JPS61131428A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPS61131428A
JPS61131428A JP25345584A JP25345584A JPS61131428A JP S61131428 A JPS61131428 A JP S61131428A JP 25345584 A JP25345584 A JP 25345584A JP 25345584 A JP25345584 A JP 25345584A JP S61131428 A JPS61131428 A JP S61131428A
Authority
JP
Japan
Prior art keywords
light source
substrate
light
glass tube
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25345584A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Noriyoshi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25345584A priority Critical patent/JPS61131428A/en
Publication of JPS61131428A publication Critical patent/JPS61131428A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber

Abstract

PURPOSE:To contrive to improve the efficiency of work by a method wherein a light source that plural linear lamps are incorporated in the interior of the quartz glass tube is provided in the reaction chamber and a reflecting mirror which also serves as a shutter is provided in the interior of the quartz glass tube. CONSTITUTION:A light source that plural linear lamps are arranged in the interior of a cylindrical quartz glass tube 13 is used as this light source. By providing this light source 12 in a reaction chamber 1, the light source 12 is made to get near a substrate 5 to an arbitrary distance and the illuminance of light on the substrate 5 can be raised. Moreover, after the formation of a thin film on the substrate 5, the light from the light source 12 is shielded in such a way as to be able to shield by lowing a shutter 10. Accordingly, the reaction gas remaining is decomposed and the reaction product can be prevented from depositing by adhesion on the surface of the quartz glass tube 13 and the substrate 5 can be replaced leaving the linear lamps intact being lighted. As a result, the improvement of the efficiency of work can be contrived.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光化学的に反応ガスを分解して薄膜を基板
上に形成させる方法(photo che+++1ca
lvapour deposition  :以下光励
起CVD法と称す)を用いて薄膜を形成する半導体製造
装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a method of photochemically decomposing a reactive gas to form a thin film on a substrate (photo che+++1ca
The present invention relates to a semiconductor manufacturing apparatus that forms a thin film using vapor deposition (hereinafter referred to as photo-excited CVD method).

〔従来の技術〕[Conventional technology]

CVD法は集積回路装置における薄膜形成等において重
要な技術であるが、従来のCVD法は、主として反応ガ
スを、加熱して化学反応を起こさせるようにしており、
このため反応温度が高温となり、これにより形成される
薄膜はダメージを受け。
The CVD method is an important technology for forming thin films in integrated circuit devices, but the conventional CVD method mainly involves heating a reaction gas to cause a chemical reaction.
As a result, the reaction temperature becomes high, and the thin film formed is thereby damaged.

易いものである。It's easy.

そこで最近、低温CVD技術として光励起CVD法が注
目されている。この光励起CVD法は、CVDのエネル
ギー□源として光を用いろものであり、これによれば、
従来の熱励起CVD法、プラズマCVD法等に比較、し
て反応温度を低温に、・でき、薄膜へのダメージも少な
くすることができる。
Therefore, recently, a photo-excited CVD method has been attracting attention as a low-temperature CVD technique. This photo-excited CVD method uses light as the CVD energy source, and according to this method,
Compared to conventional thermally excited CVD methods, plasma CVD methods, etc., the reaction temperature can be lowered and damage to thin films can be reduced.

また、一般的に光励起CVD法では、光の強度が薄膜の
形成速度に大きな影響を与えることが知られており、基
板温度2反応ガスの組成比、圧力を一定に保った条件下
では、薄膜の形成速度は光の照射強度に比例して速くな
ることが知られている。
In general, in photo-excited CVD, it is known that the intensity of light has a large effect on the rate of thin film formation. It is known that the formation speed of is increased in proportion to the intensity of light irradiation.

第3図はこのような光励起CVD法による従来のa!膜
形成装置の基本的な構成を示し、図において、1は膜形
成時にその中が高真空状態に減圧される反応室、2は線
状ランプからなる光源、3は基板加熱用ヒータ、4はシ
ラン等の反応ガス、5は薄膜が形成される基板、6は光
透過材からなる光入射窓、7は反応ガス供給口、8は反
応後のガス4aを排出するためのガス排出口、9は基板
5を載せる固定台である。
Figure 3 shows the conventional a! The basic configuration of the film forming apparatus is shown. In the figure, 1 is a reaction chamber whose inside is reduced to a high vacuum state during film formation, 2 is a light source consisting of a linear lamp, 3 is a heater for heating the substrate, and 4 is a A reactive gas such as silane, 5 a substrate on which a thin film is formed, 6 a light entrance window made of a light-transmitting material, 7 a reactive gas supply port, 8 a gas discharge port for discharging the gas 4a after the reaction, 9 is a fixed stand on which the board 5 is placed.

なお、反応室l内は一般的に高真空状態に減圧され、反
応室1の壁、光透過材からなる光入射窓6も当然この圧
力に耐えうる構造、板厚により構成されている。
Note that the interior of the reaction chamber 1 is generally reduced to a high vacuum state, and the walls of the reaction chamber 1 and the light entrance window 6 made of a light-transmitting material are naturally constructed with a structure and plate thickness that can withstand this pressure.

この装置では、反応ガス4が供給ロアから反応室1に導
入されると、該反応ガス4は入射窓6から投射された光
線により励起分解される。そしてこれにより生じた反応
生成物がヒータ3によって低温加熱された基板5上に堆
積し、該基板5上に薄膜が形成される。反応後のガス4
aは排出口8から排出される。
In this apparatus, when a reaction gas 4 is introduced into the reaction chamber 1 from the supply lower, the reaction gas 4 is excited and decomposed by the light beam projected from the entrance window 6. The resulting reaction product is deposited on the substrate 5 heated at a low temperature by the heater 3, and a thin film is formed on the substrate 5. Gas after reaction 4
a is discharged from the discharge port 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来の半導体製造装置では以上のように反応室1に
光の入射窓6を設け、反応室l外に設けられた光源2か
ら光を投射して、いるが、基板5上への薄膜の形成速度
を速めるためには基板5上の光の照度を強くする必要が
あり、このためにはより出力の大きな光源を用いるか、
基板5と光源2の距離を縮め、基板5上の照度を強くす
る必要がある。ところが、長寿命で出力の大きい実用的
な光源を求めることは現在では困難であり、また従来の
構造のまま基板5と光源2の間の距離を縮めることもこ
れらの間に光透過材からなる光入射窓6を、高真空の圧
力に耐えられる構造で反応室1に取り付けねばならない
ことからはなはだ困難であった。
In this conventional semiconductor manufacturing apparatus, the light entrance window 6 is provided in the reaction chamber 1 as described above, and light is projected from the light source 2 provided outside the reaction chamber 1. In order to speed up the formation speed, it is necessary to increase the illuminance of the light on the substrate 5, and for this purpose, a light source with higher output may be used, or
It is necessary to shorten the distance between the substrate 5 and the light source 2 and increase the illuminance on the substrate 5. However, it is currently difficult to find a practical light source with a long life and high output, and it is also possible to shorten the distance between the substrate 5 and the light source 2 with the conventional structure by using a light-transmitting material between them. This was extremely difficult since the light entrance window 6 had to be installed in the reaction chamber 1 with a structure that could withstand high vacuum pressure.

また、紫外線ランプ2を点灯していると、反応室1−の
内壁、あるいは光入射窓6に反応生成物が堆積してしま
うという問題があり、基板5に薄膜形成が完了した場合
、紫外線ランプ2をOFFさせねばならず、新たにON
させるとその照射強度が安定するまで時間がかかる等、
作業能率が悪いという問題点があった。
In addition, when the ultraviolet lamp 2 is turned on, there is a problem that reaction products are deposited on the inner wall of the reaction chamber 1- or on the light entrance window 6. 2 must be turned OFF, and then turned ON again.
If you do so, it will take time for the irradiation intensity to stabilize, etc.
There was a problem with poor work efficiency.

この発明は、このような問題点を解消するためになされ
たもので、基板上の光の照度を高めることができ、さら
には作業の効率化を図ることができる半導体製造装置を
得ることを目的とするものである。
This invention was made to solve these problems, and aims to provide a semiconductor manufacturing device that can increase the illuminance of light on a substrate and further improve work efficiency. That is.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体製造装置は、反応室内の遮蔽する
ための反射鏡兼用シャッタを上記石英ガラス管壁に沿っ
て移動可能に設けたものである。
The semiconductor manufacturing apparatus according to the present invention is provided with a shutter that also serves as a reflection mirror for shielding the interior of the reaction chamber and is movable along the wall of the quartz glass tube.

〔作用〕[Effect]

この発明においては、石英ガラス管からなる光源を反応
室内に設け、かつ該石英ガラス管に反射鏡兼用シャッタ
を設けたから、基板上の光の照度が卵常に高まり、薄膜
は速く形成される。また薄膜形成完了後は、シャッタに
より光源からの光を遮蔽するようにしたから、線状ラン
プを点灯したままで基板の入れ替えができ、作業の効率
化が図れる。
In this invention, a light source made of a quartz glass tube is provided in the reaction chamber, and the quartz glass tube is provided with a shutter that also serves as a reflector, so that the illuminance of the light on the substrate is constantly increased and a thin film can be formed quickly. Furthermore, after the thin film formation is completed, the light from the light source is blocked by a shutter, so the substrate can be replaced while the linear lamp remains lit, improving work efficiency.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による半導体製造装置の断面
図、第2図は第1図のn−n線断面図である。両図にお
いて、1は反応室、13は該反応室1内に設けられた円
筒形石英ガラス管、12は該石英ガラス管13の内壁に
沿って複数の線状ランプが配設されてなる光源、10は
上記石英ガラス管13の内壁に沿って移動可能に設けら
・れた反射鏡兼用回転式シャッタであり、これは薄膜形
成時に非基板側、即ち上記内壁上部に位置して線状ラン
プからの紫外線を反射させる反射鏡として機能し、非形
成時に基板側、即ち下部に位置して上記反応ガス4への
光を遮蔽するための反射・遮蔽部材である。この部材は
アルミニウム板を磨いて鏡面仕上げされている。14は
該シャンク10を駆動するシャッタ駆動機構、3は基板
加熱用ヒータ、4は反応ガス、5は基板、7は反応ガス
供給口、8は反応後のガス4aを排出するためのガス排
出口、9は基板5を載置する台、11は円筒形石英ガラ
ス管13の曲面側の一端に設けられた反応ガス供給ノズ
ル、21ば該供給ノズル11−とともに円筒形石英ガラ
ス管13を挟むよう該ノズル11と反対側に設けられた
ガス排出ノズルである。
FIG. 1 is a sectional view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line nn in FIG. In both figures, 1 is a reaction chamber, 13 is a cylindrical quartz glass tube provided in the reaction chamber 1, and 12 is a light source including a plurality of linear lamps arranged along the inner wall of the quartz glass tube 13. , 10 is a rotary shutter that also serves as a reflector and is movably provided along the inner wall of the quartz glass tube 13, and is positioned on the non-substrate side, that is, on the upper part of the inner wall during thin film formation. This is a reflecting/shielding member that functions as a reflecting mirror to reflect ultraviolet rays from the substrate, and is located on the substrate side, that is, at the bottom, when not formed, to block light from reaching the reaction gas 4. This part is made of aluminum plate polished to a mirror finish. 14 is a shutter drive mechanism that drives the shank 10, 3 is a heater for heating the substrate, 4 is a reaction gas, 5 is a substrate, 7 is a reaction gas supply port, and 8 is a gas discharge port for discharging the gas 4a after the reaction. , 9 is a table on which the substrate 5 is placed, 11 is a reaction gas supply nozzle provided at one end of the curved surface side of the cylindrical quartz glass tube 13, and 21 is a reaction gas supply nozzle provided on the curved surface side of the cylindrical quartz glass tube 13. This is a gas exhaust nozzle provided on the opposite side to the nozzle 11.

次に作用効果について説明する。Next, the effects will be explained.

本装置においては、反応ガス4は供給ロアから反応室1
内に供給され、一方光源12である円筒形石英ガラス管
13から光が投射されて該反応ガス4が光化学反応を生
じ、ヒータ3によって加熱されている基板5上に薄膜が
形成される。なおこの際は、上記石英ガラス管13内の
シャフタ1−0は上方に位置している。
In this device, the reaction gas 4 is supplied from the supply lower to the reaction chamber 1.
On the other hand, light is projected from a cylindrical quartz glass tube 13 serving as a light source 12 to cause a photochemical reaction in the reaction gas 4, and a thin film is formed on the substrate 5 heated by the heater 3. In this case, the shutter 1-0 inside the quartz glass tube 13 is located upward.

そして本装置では、円筒形石英ガラス管13内に複数の
線状ランプを配設したものを光源としてご      
用い、該光源12を反応室l内に設けたので、該ぐ  
    光源12を任意の距離まで基板5に近づけて基
板5上の光の照度を高めることができ、しかも上記石英
ガラス管13内にシャッタ10を設けたから、該シャッ
タ10による反射光が加わることによって上記照度をよ
り一層高めることができる。このため光源12の出力を
必要以上に高めることなく基板5上へ11F膜を非常に
速く形成できる。
In this device, a plurality of linear lamps arranged inside a cylindrical quartz glass tube 13 is used as a light source.
Since the light source 12 was installed inside the reaction chamber l,
The illuminance of the light on the substrate 5 can be increased by bringing the light source 12 close to the substrate 5 to an arbitrary distance.Moreover, since the shutter 10 is provided in the quartz glass tube 13, the light reflected by the shutter 10 is added to increase the illuminance of the light on the substrate 5. Illuminance can be further increased. Therefore, the 11F film can be formed on the substrate 5 very quickly without increasing the output of the light source 12 more than necessary.

また、薄膜形成後はシャッタ10を下げることにより光
[12からの光を遮蔽できるようにしたので、残留して
いる反応ガスが分解してその反応生成物が上記石英ガラ
ス管13表面に付着堆積するのを防止でき、線状ランプ
を点灯させたまま基板5を取り替えることができ、作業
の効率化が図れる。
In addition, after the thin film is formed, the light from the light [12] can be blocked by lowering the shutter 10, so that the remaining reaction gas is decomposed and its reaction products are deposited on the surface of the quartz glass tube 13. This makes it possible to replace the board 5 while keeping the linear lamp lit, and to improve work efficiency.

また、本実施例では反応ガス供給ノズル11とガス排出
ノズル21を円筒形石英ガラス管13を挟んで該ガラス
管13下方に設けたので、反応ガス4は、円筒形石英ガ
ラス管13と基板5との間隔がもっとも狭く、基板5上
の光の照度がもっとも強いところを流れ、該反応ガス4
に光化学反応を速やかに起こさせることができる。また
これらノズル11.21を設けることにより、反応ガス
4を短い距離だけ流せばよいため、反応室1内の不必要
な部分に反応ガス4が流れるのを防止できる。又、反応
ガスを短い距離を効率よく流すことができるため、反応
ガスの濃度を均一に、しかも反応ガスの光化学反応の速
度に合わせ十分な量の反応ガスを基板5上に流し込むこ
とができ、薄膜の形成速度を速めることができる。
Furthermore, in this embodiment, the reactive gas supply nozzle 11 and the gas discharge nozzle 21 are provided below the cylindrical quartz glass tube 13 with the cylindrical quartz glass tube 13 in between. The reaction gas 4 flows through the part where the distance between the reactant gas 4
can cause a photochemical reaction to occur quickly. Furthermore, by providing these nozzles 11 and 21, the reaction gas 4 only needs to flow over a short distance, so that the reaction gas 4 can be prevented from flowing into unnecessary parts of the reaction chamber 1. In addition, since the reactive gas can be efficiently flowed over a short distance, the concentration of the reactive gas can be made uniform, and a sufficient amount of the reactive gas can be flowed onto the substrate 5 in accordance with the speed of the photochemical reaction of the reactive gas. Thin film formation speed can be increased.

又、円筒形石英ガラス管13内に該ガラス管13の内壁
に沿って線状ランプを適当な間隔をおいて配置している
ので、上記ガラス管13の軸と直角な方向において基板
5上の光の照度分布はある程度均一にできる。
Moreover, since the linear lamps are arranged at appropriate intervals along the inner wall of the cylindrical quartz glass tube 13, the linear lamps are arranged at appropriate intervals within the cylindrical quartz glass tube 13, so that the linear lamps are arranged at appropriate intervals along the inner wall of the cylindrical quartz glass tube 13. The illuminance distribution of light can be made uniform to some extent.

〔発明の効果〕 以上のように、この発明に係る半導体製造装置によれば
、複数の線状ランプを石英ガラス管内に組み込んだもの
を光源として用い、該光源を反応室内に設け、また上記
石英ガラス管内に反射鏡兼用シャッタを設けたので、こ
れによる反射光も加わり基板上の光の照度を高めて薄膜
の形成速度を速めることができ、また薄膜形成完了後は
、上記シャフタを基板側に位置させて反応ガスへの光を
遮蔽するようにしたので、余分な反応生成物が上記石英
ガラス管に堆積するのを防止でき、これにより線状ラン
プを連続点灯したままで基板の取り替えができ、作業の
効率化を図ることができる効果がある。
[Effects of the Invention] As described above, according to the semiconductor manufacturing apparatus according to the present invention, a plurality of linear lamps incorporated in a quartz glass tube is used as a light source, the light source is provided in a reaction chamber, and the quartz glass tube is provided with the light source. Since a shutter that also serves as a reflector is installed inside the glass tube, the reflected light from this can be added to increase the illuminance of the light on the substrate and speed up the thin film formation speed. By positioning the tube so as to block light from reaching the reaction gas, it is possible to prevent excess reaction products from accumulating on the quartz glass tube, which allows the substrate to be replaced while the linear lamp remains lit continuously. This has the effect of increasing work efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による半導体製造装置の断面
側面図、第2図は第1図のn−n線断面図、第3図は従
来の半導体製造装置の断面側面図である。 1・・・反応室、12・・・光源、4・・・反応ガス、
5・・・基板、13・・・石英ガラス管、10・・・反
射鏡兼用回転式シャッタ(反射遮蔽部材)。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line nn in FIG. 1, and FIG. 3 is a cross-sectional side view of a conventional semiconductor manufacturing apparatus. 1... Reaction chamber, 12... Light source, 4... Reaction gas,
5... Substrate, 13... Quartz glass tube, 10... Rotary shutter that also serves as a reflection mirror (reflection shielding member). Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ該反応ガス中に置かれた基板上に薄
膜を形成させる半導体製造装置において、上記光源が反
応室内に設けられた石英ガラス管内に複数の線状ランプ
が配設されてなるものであり、上記薄膜の形成時に非基
板側に位置して光を反応ガスに反射し、上記薄膜の非形
成時に基板側に位置して反応ガスへの光を遮蔽するため
の反射遮蔽部材が上記石英ガラス管壁に沿って移動可能
に設けられていることを特徴とする半導体製造装置。
(1) In a semiconductor manufacturing apparatus that projects light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction and form a thin film on a substrate placed in the reaction gas, the light source is provided in the reaction chamber. A plurality of linear lamps are arranged inside a quartz glass tube, and when the thin film is formed, the lamps are placed on the non-substrate side to reflect light to the reactant gas, and when the thin film is not formed, the linear lamps are placed on the substrate side. A semiconductor manufacturing apparatus characterized in that a reflective shielding member for shielding light from the reaction gas is movably provided along the wall of the quartz glass tube.
JP25345584A 1984-11-29 1984-11-29 Semiconductor manufacturing equipment Pending JPS61131428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25345584A JPS61131428A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25345584A JPS61131428A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JPS61131428A true JPS61131428A (en) 1986-06-19

Family

ID=17251629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25345584A Pending JPS61131428A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS61131428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138713A (en) * 1987-11-26 1989-05-31 Toshiba Corp Device for formation of film by optical pumping
WO2004036630A3 (en) * 2002-10-16 2004-10-14 Mattson Tech Inc Rapid thermal processing system for integrated circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138713A (en) * 1987-11-26 1989-05-31 Toshiba Corp Device for formation of film by optical pumping
WO2004036630A3 (en) * 2002-10-16 2004-10-14 Mattson Tech Inc Rapid thermal processing system for integrated circuits

Similar Documents

Publication Publication Date Title
US5364667A (en) Photo-assisted chemical vapor deposition method
JPS61131428A (en) Semiconductor manufacturing equipment
JPS60128265A (en) Device for forming thin film in vapor phase
JPS61131422A (en) Semiconductor manufacturing equipment
JPS62101021A (en) Semiconductor manufacturing equipment
JPS61131432A (en) Semiconductor manufacturing equipment
JPS61131426A (en) Semiconductor manufacturing equipment
JPH0638404B2 (en) Semiconductor manufacturing equipment
JPS61131420A (en) Semiconductor manufacturing equipment
JPH0334538A (en) Optical pumping reaction apparatus
JP3010065B2 (en) Optical excitation process equipment
JP3010066B2 (en) Optical excitation process equipment
JPS61131423A (en) Semiconductor manufacturing equipment
JPH0513373B2 (en)
JPS61131430A (en) Semiconductor manufacturing equipment
JPS6246515A (en) Thin film forming method
JPS61129816A (en) Semiconductor manufacturing apparatus
JPS61131415A (en) Semiconductor manufacturing equipment
JPH01241818A (en) Device for forming light excitation film
JPS6269512A (en) Manufacture of semiconductor device
JPS61129820A (en) Semiconductor manufacturing apparatus
JPH0598447A (en) Photo assisted cvd device
JPH0448720A (en) Surface treating method and device
JPS61131421A (en) Semiconductor manufacturing equipment
JPS61129819A (en) Semiconductor manufacturing apparatus