11-28 Production equipment for semiconductor

Publications (1)

Publication Number Publication Date
JPS61128518A true JPS61128518A (en) 1986-06-16

Family

ID=17217103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25106584A Pending JPS61128518A (en) 1984-11-28 1984-11-28 Production equipment for semiconductor

Country Status (1)

Country Link
JP (1) JPS61128518A (en)

Similar Documents

Publication Publication Date Title
US4509456A (en) Apparatus for guiding gas for LP CVD processes in a tube reactor
US5252132A (en) Apparatus for producing semiconductor film
US5229081A (en) Apparatus for semiconductor process including photo-excitation process
US4597986A (en) Method for photochemical vapor deposition
JPH01107519A (en) Vapor growth apparatus
KR20170037832A (en) Film forming apparatus
JPS61128518A (en) Production equipment for semiconductor
CN112585730A (en) Substrate processing method and substrate processing apparatus
JPS61128517A (en) Production unit for semiconductor
KR100190909B1 (en) Shower head for cvd reactor
JPS61131415A (en) Semiconductor manufacturing equipment
JPS61108129A (en) Semiconductor manufacturing equipment
JPS61108123A (en) Semiconductor manufacturing equipment
JP2010245478A (en) Plasma processing apparatus
JPH0341722A (en) Thin-film manufacturing apparatus
US4842828A (en) Apparatus for treating surface of object with ultraviolet rays and reaction gas
KR200327634Y1 (en) Apparatus for atomic layer deposition
JPS61131430A (en) Semiconductor manufacturing equipment
JPS61131417A (en) Semiconductor manufacturing equipment
KR100390576B1 (en) Apparatus for fabricating thin film
JPS61131429A (en) Semiconductor manufacturing equipment
JP2023178580A (en) Surface treatment device and pressure control method therefor
JP2003273385A (en) Formation method of multilayer thin film pattern requiring no mask alignment nor photolithography process
JPS61129816A (en) Semiconductor manufacturing apparatus
JPS61131422A (en) Semiconductor manufacturing equipment