JPS61129816A - Semiconductor manufacturing apparatus - Google Patents

Semiconductor manufacturing apparatus

Info

Publication number
JPS61129816A
JPS61129816A JP25107184A JP25107184A JPS61129816A JP S61129816 A JPS61129816 A JP S61129816A JP 25107184 A JP25107184 A JP 25107184A JP 25107184 A JP25107184 A JP 25107184A JP S61129816 A JPS61129816 A JP S61129816A
Authority
JP
Japan
Prior art keywords
substrate
quartz glass
lamps
glass tube
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25107184A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Noriyoshi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25107184A priority Critical patent/JPS61129816A/en
Publication of JPS61129816A publication Critical patent/JPS61129816A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form efficiently a thin film with an uniform thickness, by providing with a tube shaped reaction chamber having a planar section made of quartz glass, and by constituting a light source by line shaped lamps being arrayed in parallel to each other outside the planar section. CONSTITUTION:Reaction gas 7 introduced into the quartz glass tube 21 is excited and decomposed by light emitted from a light source 12, and the resulted reaction products are deposited on a substrate 4 to form a thin film thereon. In this case, line shaped lamps 12a are arrayed outside the upper planar section 21a of the quartz glass tube 21. Accordingly, the distance from the substrate 4 to the lamps becomes nearer so that illumination on the substrate 4 can be increased. Moreover, since the section of the quartz glass tube 21 over which the lamps 21a are being arrayed is planar, the lamps 12a can be positioned in a plane being parallel to the substrate 4 to result in an uniform illumination on the substrate 4, so that an uniform thickness thin film can be efficiently formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体製造装置に関し、特に光励起CV 
D (photo chemical vapour 
deposition)法により薄膜を形成する装置に
関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to semiconductor manufacturing equipment, and in particular to optically pumped CV
D (photo chemical vapor
The present invention relates to an apparatus for forming a thin film using a deposition method.

〔従来の技術〕[Conventional technology]

CVD法は集積回路装置における薄膜形成等において重
要な技術であるが、従来のCVD法は、主として反応ガ
スを加熱して化学反応を起こさせるようにしており、こ
のため反応温度が高温となり、これにより形成される薄
膜はダメージを受けやすいものである。
The CVD method is an important technology for forming thin films in integrated circuit devices, but in the conventional CVD method, the reaction gas is mainly heated to cause a chemical reaction, which results in a high reaction temperature. The thin film formed by this method is easily damaged.

そこで最近、低温CVD技術として光励起CVD法が注
目されている。この光励起CVD法は、CVDのエネル
ギー源として光を用いるものであり、これによれば、従
来の熱励起CVD法、プラズマCVD法等に比較して反
応温度を低温にでき、薄膜へのダメージも少なくするこ
とができる。
Therefore, recently, a photo-excited CVD method has been attracting attention as a low-temperature CVD technique. This photo-excited CVD method uses light as an energy source for CVD. According to this method, the reaction temperature can be lowered compared to conventional thermally-excited CVD methods, plasma CVD methods, etc., and there is no damage to thin films. It can be reduced.

また、一般的に光励起CVD法では、光の基板上での照
度が薄膜の形成速度に大きく影響することが知られてお
り、例えば基板温度1反応ガス組成比、圧力を一定に保
った条件下では、i膜の形成速度は上記照度に比例して
速くなる。
In general, in the photo-excited CVD method, it is known that the illuminance of the light on the substrate has a large effect on the thin film formation rate.For example, under conditions where the substrate temperature, reactant gas composition ratio, and pressure are kept constant. Then, the formation speed of the i-film becomes faster in proportion to the illuminance.

第3図及び第4図はこのような光励起CVD法による従
来の半導体製造装置の基本的な構成を示し、図において
、1は反応室である石英ガラス管であり、これは円筒状
のものでその両端は反応室側壁3により閉塞されており
、10.11はそれぞれ該反応室1内に反応ガス7、カ
ーテンガス8を供給するための反応ガス供給口、カーテ
ンガス供給口、13は排出ガス9を排出するためのガス
排出口である。2は複数の線状ランプ2aからなる光源
であり、この線状ランプ2aは上記石英ガラス管1の外
側において該ガラス管1の軸方向に向けて、かつ該ガラ
ス管1の外表面に沿うよう並列配置されている。6は基
板4を搭載するためのサセプタ、5は上記基板4を加熱
するための赤外線ランプである。
Figures 3 and 4 show the basic configuration of a conventional semiconductor manufacturing apparatus using such a photo-excited CVD method. Its both ends are closed by the reaction chamber side wall 3, and 10 and 11 are reaction gas supply ports and curtain gas supply ports for supplying the reaction gas 7 and curtain gas 8 into the reaction chamber 1, respectively, and 13 is an exhaust gas supply port. This is a gas outlet for discharging 9. Reference numeral 2 denotes a light source consisting of a plurality of linear lamps 2a, and the linear lamps 2a are arranged outside the quartz glass tube 1 in the axial direction of the glass tube 1 and along the outer surface of the glass tube 1. arranged in parallel. 6 is a susceptor for mounting the substrate 4, and 5 is an infrared lamp for heating the substrate 4.

この従来装置では、反応ガス7及びカーテンガス8が石
英ガラス管1内に導入されると、このカーテンガス8は
石英ガラス管1の内面上部を覆うようにして流れ、また
上記反応ガス4は光源2からの光によって励起分解され
、これにより生じた反応生成物が赤外線ランプ5により
低温加熱された基板4上に堆積し、その結果該基板4上
に薄膜が形成され、反応後のガス9は排出口13から排
出される。
In this conventional device, when a reaction gas 7 and a curtain gas 8 are introduced into the quartz glass tube 1, the curtain gas 8 flows to cover the upper part of the inner surface of the quartz glass tube 1, and the reaction gas 4 is supplied to the light source. The reaction product generated by this is deposited on the substrate 4 heated at a low temperature by the infrared lamp 5, and as a result, a thin film is formed on the substrate 4, and the gas 9 after the reaction is It is discharged from the discharge port 13.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記従来装置では、反応室として横断面円形の
石英ガラス管1を用いているので、大面積の基板を処理
するためには大径のガラス管が必要となり、その分光源
2と基板との距離が大きくなり、基板上での照度が弱く
なるとともに、不均一になってしまうという問題があり
、この照度の不均一の問題を解決するには線状ランプ2
aを複雑な形状に配置する必要が生じ、光源の構造が複
雑になるという問題が生じる。
By the way, in the above-mentioned conventional apparatus, a quartz glass tube 1 with a circular cross section is used as a reaction chamber, so a large diameter glass tube is required to process a large area of a substrate. As the distance increases, the illuminance on the substrate becomes weaker and uneven.To solve this problem, the linear lamp 2
It becomes necessary to arrange the light source a in a complicated shape, resulting in a problem that the structure of the light source becomes complicated.

本発明は、上記従来の問題点に鑑みてなされたもので、
大きな面積の基板上に均一な膜厚の薄膜を簡単な構成に
より能率よく形成できる半導体製造装置を提供すること
を目的としている。
The present invention has been made in view of the above-mentioned conventional problems.
It is an object of the present invention to provide a semiconductor manufacturing apparatus that can efficiently form a thin film of uniform thickness on a large area substrate with a simple configuration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、半導体製造装置において、反応室を石英ガラ
スからなる平坦部を有する管状のものとし、光源を上記
平坦部の外側に並列配置された複数の線状ランプにより
構成したものである。
The present invention provides a semiconductor manufacturing apparatus in which the reaction chamber is made of quartz glass and has a tubular shape with a flat part, and the light source is constituted by a plurality of linear lamps arranged in parallel outside the flat part.

〔作用〕[Effect]

本発明では、光源は反応室の平坦部の外側に配設されて
おり、そのため光源を円筒形反応室の外側に配設する場
合に比べて光源と基板との距離が小さくなって基板上の
照度が増大し、また所望の形状に線状ランプを配置でき
、そのため基板上の照度が均一化される。
In the present invention, the light source is disposed outside the flat part of the reaction chamber, and therefore the distance between the light source and the substrate is smaller than when the light source is disposed outside the cylindrical reaction chamber. The illuminance is increased, and the linear lamps can be arranged in a desired shape, thereby making the illuminance uniform on the substrate.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図は本発明の一実施例を示す。1 and 2 show one embodiment of the present invention.

図において、−3図及び第4図と同一符号は同−又は相
当部分を示し、21は反応室である石英ガラス管であり
、これは横断面小判状のもので、その上面及び下面は平
坦部21a、21bになっている。12は光源であり、
これは上記石英ガラス管21の上側平坦部21aの外側
にて該ガラス管21の軸方向に並列配置された5本の線
状ランプ12aからなる光源であり、この各線状ランプ
12aは該石英ガラス管21の軸と直角方向に向いてい
る。また上記石英ガラス管21の下側平坦部21bの外
側には、5本の赤外線ランプ15が該ガラス管21の軸
方向に向けて、該ガラス管軸と直角方向に並列配置され
ている。
In the figure, the same reference numerals as those in Figures 3 and 4 indicate the same or corresponding parts, and 21 is a quartz glass tube that is a reaction chamber, which has an oval cross section and whose upper and lower surfaces are flat. 21a and 21b. 12 is a light source;
This is a light source consisting of five linear lamps 12a arranged in parallel in the axial direction of the glass tube 21 outside the upper flat part 21a of the quartz glass tube 21, and each linear lamp 12a is connected to the quartz glass tube 21. It is oriented perpendicular to the axis of the tube 21. Furthermore, on the outside of the lower flat portion 21b of the quartz glass tube 21, five infrared lamps 15 are arranged in parallel in the axial direction of the glass tube 21 in a direction perpendicular to the glass tube axis.

次に作用効果について説明する。Next, the effects will be explained.

本実施例装置に凌いても従来装置と同様に、石よる反応
生成物が基板4上に堆積して該基板4上に薄膜が形成さ
れる。
Even in the case of the apparatus of this embodiment, reaction products caused by stones are deposited on the substrate 4 and a thin film is formed on the substrate 4, as in the conventional apparatus.

そしてこの際、本実施例では、線状ランプ12aを石英
ガラス管21の上側平坦部21aの外側に配置したので
、基板4から該ランプ12aまでの距離が従来のような
円弧状部の外側に配置した場合より近くなり、その分基
板4上での照度が増大し、また、この石英ガラス管21
の線状ランプ12a配置部が平坦になっているので、こ
のランプ12aを基板4と平行な面内に配置でき、基板
4上の照度が均一になり、その結果基板4の全面におい
て均一な膜厚の薄膜が能率よく形成されることとなる。
At this time, in this embodiment, since the linear lamp 12a is arranged outside the upper flat part 21a of the quartz glass tube 21, the distance from the substrate 4 to the lamp 12a is outside the arc-shaped part as in the conventional case. When the quartz glass tube 21 is placed closer to the
Since the linear lamp 12a arrangement part is flat, this lamp 12a can be arranged in a plane parallel to the substrate 4, and the illuminance on the substrate 4 becomes uniform, resulting in a uniform film over the entire surface of the substrate 4. A thick thin film can be efficiently formed.

また上述のように平坦な面内にランプ12aを配置した
ので装置が小型なものとなる。
Furthermore, since the lamp 12a is arranged within a flat surface as described above, the device becomes compact.

このように本実施例では、基板4の全面において光源1
2からの照度が増大し、かつ均一となり、その結果膜厚
の均−性及び製造能率を向上でき、また装置の構造を簡
単にでき、かつ装置を小型化できる。
In this way, in this embodiment, the light source 1 is placed on the entire surface of the substrate 4.
The illuminance from 2 increases and becomes uniform, and as a result, the uniformity of film thickness and manufacturing efficiency can be improved, and the structure of the device can be simplified and the device can be made smaller.

なお、上記実施例では、反応室を石英ガラス管で形成し
た場合について説明したが、本発明ではこの反応室は必
ずしも石英ガラスで形成しなくてもよく、少なくとも平
坦部212部分を石英ガラス製とすればよく、この場合
はヒータば反応室内に配設すればよい、また上記実施例
では光源12が5本の線状ランプ12aからなる場合に
ついて説明したが、この線状ランプ12aの数量は処理
すべき基板の大きさによって適宜選択されるものである
。また上記実施例では、線状ランプ12aを同じ間隔で
並列配置した場合について説明したが、本発明ではこの
配置間隔は必ずしも同じでなくてもよく、例えば中央は
ど広くしてもよく、このようにすれば基板上の照度分布
をさらに均一にできる。
In the above embodiment, the reaction chamber is formed of a quartz glass tube, but in the present invention, the reaction chamber does not necessarily have to be formed of quartz glass, and at least the flat portion 212 may be made of quartz glass. In this case, the heater may be placed inside the reaction chamber.Also, in the above embodiment, the case where the light source 12 consists of five linear lamps 12a is explained, but the number of linear lamps 12a is determined by the process. It is selected appropriately depending on the size of the substrate to be used. Furthermore, in the above embodiment, a case has been described in which the linear lamps 12a are arranged in parallel at the same interval, but in the present invention, the arrangement interval does not necessarily have to be the same; for example, the center may be widened; By doing so, the illuminance distribution on the substrate can be made even more uniform.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る半導体製造装置によれば、
反応室を石英ガラスからなる平坦部を有する管状のもの
とし、光源を上記平坦部の外側に並列配置した線状ラン
プにて構成したので、基板上の照度を増大し、かつ均一
化して均一な膜厚のWi膜を能率よく形成できる効果が
ある。
As described above, according to the semiconductor manufacturing apparatus according to the present invention,
The reaction chamber is made of quartz glass and has a tubular shape with a flat part, and the light source is composed of linear lamps arranged in parallel outside the flat part, so that the illuminance on the substrate can be increased and uniformed. This has the effect of efficiently forming a thick Wi film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体製造装置の断面
側面図、第2図はその断面正面図、第3図は従来の半導
体製造装置の断面側面図、第4図はその断面正面図であ
る。 4・・・基板、7・・・反応ガス、12・・・光源、1
2a・・・線状ランプ、21・・・石英ガラス管(反応
室)、21a・・・平坦部。
FIG. 1 is a cross-sectional side view of a semiconductor manufacturing device according to an embodiment of the present invention, FIG. 2 is a cross-sectional front view thereof, FIG. 3 is a cross-sectional side view of a conventional semiconductor manufacturing device, and FIG. 4 is a cross-sectional front view thereof. It is. 4...Substrate, 7...Reactive gas, 12...Light source, 1
2a... Linear lamp, 21... Quartz glass tube (reaction chamber), 21a... Flat part.

Claims (1)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ該反応ガス中に置かれた基板上に薄
膜を形成させる半導体製造装置において、上記反応室は
石英ガラスからなる平坦部を有する管状のものであり、
上記光源は上記平坦部の外側に並列配置された線状ラン
プからなるものであることを特徴とする半導体製造装置
(1) In a semiconductor manufacturing device that projects light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction and form a thin film on a substrate placed in the reaction gas, the reaction chamber is made of quartz glass. It is tubular with a flat part,
A semiconductor manufacturing apparatus characterized in that the light source is composed of linear lamps arranged in parallel outside the flat part.
JP25107184A 1984-11-28 1984-11-28 Semiconductor manufacturing apparatus Pending JPS61129816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25107184A JPS61129816A (en) 1984-11-28 1984-11-28 Semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25107184A JPS61129816A (en) 1984-11-28 1984-11-28 Semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
JPS61129816A true JPS61129816A (en) 1986-06-17

Family

ID=17217191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25107184A Pending JPS61129816A (en) 1984-11-28 1984-11-28 Semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPS61129816A (en)

Similar Documents

Publication Publication Date Title
US5229081A (en) Apparatus for semiconductor process including photo-excitation process
US4500565A (en) Deposition process
JPS61129816A (en) Semiconductor manufacturing apparatus
JPS61131419A (en) Semiconductor manufacturing equipment
JPS61129821A (en) Semiconductor manufacturing apparatus
JP3064407B2 (en) Light source for photo-excitation process equipment
JPS61129820A (en) Semiconductor manufacturing apparatus
JPS61129817A (en) Semiconductor manufacturing apparatus
JPS61131430A (en) Semiconductor manufacturing equipment
JPS61129814A (en) Manufacturing apparatus for semiconductor
JPS61129819A (en) Semiconductor manufacturing apparatus
JPS61129815A (en) Semiconductor manufacturing apparatus
JPS61131433A (en) Semiconductor manufacturing equipment
JPS61131423A (en) Semiconductor manufacturing equipment
JPH0621234Y2 (en) Semiconductor manufacturing equipment
US4842828A (en) Apparatus for treating surface of object with ultraviolet rays and reaction gas
JPS61131429A (en) Semiconductor manufacturing equipment
JPS60253212A (en) Vapor growth device
JPH0598447A (en) Photo assisted cvd device
JPS61131420A (en) Semiconductor manufacturing equipment
JPH041730Y2 (en)
JPS61131415A (en) Semiconductor manufacturing equipment
JPH04325686A (en) Heater for heating cvd device
JPS61131428A (en) Semiconductor manufacturing equipment
JP3010066B2 (en) Optical excitation process equipment