JPS61131420A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPS61131420A
JPS61131420A JP25344784A JP25344784A JPS61131420A JP S61131420 A JPS61131420 A JP S61131420A JP 25344784 A JP25344784 A JP 25344784A JP 25344784 A JP25344784 A JP 25344784A JP S61131420 A JPS61131420 A JP S61131420A
Authority
JP
Japan
Prior art keywords
substrate
light source
light
reaction chamber
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25344784A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Noriyoshi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25344784A priority Critical patent/JPS61131420A/en
Publication of JPS61131420A publication Critical patent/JPS61131420A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To accelerate the forming speed of thin film on a substrate by means of augmenting the intensity of illumination on the substrate by a method wherein multiple light source bodies respectively comprising a quartz glass tube with a linear lamp covered with a focusing reflector with section of around C shape are arranged in a reaction chamber. CONSTITUTION:Multiple source bodies 12a-12e respectively comprising a cylindrical quartz glass tube 13 provided with a linear lamp 2 utilized as a light source 12 are arranged in a reaction chamber 1 so that a substrate 5 may be irradiated with augmented intensity of illumination by means of approaching the light source 12 to the substrate 5 up to an arbitrary distance. Besides, the light unit 12 provided with focusing reflectors 10 may augment the intensity of illumination by additionally reflected light by the reflectors 10. Through these procedures, the forming speed of thin film on the substrate 5 may be accelerated without unnecessarily augmenting the output of light source 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光化学的に反応ガスを分解して薄膜を基板
上に形成させる方法(photo che+wical
vapour deposition :以下光励起C
VD法と称す)を用いて薄膜を形成する半導体製造装置
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a method of photochemically decomposing a reactive gas to form a thin film on a substrate (photo che+wical).
Vapor deposition: Hereinafter referred to as photoexcitation C
The present invention relates to a semiconductor manufacturing apparatus that forms a thin film using a VD method (referred to as a VD method).

〔従来の技術〕[Conventional technology]

CVD法は集積回路装置における薄膜形成等において重
要な技術であるが、従来のCVD法は、主として反応ガ
スを加熱して化学反応を起こさせるようにしており、こ
のため反応温度が高温となり、これにより形成される薄
膜はダメージを受は易いものである。
The CVD method is an important technology for forming thin films in integrated circuit devices, but in the conventional CVD method, the reaction gas is mainly heated to cause a chemical reaction, which results in a high reaction temperature. The thin film formed by this method is easily damaged.

そこで嵌通、低温CVD技術として光励起CVD法が注
目されている。この光励起CVD法は、CVDのエネル
ギー源として光を用いるものであり、これによれば、従
来の熱励起CVD法、プラズマCVD法等に比較して反
応温度を低温にでき、薄膜へのダメージも少なべするこ
とができる。
Therefore, the photoexcitation CVD method is attracting attention as a low-temperature CVD technique. This photo-excited CVD method uses light as an energy source for CVD. According to this method, the reaction temperature can be lowered compared to conventional thermally-excited CVD methods, plasma CVD methods, etc., and there is no damage to thin films. I can make a small meal.

また、一般的に光励起CVD法では、光の強度が薄膜の
形成速度に大きな影響を午えることが知られており、基
板温度1反応ガスの組成比、圧力を一定に保った条件下
では、1FIl!の形成速度は光の照射強度に比例して
速(なることが知られている。
Additionally, in the photo-excited CVD method, it is generally known that the intensity of light has a large effect on the rate of thin film formation.Under conditions where the substrate temperature, reactant gas composition ratio, and pressure are kept constant, 1 FIl! It is known that the rate of formation of is proportional to the intensity of light irradiation.

第2図はこのような光励起CVD法による従来の薄膜形
成装置の基本的な構成を示し、図において、1は膜形成
時にその中が高真空状態に減圧される反応室、2は線状
ランプからなる光源、3は基板加熱用ヒータ、4はシラ
ン等の反応ガス、5は薄膜が形成される基板、6は光透
過材からなる光入射窓、7は反応ガス供給口、8は反応
講のガス4aを排出するためのガス排出口、9は基板5
を載せる固定台である。
Figure 2 shows the basic configuration of a conventional thin film forming apparatus using such a photo-excited CVD method. In the figure, 1 is a reaction chamber whose inside is reduced to a high vacuum state during film formation, and 2 is a linear lamp. 3 is a heater for heating the substrate, 4 is a reactive gas such as silane, 5 is a substrate on which a thin film is formed, 6 is a light incident window made of a light-transmitting material, 7 is a reactive gas supply port, and 8 is a reaction chamber. 9 is a gas discharge port for discharging the gas 4a of the substrate 5;
It is a fixed stand on which to place.

なお、反応室1内は一般的に高真空状態に減圧され、反
応室1の壁、光透過材からなる光入射窓6も当然この圧
力に耐えうる構造、i厚により構成されている。
Incidentally, the pressure inside the reaction chamber 1 is generally reduced to a high vacuum state, and the walls of the reaction chamber 1 and the light entrance window 6 made of a light-transmitting material are naturally constructed with a structure and a thickness that can withstand this pressure.

この装置では、反応ガス4が供給ロアから反応室lに導
入されると、該反応ガス4は入射窓6から投射された光
線により励起分解される。そしてこれにより生じた反応
生成物がヒータ3によって低温加熱された基板5上に堆
積し、該基板5上に薄膜が形成される0反応後のガス4
aは排出口8から排出される。
In this apparatus, when a reaction gas 4 is introduced into a reaction chamber l from a supply lower, the reaction gas 4 is excited and decomposed by a light beam projected from an entrance window 6. The resulting reaction products are deposited on the substrate 5 heated at a low temperature by the heater 3, and a thin film is formed on the substrate 5. Gas 4 after the reaction
a is discharged from the discharge port 8.

〔発明が解決しようとする問題点〕 この従来の半導体製造装置では以上のように反応室1に
光の入射窓6を設け、反応室1外に設けられた光源2か
ら光を投射しているが、基板5上への薄膜の形成速度を
速めるためには基板5上の光の照度を強くする必要があ
り、このためにはより出力の大きな光源を用いるが、基
板5と光源2の距離を縮め、基板5上の照度を強くする
必要がある。ところが、長寿命で出力の大きい実用的な
   ′光源を求めることは現在では困難であり、また
従来の構造のまま基板5と光源2の間の距離を縮めるこ
ともこれらの間に光透過材からなる光入射窓6を、高真
空の圧力に耐えられる構造で反応室1に取り付けねばな
らないことからはなはだ困難であづた・ この発明は、このような問題点を解消するためになされ
たもので、基板上の光の照度を高めることのできる半導
体製造装置を得ることを目的とするものである。
[Problems to be Solved by the Invention] In this conventional semiconductor manufacturing apparatus, the light entrance window 6 is provided in the reaction chamber 1 as described above, and light is projected from the light source 2 provided outside the reaction chamber 1. However, in order to speed up the formation of a thin film on the substrate 5, it is necessary to increase the illuminance of the light on the substrate 5, and for this purpose a light source with a higher output is used, but the distance between the substrate 5 and the light source 2 It is necessary to reduce the distance and increase the illuminance on the substrate 5. However, it is currently difficult to find a practical light source with a long life and high output, and it is also possible to shorten the distance between the substrate 5 and the light source 2 while maintaining the conventional structure. It is extremely difficult to attach the light entrance window 6 to the reaction chamber 1 with a structure that can withstand high vacuum pressure.This invention was made to solve these problems. The object of the present invention is to obtain a semiconductor manufacturing apparatus that can increase the illuminance of light on a substrate.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体製造装置は、石英ガラス管内に横
断面略C字状の集光反射板で覆われた1本の線状ランプ
を配設してなる光源体を反応室内に複数配設して光源と
したものである。
A semiconductor manufacturing apparatus according to the present invention includes a plurality of light source bodies each having a linear lamp covered with a condensing reflector having a substantially C-shaped cross section arranged in a quartz glass tube in a reaction chamber. It was used as a light source.

〔作用〕[Effect]

この発明においては、石英ガラス管内に集光反射板に覆
われた線状ランプを配設してなる光源体を反応室内にn
h配役して光源としたから、該光源が基板に近づいて該
基板上の光の照度が高まり311111は速(形成され
る。また、光源体の向きを調整することで、基板上での
該光源体の軸と直角な方向の光の照度分布が均一になる
In this invention, a light source body consisting of a linear lamp covered with a condensing reflector plate placed inside a quartz glass tube is placed in a reaction chamber.
Since the light source is cast as a light source, as the light source approaches the substrate, the illuminance of the light on the substrate increases and 311111 is formed quickly.Also, by adjusting the direction of the light source, the illuminance of the light on the substrate increases. The illuminance distribution of light in the direction perpendicular to the axis of the light source becomes uniform.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による半導体製造装置の断面
側面図である。図において、1は反応室、13は円筒形
石英ガラス管、12a〜12eは該石英ガラス管13内
に1本の線状ランプ2及びこれを覆う横断面略C字状の
集光反射板lOを配設してなる光源体、12は該光源体
12a〜12eを反応室1内に等間隔に並列配置して構
成した光源である。3は基板加熱用ヒータ、4は反応ガ
ス、5は基板、7ば反応ガス供給口、8は反応後のガス
4aを排出するためのガス排出口、9は基板積載台であ
る。
FIG. 1 is a cross-sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention. In the figure, 1 is a reaction chamber, 13 is a cylindrical quartz glass tube, 12a to 12e is a linear lamp 2 in the quartz glass tube 13, and a condensing and reflecting plate 10 with a substantially C-shaped cross section covering it. The light source body 12 is a light source constructed by arranging the light source bodies 12a to 12e in parallel in the reaction chamber 1 at equal intervals. 3 is a heater for heating the substrate, 4 is a reaction gas, 5 is a substrate, 7 is a reaction gas supply port, 8 is a gas discharge port for discharging the gas 4a after the reaction, and 9 is a substrate loading stand.

次に作用効果について説明する。Next, the effects will be explained.

本装置においては、反応ガス4は供給ロアから反応室1
内に供給され、一方光源12の各円筒形石英ガラス管1
3から光が投射されて該反応ガス4が光化学反応を生じ
、ヒータ3によって加熱されている基板5上に薄膜が形
成される。
In this device, the reaction gas 4 is supplied from the supply lower to the reaction chamber 1.
while each cylindrical quartz glass tube 1 of the light source 12
Light is projected from the heater 3 to cause a photochemical reaction in the reaction gas 4, and a thin film is formed on the substrate 5 heated by the heater 3.

そして本装置では、円筒形石英ガラス管13内に1本の
線状ランプを配設してなる光源体128〜126を光源
として用い、該光源12を反応室1内に設けたので、該
光mtzを任意の距離まで基板5に近づけて基板5上の
光の照度を高めることができる。また、この光源12で
は集光反射板10を設けたから、該反射板10による反
射光も加わり上記照度をより一層高めることができる。
In this apparatus, the light sources 128 to 126 each having one linear lamp disposed inside the cylindrical quartz glass tube 13 are used as light sources, and since the light source 12 is provided in the reaction chamber 1, the light The illuminance of the light on the substrate 5 can be increased by bringing the mtz closer to the substrate 5 to an arbitrary distance. Furthermore, since the light source 12 is provided with the condensing reflector plate 10, the light reflected by the reflector plate 10 is also added, making it possible to further increase the illuminance.

このため光源の出力を必要以上に高めることなく基板5
上への薄膜の形成速度を速めることができる。また、上
記各光源体123〜12eを等間隔に並列配置し、かつ
各光源体12a〜12aの集光反射板10の開口部の向
きを調整することにより、基板5上での光源体12a〜
12eの軸と直角な方向の光の照度分布を十分均一にで
きる。
Therefore, without increasing the output of the light source more than necessary, the board 5
The rate of formation of a thin film thereon can be increased. Further, by arranging the light source bodies 123 to 12e in parallel at equal intervals and adjusting the direction of the opening of the condensing reflector plate 10 of each of the light source bodies 12a to 12a, the light source bodies 12a to 12e on the substrate 5 can be arranged in parallel.
The illuminance distribution of light in the direction perpendicular to the axis of 12e can be made sufficiently uniform.

またこの際、基板5と反対側には集光3反射板10があ
るから、余分な光化学反応は起こらず、上記各石英ガラ
ス管13に反応生成物は付着することはない。
Further, at this time, since the condenser 3 reflection plate 10 is located on the side opposite to the substrate 5, no extra photochemical reaction occurs and no reaction products adhere to each of the quartz glass tubes 13.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体製造装置によれば
、石英ガラス管内に集光反射板で覆った1本の線状ラン
プを組み込んだものからなる複数の光源体を光源として
用い、該光源を反応室内に設けたので、基板上の光の照
度を高めて薄膜の形成速度を速めることができ、また光
源体の向きを調整できるから、基板上での該光源体の軸
と直角な方向の光の照度分布を均一にできる効果がある
As described above, according to the semiconductor manufacturing apparatus according to the present invention, a plurality of light source bodies including a single linear lamp covered with a condensing reflector in a quartz glass tube are used as light sources, and the light source is installed in the reaction chamber, it is possible to increase the illuminance of the light on the substrate and speed up the formation of the thin film, and the direction of the light source can be adjusted, so it is possible to adjust the direction perpendicular to the axis of the light source on the substrate. This has the effect of making the illuminance distribution of light uniform.

【図面の簡単な説明】[Brief explanation of drawings]

1      第1図は本発明の一実施例による半導体
製造装置の断面側面図、第2図は従来の半導体製造装置
の断面側面図である。 l・・・反応室、4・・・反応ガス、5・・・基板、1
2・・・光源、12a〜12e・・・光源体、13・・
・石英ガラス管、2・・・線状ランプ、10・・・集光
反射板。 なお図中同一符号は同−又は、相当部分を示す。
1 FIG. 1 is a cross-sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional side view of a conventional semiconductor manufacturing apparatus. l...Reaction chamber, 4...Reaction gas, 5...Substrate, 1
2... Light source, 12a-12e... Light source body, 13...
- Quartz glass tube, 2... linear lamp, 10... condensing reflector plate. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ該反応ガス中に置かれた基板上に薄
膜を形成させる半導体製造装置において、上記光源が石
英ガラス管内に横断面略C字状の集光反射板で覆われた
1本の線状ランプを配設してなる複数の光源体を上記反
応室内に配設してなるものであることを特徴とする半導
体製造装置。
(1) In a semiconductor manufacturing device that projects light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction and form a thin film on a substrate placed in the reaction gas, the light source crosses inside a quartz glass tube. Semiconductor manufacturing characterized in that a plurality of light sources each comprising a linear lamp covered with a C-shaped condensing reflector are arranged in the reaction chamber. Device.
JP25344784A 1984-11-29 1984-11-29 Semiconductor manufacturing equipment Pending JPS61131420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25344784A JPS61131420A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25344784A JPS61131420A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JPS61131420A true JPS61131420A (en) 1986-06-19

Family

ID=17251524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25344784A Pending JPS61131420A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS61131420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140684A (en) * 2011-01-05 2012-07-26 Shimadzu Corp Vacuum treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140684A (en) * 2011-01-05 2012-07-26 Shimadzu Corp Vacuum treatment apparatus

Similar Documents

Publication Publication Date Title
US4525382A (en) Photochemical vapor deposition apparatus
JPH10501920A (en) High-performance fluorescent lamp device
JPS61131420A (en) Semiconductor manufacturing equipment
JPS60161616A (en) Infrared heating unit for semiconductor wafer
JPS61131419A (en) Semiconductor manufacturing equipment
JPS60175411A (en) Manufacture of thin semiconductor film and apparatus thereof
JPS60128265A (en) Device for forming thin film in vapor phase
JPS61131427A (en) Semiconductor manufacturing equipment
US5368647A (en) Photo-excited processing apparatus for manufacturing a semiconductor device that uses a cylindrical reflecting surface
JPS62101021A (en) Semiconductor manufacturing equipment
JP3064407B2 (en) Light source for photo-excitation process equipment
JPS61131428A (en) Semiconductor manufacturing equipment
JPS61131421A (en) Semiconductor manufacturing equipment
US4803095A (en) Chemical vapor reaction process by virtue of uniform irradiation
JPS61131416A (en) Semiconductor manufacturing equipment
JPS61131425A (en) Semiconductor manufacturing equipment
JPH0621234Y2 (en) Semiconductor manufacturing equipment
JPS61129811A (en) Manufacturing apparatus for semiconductor
JPS61129816A (en) Semiconductor manufacturing apparatus
JPS61131417A (en) Semiconductor manufacturing equipment
JP3139058B2 (en) Photoexcitation process apparatus and semiconductor device manufacturing method using the same
JPS61131430A (en) Semiconductor manufacturing equipment
JPS61129819A (en) Semiconductor manufacturing apparatus
JPS61131432A (en) Semiconductor manufacturing equipment
JPS61131433A (en) Semiconductor manufacturing equipment