JPS61131417A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPS61131417A
JPS61131417A JP25344484A JP25344484A JPS61131417A JP S61131417 A JPS61131417 A JP S61131417A JP 25344484 A JP25344484 A JP 25344484A JP 25344484 A JP25344484 A JP 25344484A JP S61131417 A JPS61131417 A JP S61131417A
Authority
JP
Japan
Prior art keywords
light
substrate
reaction
reaction chamber
linear lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25344484A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Noriyoshi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25344484A priority Critical patent/JPS61131417A/en
Publication of JPS61131417A publication Critical patent/JPS61131417A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable to obtain a highly precise semiconductor in a highly efficient manner by a method wherein a reflection chamber is formed in column shape of almost isosceles triangle cross-section, and the linear lamp group covered by condensing and reflecting plates is arranged outside the isosceles of the isosceles triangle as a source of light. CONSTITUTION:A reaction chamber 11 is formed in column shape of isosceles triangle. As linear lamp groups 12a and 12b are arranged along the isosceles, the distance between a source of light and a substrate 5 is made smaller when compared with the device of the conventional structure. Besides, as the linear lamp groups 12a and 12b are covered by condensing and reflecting plates 20a and 20b, the illuminance of light is increased, and the speed of formation of a thin film is also improved remarkably when compared with the conventional device. The beams of light irradiated from the linear lamp groups 12a and 12b on both sides are overlapped each other at the center part of the substrate, and the illuminance at that part is increased. The center part of the linear lamp groups 12a and 12b on both sides are widely separated from the substrate 5. As a result, the illuminance distribution of light is almost made uniform over the wide range of the reaction chamber 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体製造装置に関し、特に光励起CV 
D (photo chesical vapour 
deposition)法によりWiIllIを形成す
る装置に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to semiconductor manufacturing equipment, and in particular to optically pumped CV
D (photo chemical vapor
The present invention relates to an apparatus for forming WiIllI by a deposition method.

〔従来の技術〕[Conventional technology]

CVD法は集積回路装置における薄膜形成等において重
要な技術であるが、従来のCVD法は、主として反応ガ
スを加熱して化学反応を起こさせるようにしており、こ
のため反応温度が高温となり、これにより形成される*
i*はダメージを受けやすいものである。
The CVD method is an important technology for forming thin films in integrated circuit devices, but in the conventional CVD method, the reaction gas is mainly heated to cause a chemical reaction, which results in a high reaction temperature. formed by *
i* is easily damaged.

そこで最近、低温CVD技術として光励起CVD法が注
目されている。この光励起CVD法は、CVDのエネル
ギー源として光を用いるものであり、これによれば、従
来の熱励起CVD法、プラズマCVD法等に比較して反
応温度を低温にでき、WIIIIへのダメージも少なく
することができる。
Therefore, recently, a photo-excited CVD method has been attracting attention as a low-temperature CVD technique. This photo-excited CVD method uses light as an energy source for CVD. According to this method, the reaction temperature can be lowered compared to conventional thermally-excited CVD methods, plasma CVD methods, etc., and damage to WIII can be reduced. It can be reduced.

また、一般的に光励起CVD法では、光の強度が薄膜の
形成速度に大きな影響を与えることが知られており、基
板温度1反応ガスの組成比、圧力を一定に保った条件下
では、Wi膜の形成速度は光の照射強度に比例して速く
なることが知られている。従って、膜形成時間を短縮し
て効率を上げるためには光の照射強度を強くする必要が
ある。
In addition, it is generally known that in the photo-excited CVD method, the intensity of light has a large effect on the thin film formation rate. It is known that the rate of film formation increases in proportion to the intensity of light irradiation. Therefore, in order to shorten the film formation time and increase efficiency, it is necessary to increase the intensity of light irradiation.

第2図はこのような光励起CVD法による従来のi膜形
成装置の基本的な構成を示し、図において、1は薄膜形
成時にその中が高真空状態に減圧される反応室、2は線
状の低圧水銀ランプ(にJ、下、線状ランプと記す)か
らなる光源、3は基板加熱用ヒータ、4はシラン等の反
応ガス、5−は薄膜が形成される基板、6は光透過材か
らなる光入射窓、7は反応ガス供給口、8は反応後のガ
ス4aを排出するためのガス排出口、9は基板5を載せ
る固定台である。
Figure 2 shows the basic configuration of a conventional i-film forming apparatus using such a photo-excited CVD method. 3 is a heater for heating the substrate, 4 is a reactive gas such as silane, 5- is a substrate on which a thin film is formed, 6 is a light-transmitting material 7 is a reaction gas supply port, 8 is a gas discharge port for discharging the gas 4a after the reaction, and 9 is a fixing table on which the substrate 5 is placed.

この装置では、反応ガス4が供給ロアから反応室1内に
導入されると、該反応ガス4は入射窓6から投射された
光線により励起分解される。そしてこれにより生じた反
応生成物がヒータ3によって低温加熱された基板5上に
堆積し、該基板5上に薄膜が形成される。反応後のガス
4aは排出口8から排出される。
In this apparatus, when a reaction gas 4 is introduced into the reaction chamber 1 from the supply lower, the reaction gas 4 is excited and decomposed by the light beam projected from the entrance window 6. The resulting reaction product is deposited on the substrate 5 heated at a low temperature by the heater 3, and a thin film is formed on the substrate 5. The gas 4a after the reaction is discharged from the discharge port 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記のような従来の装置では、その構造上光
源と基板5との距離が大きくなってしまい、光の照射強
度を強くするのは困難である。また、基板上に均一な厚
さの薄膜を形成するには該基板上の照度を均一にするこ
とが必要であるが、上記従来装置では光源として単一の
線状ランプ2を用いているために、極く狭い範囲でしか
均一な照度が得られず、従って一度に一膜形成を行なう
ことのできる基板の大きさが限られてしまう。このよう
に上記従来装置では光の照度不足及び照度の不均一性の
ために、膜形成時間が長(なり、効率が悪いという問題
があった。  ゛ そこで膜形成時間を短縮するために、光源として複数の
線状ランプを使用することも考えられるが、このような
方式によれば各線状ランプからの照射光が重ね合わされ
る結果、基板中央部での照射強度がその両端部に比べて
強くなり、やはり照度分布は不均一になってしまう。
However, in the conventional device as described above, the distance between the light source and the substrate 5 becomes large due to its structure, and it is difficult to increase the intensity of light irradiation. Furthermore, in order to form a thin film of uniform thickness on a substrate, it is necessary to make the illumination intensity on the substrate uniform, but since the above-mentioned conventional device uses a single linear lamp 2 as a light source, Furthermore, uniform illuminance can only be obtained in a very narrow range, which limits the size of the substrate on which one film can be formed at a time. As described above, in the above-mentioned conventional apparatus, there was a problem that the film formation time was long (and the efficiency was poor) due to insufficient illuminance and non-uniformity of the illuminance. It is also possible to use multiple linear lamps, but with this method, the irradiation light from each linear lamp is superimposed, so that the irradiation intensity at the center of the board is stronger than at both ends. As a result, the illuminance distribution becomes uneven.

この発明は、このような問題点を解消するためになされ
たもので、広い範囲にわたって均一な、かづ強い照度の
光を照射でき、高精度に効率よく半導体を製造すること
のできる半導体製造装置を提供することを目的としてい
る。
This invention was made to solve these problems, and provides a semiconductor manufacturing apparatus that can irradiate light with uniform intensity over a wide area and can manufacture semiconductors efficiently and with high precision. is intended to provide.

CB!!点を解決するための手段〕 この発明に係る半導体製造装置は、反応室の形状を横断
面略二等辺三角形の柱状とし、光源として該反応室の2
つの斜面の各々の外側に集光反射板で覆われた線状ラン
プ群を配列し、さらに反応ガス供給口を上記反応室の二
等辺三角形の両底角位置に、ガス排出口を頂点位置に形
成したものである。
CB! ! Means for Solving the Problem] In the semiconductor manufacturing apparatus according to the present invention, the reaction chamber has a columnar shape with a cross section of approximately isosceles triangle, and two of the reaction chambers are used as light sources.
A group of linear lamps covered with condensing reflectors are arranged on the outside of each of the two slopes, and the reaction gas supply ports are located at both base corners of the isosceles triangle of the reaction chamber, and the gas discharge ports are located at the apex position. It was formed.

〔作用〕[Effect]

この発明においては、横断面略二等辺三角形の反応室の
2つの斜面の外側に各々集光反射板で覆われた線状ラン
プ群が配置されているから、広範囲にわたって均一な、
かつ強い照度の光が照射され、しかも反応後のガスをそ
の浮力を利用して排出するから光入射窓の曇りが防止さ
れ、広い面積の基板に、速い膜形成速度でもって均一な
厚さの薄膜が形成される。
In this invention, a group of linear lamps each covered with a light condensing reflector is arranged on the outside of two slopes of a reaction chamber having a substantially isosceles triangular cross section.
Moreover, since the light is irradiated with strong illuminance and the gas after the reaction is discharged using its buoyancy, clouding of the light entrance window is prevented, and a film of uniform thickness can be formed on a wide area of the substrate with a fast film formation speed. A thin film is formed.

〔実施例〕〔Example〕

以下、本1発明の実施例を図について説明する。 Embodiments of the first invention will be described below with reference to the drawings.

第1図は本発明の一実施例による半導体製造装置を示し
、図において、11は横断面略二等辺三角形の柱状に形
成された反応室であり、膜形成時においてはその中が高
真空状態に減圧されるものである。そしてこの反応室1
1の二等辺三角形の両底角位置には反応ガス4を該反応
室11内に導入するための反応ガス供給口17a、17
bが、また頂点位置には反応後のガス4aを排出するた
めの反応ガス排出口18が形成されている。16a。
FIG. 1 shows a semiconductor manufacturing apparatus according to an embodiment of the present invention, and in the figure, 11 is a reaction chamber formed in the shape of a column with an approximately isosceles triangular cross section, and the inside thereof is in a high vacuum state during film formation. The pressure is reduced to . And this reaction chamber 1
Reaction gas supply ports 17a, 17 for introducing the reaction gas 4 into the reaction chamber 11 are provided at both base corner positions of the isosceles triangle 1.
b, and a reaction gas outlet 18 is formed at the apex position for discharging the gas 4a after the reaction. 16a.

16bはそれぞれ光透過材からなる光入射窓であり、こ
れらは上記反応室11の二等辺三角形の二等辺の位置に
相対向して設けられている。12a。
Reference numerals 16b denote light entrance windows made of a light-transmitting material, and these are provided opposite to each other at isosceles positions of the isosceles triangle of the reaction chamber 11. 12a.

12bはそれぞれこの光入射窓16a、16bの外側に
、該光入射窓16a、16bと平行に配列された線状ラ
ンプ群、20a、20bはこの線状ランプ群12a、1
2bを覆うように配設された集光反射板であり、これは
線状ランプ群12a。
Reference numeral 12b indicates a group of linear lamps arranged outside of the light incident windows 16a, 16b and parallel to the light incident windows 16a, 16b, and 20a, 20b indicate the linear lamp groups 12a, 1.
2b, which is a condensing and reflecting plate disposed to cover the linear lamp group 12a.

12bからの光を有効に基板5上へ照射するためのもの
である。
This is for effectively irradiating the light from 12b onto the substrate 5.

また、5は基板、3は該基板5を加熱するための基板加
熱用ヒータ、19は図示左右方向に摺動可能に設けられ
た基板積載用テーブルであり、これには、該テーブル1
9に固着された連結子19a、該連結子19aに螺合し
たボールネジ23゜及び該ボールネジ23を回転駆動す
るモータ(図示せず)からなるテーブル駆動機構が設、
け−られている。
Further, 5 is a substrate, 3 is a substrate heating heater for heating the substrate 5, and 19 is a substrate loading table provided so as to be slidable in the horizontal direction in the figure.
A table drive mechanism is provided, which includes a connector 19a fixed to the connector 9, a ball screw 23° screwed to the connector 19a, and a motor (not shown) that rotationally drives the ball screw 23.
It is being kicked.

次に作用効果について説明する。Next, the effects will be explained.

この装置では、反応ガス4は反応室11の下方両端の供
給口17a、17bから導入され、該反応ガス4は光入
射窓16a、16bから投射された光により励起分解さ
れる。そしてこれにより生した反応生成物はヒータ3に
よって低温加熱された基板5上に堆積し、該基板5上に
薄膜が形成される0反応後のガス4aは反応室11の頂
点付近に設けられたガス排出口18から排出される。
In this apparatus, a reaction gas 4 is introduced from supply ports 17a and 17b at both lower ends of a reaction chamber 11, and the reaction gas 4 is excited and decomposed by light projected from light entrance windows 16a and 16b. The reaction products generated thereby are deposited on the substrate 5 heated at a low temperature by the heater 3, and a thin film is formed on the substrate 5.The gas 4a after the reaction is provided near the top of the reaction chamber 11. The gas is discharged from the gas outlet 18.

この際本実施例装置では、反応室11を二等辺三角形の
柱状とし、光源としての線状ランプ群12a、12bを
その二等辺に沿って配置している啼 ので、従来構造の装置に比し光源と基板5との距離は小
さくなっており、さらに線状ランプ群12a、12bを
集光反射板20a、20bで覆っているので、その結果
光の照度は増大し、薄膜の形成速度も従来に比し著しく
向上している。
At this time, in the apparatus of this embodiment, the reaction chamber 11 is formed into an isosceles triangular columnar shape, and the linear lamp groups 12a and 12b serving as light sources are arranged along the isosceles side of the column, so that it is different from the apparatus of the conventional structure. The distance between the light source and the substrate 5 is shortened, and the linear lamp groups 12a and 12b are covered with condensing reflectors 20a and 20b, so the illuminance of the light is increased and the thin film formation speed is also lower than that of the conventional one. This is a marked improvement compared to .

また本実施例装置の場合、基板5の中央部において両側
の線状ランプ群12a−,12bからの照射光が重ね合
わされ、その部分の照度が強(なるが、両側の線状ラン
プ群12a、12bは中央部分はど基板5からの距離が
大きくなっている。このため反応室11の広い範囲にわ
たって光の照度分布はほぼ均一なものとなっている。
In addition, in the case of the device of this embodiment, the irradiated light from the linear lamp groups 12a-, 12b on both sides is superimposed at the central part of the substrate 5, and the illuminance of that part is strong (although the linear lamp groups 12a-, 12b on both sides 12b has a central portion that is distanced from the substrate 5. Therefore, the illuminance distribution of light is substantially uniform over a wide range of the reaction chamber 11.

従ってこの実施例装置によれば、従来に比し大面積の基
板に速い速度で薄膜形成を行なうことができ、非常に効
率よ←膜形成を行なうことができる。なお反応室11の
形状は、照度の増大を図る場合は二等辺三角形の底角を
約30°、また照度分布の均一化を図る場合は約15°
の場合がそれぞれ最も望ましいものである。
Therefore, according to the apparatus of this embodiment, it is possible to form a thin film on a substrate having a larger area at a faster speed than in the conventional method, and it is possible to form a film very efficiently. The shape of the reaction chamber 11 is an isosceles triangle whose base angle is approximately 30° when increasing illuminance, and approximately 15° when uniformizing illuminance distribution.
Each of these cases is the most desirable.

ま−た反応ガス4の流れに注目すると、該反応ガス4は
2つの供給口17a、17bから導入された後、反応室
11の中央部上方の排出口18に排出されるようになっ
ており、このため従来装置のように、反応室の一端から
他端へ流すものに比べて反応ガス4の流れる距離は短か
くなっている。
Also, paying attention to the flow of the reaction gas 4, the reaction gas 4 is introduced from the two supply ports 17a and 17b, and then is discharged to the discharge port 18 above the center of the reaction chamber 11. Therefore, the distance through which the reaction gas 4 flows is shorter than that in the conventional apparatus in which the reaction gas 4 flows from one end of the reaction chamber to the other.

従って、前述のような大面積の基板5に薄膜形成を行な
う場合にも、該基板5上での反応ガスの濃度は均一に保
たれ、その厚さが均一な薄膜を形成することができる。
Therefore, even when forming a thin film on a large-area substrate 5 as described above, the concentration of the reaction gas on the substrate 5 is kept uniform, and a thin film with a uniform thickness can be formed.

さらに本実施例の場合、基板5近傍の反応後のガス4a
は、ヒータ3等によって暖められて浮力によって上昇し
、そのまま排出□口18に排出される。従って、反応生
成物が光入射窓16a、16bに付着するのを防止でき
、いわゆる窓の曇りによる光照射強度の低下を防止する
こともできる。
Furthermore, in the case of this embodiment, the gas 4a after the reaction near the substrate 5
is warmed by the heater 3 and the like, rises due to buoyancy, and is discharged directly to the discharge port 18. Therefore, it is possible to prevent reaction products from adhering to the light entrance windows 16a and 16b, and it is also possible to prevent a decrease in light irradiation intensity due to so-called fogging of the windows.

そしてさらに、基板積載用テーブル19を図示゛左右方
向に摺動させることによって、基板各部は同一照度の光
に同一時間、あるいは同一濃度の反応ガス4に同一時間
さらされ−ることとなりミたとえ線状ランプ群12a、
12bからの光の照度が不均一であっても、また反応ガ
ス4の濃度が不拘−一であっても、これらを補償して高
精度の、半導体を製造することができる。
Further, by sliding the substrate loading table 19 in the horizontal direction shown in the figure, each part of the substrate is exposed to light of the same intensity for the same time, or to the reaction gas 4 of the same concentration for the same time. shaped lamp group 12a,
Even if the illuminance of the light from 12b is non-uniform, or even if the concentration of the reaction gas 4 is unrestricted, these can be compensated for and a highly accurate semiconductor can be manufactured.

(発明の効果〕 以上のように、この発明に係る半導体製造装置によれば
、反応室を横断面略二等辺三角形の柱状とし、光源とし
て集光反射板で覆□われた線状ランプ群を該二等辺三角
形の二等辺の外側に配置し、さらに反応ガス供給口を上
記反応室の二等辺三角形の両底角位置に、排出口を頂点
位置に配置したので、広範囲にねたうて均一な、かつ強
い照度の光を照射することができ、さらに光入射窓のう
りを防止することもでき、長時間にわたって高精度な半
導体を効率よ(製造できる効果がある。
(Effects of the Invention) As described above, according to the semiconductor manufacturing apparatus of the present invention, the reaction chamber has a columnar shape with a substantially isosceles triangular cross section, and a group of linear lamps covered with a condensing reflector is used as a light source. The reactant gas supply ports are placed on the outside of the isosceles of the isosceles triangle, and the reaction gas supply ports are placed at both base corners of the isosceles triangle of the reaction chamber, and the discharge port is placed at the apex position, so that the gas is uniformly distributed over a wide range. It is possible to irradiate light with a high illumination intensity, and it can also prevent curving of the light entrance window, making it possible to efficiently manufacture high-precision semiconductors over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一★施例によや半導体製造装置の断面
構成図、第2図は従来の半導体製造装置□ の断面構成図である。 4・・・反応ガス、5・・・基板、11・・・反応室、
12a+12b””線状ランプ群、17a、17b・−
反応ガス供給口、18・・・反応ガス排出口、20a。 20b・・・集光反射板。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional semiconductor manufacturing apparatus. 4... Reaction gas, 5... Substrate, 11... Reaction chamber,
12a+12b"" linear lamp group, 17a, 17b・-
Reaction gas supply port, 18...Reaction gas discharge port, 20a. 20b... Light condensing reflector. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ該反応ガス中に置かれた基板上に薄
膜を形成させる半導体製造装置において、上記反応室は
横断面略二等辺三角形の柱状であり、上記反応室の二等
辺三角形の両底角位置に反応ガス供給口が、頂点位置に
反応ガス排出口が形成されており、上記光源は上記反応
室の2つの斜面の外側に配列されそれぞれ集光用反射板
で覆われた2組の線状ランプ群からなることを特徴とす
る半導体製造装置。
(1) In a semiconductor manufacturing apparatus in which light from a light source is projected onto a reaction gas in a reaction chamber to cause a photochemical reaction and a thin film is formed on a substrate placed in the reaction gas, the reaction chamber has a cross section of approximately 2. The reaction chamber has an equilateral triangular columnar shape, and a reaction gas supply port is formed at both base corners of the isosceles triangle of the reaction chamber, and a reaction gas discharge port is formed at the apex position, and the light source is located on the two slopes of the reaction chamber. A semiconductor manufacturing device comprising two sets of linear lamps arranged on the outside and each covered with a condensing reflector.
JP25344484A 1984-11-29 1984-11-29 Semiconductor manufacturing equipment Pending JPS61131417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25344484A JPS61131417A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25344484A JPS61131417A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JPS61131417A true JPS61131417A (en) 1986-06-19

Family

ID=17251480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25344484A Pending JPS61131417A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS61131417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979466A (en) * 1986-12-01 1990-12-25 Hitachi, Ltd. Apparatus for selective deposition of metal thin film
JPH0527144U (en) * 1991-09-13 1993-04-09 ミサワホーム株式会社 Jigs for self-supporting foundation beams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979466A (en) * 1986-12-01 1990-12-25 Hitachi, Ltd. Apparatus for selective deposition of metal thin film
JPH0527144U (en) * 1991-09-13 1993-04-09 ミサワホーム株式会社 Jigs for self-supporting foundation beams

Similar Documents

Publication Publication Date Title
CN101093786B (en) UV curing system
US8338809B2 (en) Ultraviolet reflector with coolant gas holes and method
US20100096569A1 (en) Ultraviolet-transmitting microwave reflector comprising a micromesh screen
KR20010043928A (en) Gas manifold for uniform gas distribution and photochemistry
KR20020059853A (en) Device for fast and uniform heating of a substrate with infrared radiation
JPS61131417A (en) Semiconductor manufacturing equipment
JPS61131415A (en) Semiconductor manufacturing equipment
JPS61131430A (en) Semiconductor manufacturing equipment
WO2004088406A1 (en) Sealing material curing method and sealing material curing device
JPS61131429A (en) Semiconductor manufacturing equipment
JPS61129819A (en) Semiconductor manufacturing apparatus
JPS61108124A (en) Semiconductor manufacturing equipment
KR0151074B1 (en) Ultraviolet radiating apparatus
JPS61131428A (en) Semiconductor manufacturing equipment
JPS61129815A (en) Semiconductor manufacturing apparatus
JPS61131419A (en) Semiconductor manufacturing equipment
JPS61129811A (en) Manufacturing apparatus for semiconductor
JPS61129814A (en) Manufacturing apparatus for semiconductor
JPS61131416A (en) Semiconductor manufacturing equipment
JPS61131424A (en) Semiconductor manufacturing equipment
JPS61129821A (en) Semiconductor manufacturing apparatus
JPS61131422A (en) Semiconductor manufacturing equipment
JPS61108123A (en) Semiconductor manufacturing equipment
JPH02216818A (en) Light application thin-film manufacturing device
JPS61131420A (en) Semiconductor manufacturing equipment