JPS61131415A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPS61131415A
JPS61131415A JP25344284A JP25344284A JPS61131415A JP S61131415 A JPS61131415 A JP S61131415A JP 25344284 A JP25344284 A JP 25344284A JP 25344284 A JP25344284 A JP 25344284A JP S61131415 A JPS61131415 A JP S61131415A
Authority
JP
Japan
Prior art keywords
light
reaction
reaction chamber
gas
isosceles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25344284A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Noriyoshi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25344284A priority Critical patent/JPS61131415A/en
Publication of JPS61131415A publication Critical patent/JPS61131415A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a highly precise semiconductor in a highly efficient manner by a method wherein a reaction chamber is formed in a column shape having an almost isosceles triangled cross section, a linear lamp group is arranged outside the isosceles of the isosceles triangle as the source of light, a reaction gas feeding hole is positioned at both base angles of the isosceles triangle of the reaction chamber, and an exhaust hole is positioned at the top point. CONSTITUTION:Reaction gas 4 is introduced from the feeding holes 17a and 17b located on both ends of the lower part of a reaction chamber 11, and the gas is excitation-decomposed by the light projected from light-projecting windows 16a and 16b. The gas 4a after reaction is exhausted from the exhaust hole 18 provided in the vicinity of the top point of the reaction chamber 11. At this time, the reaction chamber 11 is formed into the column shape of isosceles triangle, and as the linear lamp groups of 12a and 12b are arranged along the isosceles of the linear lamps as the source of light, the distance between the source of light and a substrate 5 is reduced when compared with the device of conventional structure, and as a result, the illuminance of light is increased, thereby enabling to remarkably increase the speed of formation of a thin film when compared with the conventional device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕    □ この発明は、半導体製造装置に関し、特に光励起CV 
D (photo chemic’al vapour
 deposition)法により薄膜を形成する装置
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] □ The present invention relates to semiconductor manufacturing equipment, and in particular to optically pumped CV
D (photo chemical'al vapor
The present invention relates to an apparatus for forming a thin film using a deposition method.

〔従来の技術〕[Conventional technology]

CVD法は集積回路袋Wにおける薄膜形成等において重
要な技術であるが、従来のCVD法は、主として反応ガ
スを加熱して化学反応を起こさせるようにしており、こ
のため反応温度が高温となり、これにより形成される薄
膜はダメージを受けやすいものである。
The CVD method is an important technology for forming thin films in integrated circuit bags W, but the conventional CVD method mainly heats a reaction gas to cause a chemical reaction, and therefore the reaction temperature becomes high. The thin film formed thereby is easily damaged.

そこで最近、低温CVD技術として光励起CVD法が注
目されている。この光励起CVD法は、CVDのエネル
ギー源として光を用いるものであり、これによれば、従
来の熱励起CVD法、プラズマCVD法等に比較して反
応温度を低温にでき、薄膜へのダメージも少なくするこ
とができる。
Therefore, recently, a photo-excited CVD method has been attracting attention as a low-temperature CVD technique. This photo-excited CVD method uses light as an energy source for CVD. According to this method, the reaction temperature can be lowered compared to conventional thermally-excited CVD methods, plasma CVD methods, etc., and there is no damage to thin films. It can be reduced.

また、一般的に光励起CVD法では、光の強度が薄膜の
形成速度に大きな影響を与えることが知られており、基
板温度2反応ガスの組成比、圧力を一定に保った条件下
では、薄膜の形成速度は光の照射強度に比例して速くな
ることが知られている。従って、膜形成時間を短縮して
効率を上げるためには光の照射強度を強くする必要があ
る。
In general, in photo-excited CVD, it is known that the intensity of light has a large effect on the rate of thin film formation. It is known that the formation speed of is increased in proportion to the intensity of light irradiation. Therefore, in order to shorten the film formation time and increase efficiency, it is necessary to increase the intensity of light irradiation.

第2図はこのような光励起CVD法による従来の薄膜形
成装置の基本的な構成を示し、図において、1は薄膜形
成時にその中が高真空状態に減圧される反応室、2は線
状の低圧水銀ランプ(以下、線状ランプと記す)からな
る光源、3は基板加熱用ヒータ、4はシラン等の反応ガ
ス、5は薄膜が形成される基板、6は光透過材からなる
一光へ射窓、7は反応ガス供給口、8は反応後のガス4
aを排出するためのガス排出口、9は基板5を載せる固
定台である。
Figure 2 shows the basic configuration of a conventional thin film forming apparatus using such a photo-excited CVD method. A light source consisting of a low-pressure mercury lamp (hereinafter referred to as a linear lamp), 3 a heater for heating the substrate, 4 a reactive gas such as silane, 5 a substrate on which a thin film is formed, and 6 a light source consisting of a light transmitting material. 7 is the reaction gas supply port, 8 is the gas 4 after the reaction
9 is a fixing table on which the substrate 5 is placed.

この装置では、反応ガス4が供給ロアから反応室1内に
導入されると、該反応ガス4は入射窓6から投射された
光線により励起分解される。そしてこれにより生じた反
応生成物がヒータ3によって低温加熱された基板5上に
堆積し、該基板5上に薄膜が形成される。反応後のガス
4は排出口8から排出される。
In this apparatus, when a reaction gas 4 is introduced into the reaction chamber 1 from the supply lower, the reaction gas 4 is excited and decomposed by the light beam projected from the entrance window 6. The resulting reaction product is deposited on the substrate 5 heated at a low temperature by the heater 3, and a thin film is formed on the substrate 5. The gas 4 after the reaction is discharged from the discharge port 8.

〔発明が解決しようとする問題点〕 しかるに、上記のような従来の装置では、その構造上光
源と基板5との距離が大きくなってしまい、光の照射強
度を強くするのは困難である。また、基板上に均一な厚
さの薄膜を形成するには該基板上の照度を均一にするこ
とが必要であるが、上記従来装置では光源として単一の
線状ランプ2を用いているために、極く狭い範囲でしか
均一な照度が得られず、従って一度に膜形成を行なうこ
とのできる基板の大きさが限ら−れてしまう。このよう
に上記従来装置では光の照度不足及び照度の不均一性の
ために、膜形成時間が長くなり、効率が悪いという問題
があった。
[Problems to be Solved by the Invention] However, in the conventional device as described above, the distance between the light source and the substrate 5 becomes large due to its structure, and it is difficult to increase the intensity of light irradiation. Furthermore, in order to form a thin film of uniform thickness on a substrate, it is necessary to make the illumination intensity on the substrate uniform, but since the above-mentioned conventional device uses a single linear lamp 2 as a light source, Moreover, uniform illuminance can only be obtained in a very narrow range, which limits the size of the substrate on which a film can be formed at one time. As described above, the above-mentioned conventional apparatus has the problem that film formation time is long due to insufficient illuminance of light and non-uniformity of illuminance, resulting in poor efficiency.

そこで膜形成時間を短縮するために、光源として複数の
線状ランプを使用することも考えられるが、このような
方式によれば各線状ランプからの照射光が重ね合わされ
る結果、基板中央部での照射強度がその両端部に比べて
強くなり、やはり照度分布は不均一になってしまう。
Therefore, in order to shorten the film formation time, it is possible to use multiple linear lamps as light sources, but with this method, the irradiated light from each linear lamp is superimposed, resulting in The irradiation intensity becomes stronger than that at both ends, and the illuminance distribution becomes uneven.

この発明は、このような問題点を解消するためになされ
たもので、広い範囲にわたって均一な、かつ強い照度の
光を照射でき、高精度に効率よく半導体を製造すること
のできる半導体製造装置を提供することを目的としてい
る。
This invention was made to solve these problems, and provides a semiconductor manufacturing apparatus that can irradiate uniform and strong light over a wide range and manufacture semiconductors efficiently with high precision. is intended to provide.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体製造装置は、反応室の形状を横断
面略二等辺三角形の柱状とし、光源として該反応室の2
つの斜面の各々の外側に各1組の線状ランプ群を配列し
、さらに反応ガス供給口を上記反応室の二等辺三角形の
両底角位置に、ガス排出口を頂点位置に形成したもので
ある。
In the semiconductor manufacturing apparatus according to the present invention, the reaction chamber has a columnar shape with a substantially isosceles triangular cross section, and two of the reaction chambers serve as light sources.
A set of linear lamps is arranged on the outside of each of the two slopes, and furthermore, reaction gas supply ports are formed at both base corners of the isosceles triangle of the reaction chamber, and gas discharge ports are formed at the apex position. be.

〔作用〕[Effect]

この発明においては、横断面略二等辺三角形の反応室の
2つの斜面の外側に各々線状ランプ群が配置されている
から、広範囲にわたって均一な、かつ強い照度の光が照
射され、しかも反応後のガスをその浮力を利用して排出
するから光入射窓の曇りが防止され、広い面積の基板に
、速い膜形成速度でもって均一な厚さの薄膜が形成され
る。
In this invention, since linear lamp groups are arranged on the outside of each of the two slopes of the reaction chamber having a substantially isosceles triangular cross section, uniform and strong light is irradiated over a wide area, and even after the reaction Since the gas is discharged using its buoyancy, fogging of the light entrance window is prevented, and a thin film of uniform thickness can be formed on a wide area of the substrate at a high film formation rate.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による半導体製造装置を示し
、図において、11は横断面略二等辺三角形の柱状に形
成された反応室であり、膜形成時においてはその中が高
真空状態に減圧されるものである。そしてこの反応室1
1の二等辺三角形の両底角位置には反応ガス4を該反応
室11内に導入するための反応ガス供給口17a、17
bが、また頂点位置には反応後のガス4aを排出するた
めの反応ガス排出口I8が形成されている。16a。
FIG. 1 shows a semiconductor manufacturing apparatus according to an embodiment of the present invention, and in the figure, 11 is a reaction chamber formed in the shape of a column with an approximately isosceles triangular cross section, and the inside thereof is in a high vacuum state during film formation. The pressure is reduced to . And this reaction chamber 1
Reaction gas supply ports 17a and 17 for introducing the reaction gas 4 into the reaction chamber 11 are provided at both base corner positions of the isosceles triangle 1.
b, and a reaction gas outlet I8 for discharging the gas 4a after the reaction is formed at the apex position. 16a.

16bはそれぞれ光透過材からなる光入射窓であり、こ
れらは上記反応室11の二等辺三角形の二等辺の位置に
相対向して設けられている。12a。
Reference numerals 16b denote light entrance windows made of a light-transmitting material, and these are provided opposite to each other at isosceles positions of the isosceles triangle of the reaction chamber 11. 12a.

12bはそれぞれこの光入射窓16a、16bの外側に
、該光入射窓16a、16bと平行に配列された線状ラ
ンプ群であり、反応室11内の反応ガス4を光励起する
ものである。
Reference numeral 12b denotes a group of linear lamps arranged outside the light entrance windows 16a, 16b and parallel to the light entrance windows 16a, 16b, respectively, for optically exciting the reaction gas 4 in the reaction chamber 11.

また、5は基板、3は該基板5を加熱するための基板加
熱用ヒータ、19は図示左右方向に摺動可能に設けられ
た基板積載用テーブルであり、これには、該テーブル1
9に固着された連結子19a、該連結子19aに蝦合し
たボールネジ23゜及び該ボールネジ23を回転駆動す
るモータ(図示せず)からなるテーブル駆動機構が設け
られている。
Further, 5 is a substrate, 3 is a substrate heating heater for heating the substrate 5, and 19 is a substrate loading table provided so as to be slidable in the horizontal direction in the figure.
A table drive mechanism is provided which includes a connector 19a fixed to the connector 9, a ball screw 23° fitted to the connector 19a, and a motor (not shown) for rotationally driving the ball screw 23.

次に作用効果について説明する。Next, the effects will be explained.

この装置では、反応ガス4は反応室11の下方両端の供
給口17a、17bから導入され、該反応ガス4は光入
射窓16a、16bから投射された光により励起分解さ
れる。そしてこれ、に率り生じた反応生成物はヒータ3
によって低温加熱された基板5上に堆積し、該基板5上
に薄膜が形成される0反応後のガス4aは反応室11の
頂点付近に設けられたガス排出口18から排出される。
In this apparatus, a reaction gas 4 is introduced from supply ports 17a and 17b at both lower ends of a reaction chamber 11, and the reaction gas 4 is excited and decomposed by light projected from light entrance windows 16a and 16b. The reaction products produced by this are heated to the heater 3.
After the zero reaction, the gas 4a is deposited on the substrate 5 heated at a low temperature to form a thin film on the substrate 5, and is discharged from a gas outlet 18 provided near the top of the reaction chamber 11.

この際本実施例装置では、反応室11を二等辺三角形の
柱状とし、光源としての線状ランプ群12a、12bを
その二等辺に沿って配置しているので、従来構造の装置
に比し光源と基板5との距離は小さくなっており、その
結果光の照度は増大し、薄膜の形成速度も従来に比し著
しく向上している。
At this time, in the apparatus of this embodiment, the reaction chamber 11 is shaped like an isosceles triangular column, and the linear lamp groups 12a and 12b as a light source are arranged along the isosceles. The distance between the substrate 5 and the substrate 5 has become smaller, and as a result, the illuminance of the light has increased, and the thin film formation speed has been significantly improved compared to the conventional method.

また本実施例装置の場合、基板5の中央部にお 1  
   いて両側の線状ランプ群12a、12bからの照
q     射光が重ね合わされ、その部分の照度が強
くなるが、両側の線状ランプ群12a、12bは中央部
分はど基板5からの距離が大きくなっている。このため
反応室11の広い範囲にわたって光の照度分布はほぼ均
一なものとなる。
In addition, in the case of the device of this embodiment, 1 is placed in the center of the substrate 5.
The illumination light from the linear lamp groups 12a, 12b on both sides is superimposed, and the illuminance in that area becomes stronger. ing. Therefore, the illuminance distribution of the light becomes substantially uniform over a wide range of the reaction chamber 11.

従ってこの実施例装置によれば、従来に比し大面積の基
板に速い速度で薄膜形成を行なうことができ、非常に効
率よく膜形成を行なうことができる。なお反応室11の
形状は、照度の増大を図る場合は二等辺三角形の底角を
約30°、また照度分布の均一化を図る場合は約15°
の場合がそれぞれ最も望ましいものである。
Therefore, according to the apparatus of this embodiment, it is possible to form a thin film on a substrate with a larger area at a faster speed than in the conventional method, and the film can be formed very efficiently. The shape of the reaction chamber 11 is an isosceles triangle whose base angle is approximately 30° when increasing illuminance, and approximately 15° when uniformizing illuminance distribution.
Each of these cases is the most desirable.

また反応ガス4の流れに注目すると、該反応ガス4は2
つの供給口17a、17bから導入された後、反応室1
1の中央部上方の排出口18に排出されるようになって
おり、このため従来装置のように、反応室の一端から他
端へ流すものに比べて反応ガス4の流れる距離は短かく
なっている。
Also, paying attention to the flow of the reaction gas 4, the reaction gas 4 is 2
After being introduced from the two supply ports 17a and 17b, the reaction chamber 1
Therefore, the distance through which the reaction gas 4 flows is shorter than in conventional devices where it flows from one end of the reaction chamber to the other. ing.

従って、前述のような大面積の基板5に薄膜形成を行な
う場合にも、該基板5上での反応ガスの濃度は均一に保
たれ、その厚さが均一な薄膜を形成することができる。
Therefore, even when forming a thin film on a large-area substrate 5 as described above, the concentration of the reaction gas on the substrate 5 is kept uniform, and a thin film with a uniform thickness can be formed.

さらに上述のように、供給口171.17bから供給さ
れた反応ガスは基板5中夫に近づくにつれ、ヒータ3及
び基板5によって暖められて浮力によって上昇しようと
するが、本実施例の場合、排出口18が中央に上向きに
設けられているので、この上昇しようとしたガスはその
まま排出口18から排出される。従って、反応生成物が
光入射窓16a、16bに付着するのを防止でき、いわ
ゆる窓の曇りによる光照射強度の低下を防止することも
できる。
Further, as described above, as the reaction gas supplied from the supply port 171.17b approaches the middle part of the substrate 5, it is warmed by the heater 3 and the substrate 5 and tends to rise due to buoyancy. Since the outlet 18 is provided upward in the center, the gas that attempts to rise is discharged from the outlet 18 as it is. Therefore, it is possible to prevent reaction products from adhering to the light entrance windows 16a and 16b, and it is also possible to prevent a decrease in light irradiation intensity due to so-called fogging of the windows.

そしてさらに、基板積載用テーブル19を図示左右方向
に摺動させることによって、基板各部は同一照度の光に
同一時間、あるいは同一濃度の反応ガス4に同一時間さ
らされることとなり、たとえ線状ランプ群12a、12
bからの光の照度が不均一であっても、また反応ガス4
の濃度が不均一であっても、これらを補償して高精度の
半導体を製造することができる。
Furthermore, by sliding the substrate loading table 19 in the horizontal direction in the figure, each part of the substrate is exposed to light of the same illuminance for the same time, or to the reaction gas 4 of the same concentration for the same time. 12a, 12
Even if the illuminance of the light from b is non-uniform, the reaction gas 4
Even if the concentration is non-uniform, it is possible to compensate for this and manufacture a highly accurate semiconductor.

(発明の効果〕 以上のように、この発明に係る半導体製造装置によれば
、反応室を横断面略二等辺三角形の柱状とし、光源とし
ての線状ランプ群を該二等辺三角形の二等辺の外側に配
置し、さらに反応ガス供給口を上記反応室の二等辺三角
形の両底角位置に、排出口を頂点位置に配置したので、
広範囲にわたって均一な、かつ強い照度の光を照射する
ことができ、さらに光入射窓の曇りを防止することもで
き、長時間にわたって高精度な半導体を効率よく製造で
きる効果がある。   ′
(Effects of the Invention) As described above, according to the semiconductor manufacturing apparatus according to the present invention, the reaction chamber has a columnar shape with a cross section of approximately isosceles triangle, and the linear lamp group as a light source is arranged on the isosceles side of the isosceles triangle. The reaction gas supply port was placed at both base corners of the isosceles triangle of the reaction chamber, and the discharge port was placed at the apex position.
It is possible to irradiate light with uniform and strong illuminance over a wide range, and it is also possible to prevent fogging of the light entrance window, making it possible to efficiently manufacture high-precision semiconductors over a long period of time. ′

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による半導体製造装置の断面
構成図、第2図は従来の半導体製造装置の断面構成図で
ある。 4・・・反応ガス、5・・・基板、11・・・反応室、
12a、12b・・・線状ランプ群、17a、17b・
・・反応ガス供給口、18・・・反応ガス排出口。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional configuration diagram of a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional configuration diagram of a conventional semiconductor manufacturing apparatus. 4... Reaction gas, 5... Substrate, 11... Reaction chamber,
12a, 12b... linear lamp group, 17a, 17b...
...Reaction gas supply port, 18...Reaction gas discharge port. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ該反応ガス中に置かれた基板上に薄
膜を形成させる半導体製造装置において、上記反応室は
横断面略二等辺三角形の柱状であり、上記反応室の二等
辺三角形の両底角位置に反応ガス供給口が、頂点位置に
反応ガス排出口が形成されており、上記光源は上記反応
室の2つの斜面の外側に配列された2組の線状ランプ群
からなることを特徴とする半導体製造装置。
(1) In a semiconductor manufacturing apparatus in which light from a light source is projected onto a reaction gas in a reaction chamber to cause a photochemical reaction and a thin film is formed on a substrate placed in the reaction gas, the reaction chamber has a cross section of approximately 2. The reaction chamber has an equilateral triangular columnar shape, and a reaction gas supply port is formed at both base corners of the isosceles triangle of the reaction chamber, and a reaction gas discharge port is formed at the apex position, and the light source is located on the two slopes of the reaction chamber. A semiconductor manufacturing device comprising two groups of linear lamps arranged on the outside.
JP25344284A 1984-11-29 1984-11-29 Semiconductor manufacturing equipment Pending JPS61131415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25344284A JPS61131415A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25344284A JPS61131415A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JPS61131415A true JPS61131415A (en) 1986-06-19

Family

ID=17251453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25344284A Pending JPS61131415A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS61131415A (en)

Similar Documents

Publication Publication Date Title
KR20010043928A (en) Gas manifold for uniform gas distribution and photochemistry
US5681394A (en) Photo-excited processing apparatus and method for manufacturing a semiconductor device by using the same
JPS61131415A (en) Semiconductor manufacturing equipment
JPS61131417A (en) Semiconductor manufacturing equipment
JP2005086208A (en) Plasma etching apparatus
JPS611017A (en) Heat treating device of semiconductor substrate
JPS60128265A (en) Device for forming thin film in vapor phase
JPS61131430A (en) Semiconductor manufacturing equipment
JP3064407B2 (en) Light source for photo-excitation process equipment
JPS61131429A (en) Semiconductor manufacturing equipment
JPS61131419A (en) Semiconductor manufacturing equipment
JPS61129821A (en) Semiconductor manufacturing apparatus
JPS61129819A (en) Semiconductor manufacturing apparatus
JPS61129811A (en) Manufacturing apparatus for semiconductor
JPS61128518A (en) Production equipment for semiconductor
JPS61108124A (en) Semiconductor manufacturing equipment
JPS61131424A (en) Semiconductor manufacturing equipment
JPS61129815A (en) Semiconductor manufacturing apparatus
JPS61108123A (en) Semiconductor manufacturing equipment
JPS61129814A (en) Manufacturing apparatus for semiconductor
JPS61128517A (en) Production unit for semiconductor
JPS61131422A (en) Semiconductor manufacturing equipment
JPS61129820A (en) Semiconductor manufacturing apparatus
JPS61129816A (en) Semiconductor manufacturing apparatus
JPS61131428A (en) Semiconductor manufacturing equipment