JPH0638404B2 - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPH0638404B2
JPH0638404B2 JP25344584A JP25344584A JPH0638404B2 JP H0638404 B2 JPH0638404 B2 JP H0638404B2 JP 25344584 A JP25344584 A JP 25344584A JP 25344584 A JP25344584 A JP 25344584A JP H0638404 B2 JPH0638404 B2 JP H0638404B2
Authority
JP
Japan
Prior art keywords
glass tube
quartz glass
reaction
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25344584A
Other languages
Japanese (ja)
Other versions
JPS61131418A (en
Inventor
利行 小林
芳視 大友
儀美 木之下
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25344584A priority Critical patent/JPH0638404B2/en
Publication of JPS61131418A publication Critical patent/JPS61131418A/en
Publication of JPH0638404B2 publication Critical patent/JPH0638404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光化学的に反応ガスを分解して薄膜を基板
上に形成させる方法(photo chemical vapour depositi
n:以下光励起CVD法と称す)を用いて薄膜を形成す
る半導体製造装置に関するものである。
The present invention relates to a method for photochemically decomposing a reaction gas to form a thin film on a substrate (photo chemical vapor deposition).
n: hereinafter referred to as photo-excited CVD method) relates to a semiconductor manufacturing apparatus for forming a thin film.

〔従来の技術〕[Conventional technology]

CVD法は集積回路装置における薄膜形成等において重
要な技術であるが、従来のCVD法は、主として反応ガ
スを加熱して化学反応を起こさせるようにしており、こ
のため反応温度が高温となり、これにより形成される薄
膜はダメージを受け易いものである。
Although the CVD method is an important technique for forming a thin film in an integrated circuit device, the conventional CVD method mainly heats a reaction gas to cause a chemical reaction, which causes a high reaction temperature. The thin film formed by is susceptible to damage.

そこで最近、低温CVD技術として光励起CVD法が注
目されている。この光励起CVD法は、CVDのエネル
ギー源として光を用いるものであり、これによれば、従
来の熱励起CVD法,プラズマCVD法等に比較して反
応温度を低温にでき、薄膜へのダメージも少なくするこ
とができる。
Therefore, recently, a photoexcited CVD method has been attracting attention as a low temperature CVD technique. This photo-excited CVD method uses light as an energy source for CVD. According to this method, the reaction temperature can be lowered as compared with the conventional thermal-excited CVD method, plasma CVD method, etc., and damage to the thin film can be prevented. Can be reduced.

また、一般的に光励起CVD法では、光の強度が薄膜の
形成速度に大きな影響を与えることが知られており、基
板温度,反応ガスの組成比,圧力を一定に保った条件下
では、薄膜の形成速度は光の照射強度に比例して速くな
ることが知られている。
In addition, it is generally known that, in the photo-excited CVD method, the intensity of light has a great influence on the formation rate of a thin film, and under conditions where the substrate temperature, the composition ratio of the reaction gas, and the pressure are kept constant, the thin film It is known that the formation rate of slag increases in proportion to the irradiation intensity of light.

第3図はこのような光励起CVD法による従来の薄膜形
成装置の基本的な構成を示し、図において、1は膜形成
時にその中が高真空状態に減圧される反応室、2は線状
ランプからなる光源、3は基板加熱用ヒータ、4はシラ
ン等の反応ガス、5は薄膜が形成される基板、6は光透
過材からなる光入射窓、7は反応ガス供給口、8は反応
後のガス4aを排出するためのガス排出口、9は基板5
を載せる固定台である。
FIG. 3 shows the basic structure of a conventional thin film forming apparatus using such a photo-excited CVD method. In the figure, 1 is a reaction chamber in which the pressure is reduced to a high vacuum during film formation, and 2 is a linear lamp. , 3 is a heater for heating a substrate, 4 is a reaction gas such as silane, 5 is a substrate on which a thin film is formed, 6 is a light incident window made of a light transmitting material, 7 is a reaction gas supply port, and 8 is after reaction Gas outlet for discharging the gas 4a of the
It is a fixed stand on which to mount.

なお、反応室1内は一般的に高真空状態に減圧され、反
応室1の壁,光透過材からなる光入射窓6も当然この圧
力に耐えうる構造,板厚により構成されている。
The inside of the reaction chamber 1 is generally depressurized to a high vacuum state, and the wall of the reaction chamber 1 and the light entrance window 6 made of a light transmitting material are naturally constructed to have a structure and a plate thickness capable of withstanding this pressure.

この装置では、反応ガス4が供給口7から反応室1に導
入されると、該反応ガス4は入射窓6から投射された光
線により励起分解される。そしてこれにより生じた反応
生成物がヒータ3によって低温加熱された基板5上に堆
積し、該基板5上に薄膜が形成される。反応後のガス4
aは排出口8から排出される。
In this apparatus, when the reaction gas 4 is introduced into the reaction chamber 1 from the supply port 7, the reaction gas 4 is excited and decomposed by the light beam projected from the incident window 6. Then, the reaction product generated thereby is deposited on the substrate 5 heated at a low temperature by the heater 3, and a thin film is formed on the substrate 5. Gas 4 after reaction
a is discharged from the discharge port 8.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この従来の半導体製造装置では以上のように反応室1に
光の入射窓6を設け、反応室1外に設けられた光源2か
ら光を投射しているが、基板5上への薄膜の形成速度を
速めるためには基板5上の光の照射を強くする必要があ
り、このためにはより出力の大きな光源を用いるか、基
板5と光源2の距離を縮め、基板5上の照度を強くする
必要がある。ところが、長寿命で出力の大きい実用的な
光源を求めることは現在では困難であり、また従来の構
造のまま基板5と光源2の間の距離を縮めることもこれ
らの間に光透過材からなる光入射窓6を、高真空の圧力
に耐えられる構造で反応室1に取り付けねばならないこ
とからはなはだ困難であった。
In this conventional semiconductor manufacturing apparatus, the light incident window 6 is provided in the reaction chamber 1 and light is projected from the light source 2 provided outside the reaction chamber 1 as described above, but a thin film is formed on the substrate 5. In order to increase the speed, it is necessary to increase the irradiation of light on the substrate 5. For this purpose, a light source with a larger output is used, or the distance between the substrate 5 and the light source 2 is shortened to increase the illuminance on the substrate 5. There is a need to. However, it is currently difficult to find a practical light source having a long life and a large output, and it is also possible to shorten the distance between the substrate 5 and the light source 2 with the conventional structure by using a light transmitting material. It was very difficult because the light entrance window 6 had to be attached to the reaction chamber 1 with a structure capable of withstanding a high vacuum pressure.

また、光入射窓6に反応生成物が堆積して、いわゆる曇
りが生じ、短波長紫外線がこれを透過しにくくなるとい
う問題点があった。
Further, there is a problem that reaction products are deposited on the light incident window 6 to cause so-called clouding, and short-wave ultraviolet rays are difficult to pass through.

この発明は、このような問題点を解消するためになされ
たもので、基板上の光の照度を高め、さらには反応生成
物の堆積による光の遮蔽の問題を解消できる半導体製造
装置を得ることを目的とするものである。
The present invention has been made to solve such problems, and to obtain a semiconductor manufacturing apparatus capable of increasing the illuminance of light on a substrate and further solving the problem of light shielding due to the deposition of reaction products. The purpose is.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体製造装置は、反応室内の石英ガラ
ス管内に線状ランプを複数個配設してなるものを光源と
して用い、上記石英ガラス管の外周面の基板側部分を覆
うような状態にて紫外線透過フィルムを移動させるフィ
ルム駆動装置を設けたものである。
The semiconductor manufacturing apparatus according to the present invention uses, as a light source, one in which a plurality of linear lamps are arranged in a quartz glass tube in a reaction chamber, and is set in a state of covering the substrate side portion of the outer peripheral surface of the quartz glass tube. A film drive device for moving the ultraviolet transparent film is provided.

〔作用〕 この発明においては、光源を反応室内に設けたから、該
光源が基板に近づいて該基板上の光の照度が高まり薄膜
は速く形成される。また石英ガラス管下部を覆うフィル
ムを設けたから、反応生成物は該フィルムに付着し、該
フィルムが巻き取られることによって上記石英ガラス管
表面には曇りが生じない。
[Operation] In the present invention, since the light source is provided in the reaction chamber, the light source approaches the substrate, the illuminance of light on the substrate increases, and the thin film is formed quickly. Further, since the film covering the lower part of the quartz glass tube is provided, the reaction product adheres to the film and the surface of the quartz glass tube is not fogged by winding the film.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による半導体製造装置の断面
側面図、第2図は第1図のII-II線断面図である。両図
において、1は反応室、13は該反応室1内に設けられ
た回転可能な円筒形石英ガラス管、12は該石英ガラス
管13の内壁に沿って複数の線状ランプが配設されてな
る光源、16は上記石英ガラス管13回転用モータ、1
4は紫外線透過フィルムであり、これは上記円筒形石英
ガラス管13の外周面の基板側部分にこれを覆うような
状態にて移動するよう設けられている。15は該フィル
ム14を上記円筒形石英ガラス管13の回転方向に該石
英ガラス管13と同期させて移動させ巻き取るフィルム
駆動装置、15a,15bは該駆動装置15のフィルム
供給ローラ,巻取ローラである。また、3は基板加熱用
ヒータ、4は反応ガス、5は基板、7は反応ガス供給
口、8は反応後のガス4aを排出するためのガス排出
口、19は基板5を載置し、円筒形石英ガラス管13の
軸に直角方向に移動する移動テーブル、20は該移動テ
ーブル19を駆動するテーブル移動機構であり、これは
上記テーブル19に固着された連結子19aに螺合した
ボールネジ23とこれを回転駆動するモータ24とから
構成されている。11は円筒形石英ガラス管13の曲面
側の一端に設けられた反応ガス供給ノズル、21は該供
給ノズル11とともに円筒形石英ガラス管13を挟むよ
う該ノズル11と反対側に設けられたガス排出ノズルで
ある。
1 is a sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line II-II of FIG. In both figures, 1 is a reaction chamber, 13 is a rotatable cylindrical quartz glass tube provided in the reaction chamber 1, and 12 is a plurality of linear lamps arranged along the inner wall of the quartz glass tube 13. , 16 is a motor for rotating the quartz glass tube 13, 1
Reference numeral 4 denotes an ultraviolet transparent film, which is provided on the outer peripheral surface of the cylindrical quartz glass tube 13 on the side of the substrate so as to cover it. Reference numeral 15 is a film driving device for moving the film 14 in the rotational direction of the cylindrical quartz glass tube 13 in synchronism with the quartz glass tube 13 to wind the film, and 15a and 15b are film supply rollers and take-up rollers of the driving device 15. Is. Further, 3 is a heater for heating a substrate, 4 is a reaction gas, 5 is a substrate, 7 is a reaction gas supply port, 8 is a gas discharge port for discharging the gas 4a after the reaction, and 19 is a substrate 5 mounted thereon. A moving table that moves in a direction perpendicular to the axis of the cylindrical quartz glass tube 13, and 20 is a table moving mechanism that drives the moving table 19. This is a ball screw 23 screwed to a connector 19a fixed to the table 19. And a motor 24 for rotating the same. Reference numeral 11 is a reaction gas supply nozzle provided at one end of the cylindrical quartz glass tube 13 on the curved surface side, and 21 is a gas discharge provided on the opposite side of the nozzle 11 so as to sandwich the cylindrical quartz glass tube 13 with the supply nozzle 11. It is a nozzle.

次に作用効果について説明する。Next, the function and effect will be described.

本装置においては、反応ガス4は供給口7から反応室1
内に供給され、一方光源12である円筒形石英ガラス管
13から光が投射されて該反応ガス4が光化学反応を生
じ、ヒータ3によって加熱されている基板5上に薄膜が
形成される そして本装置では円筒形石英ガラス管13内に複数の線
状ランプを配設したものを光源として用い、該光源12
を反応室1内に設けたので、該光源12を任意の距離ま
で基板5に近づけることができ、該基板5上の光の照度
を高めることができる。このため光源の出力を必要以上
に高めることなく基板5上への薄膜の形成速度を速める
ことができる。
In this apparatus, the reaction gas 4 is supplied from the supply port 7 to the reaction chamber 1
Light is projected from the cylindrical quartz glass tube 13 which is the light source 12, and the reaction gas 4 causes a photochemical reaction to form a thin film on the substrate 5 heated by the heater 3. In the apparatus, a cylindrical quartz glass tube 13 having a plurality of linear lamps arranged therein is used as a light source.
Since the light source 12 is provided in the reaction chamber 1, the light source 12 can be brought close to the substrate 5 by an arbitrary distance, and the illuminance of light on the substrate 5 can be increased. Therefore, the speed of forming the thin film on the substrate 5 can be increased without increasing the output of the light source more than necessary.

また上記薄膜形成に際し、反応生成物は上記石英ガラス
管13の表面に付着しようとするが、これは該表面に設
けられたフィルム14に付着し、該フィルム14が順次
巻き取られることによって上記石英ガラス管13表面に
は反応生成物は付着しない。また、石英ガラス管13の
回転速度に同期してフィルム14が動くので両者の間で
ほこりは発生しない。
Further, in forming the thin film, the reaction product tends to adhere to the surface of the quartz glass tube 13, but this adheres to the film 14 provided on the surface, and the film 14 is sequentially wound up to form the quartz film. No reaction product adheres to the surface of the glass tube 13. Further, since the film 14 moves in synchronization with the rotation speed of the quartz glass tube 13, no dust is generated between the two.

また、本実施例では反応ガス供給ノズル11とガス排出
ノズル21を円筒形石英ガラス管13を挟んで該ガラス
管13下方に設けたので、反応ガス4は、円筒形石英ガ
ラス管13と基板5との間隔がもっとも狭く、基板5上
の光の照度がもっとも強いところを流れ、該反応ガス4
に光化学反応を速やかに起こさせることができる。また
これらノズル11,21を設けることにより、反応ガス
4を短い距離だけ流せばよいため、反応室1内の不必要
な部分に反応ガス4が流れるのを防止できる。又、反応
ガスを短い距離を効率よく流すことができるため、反応
ガスの濃度を均一に、しかも反応ガスの光化学反応の速
度に合わせ十分な量の反応ガスを基板5上に流し込むこ
とができ、薄膜の形成速度を速めることができる。
Further, in this embodiment, since the reaction gas supply nozzle 11 and the gas discharge nozzle 21 are provided below the glass tube 13 with the cylindrical quartz glass tube 13 interposed therebetween, the reaction gas 4 is the cylindrical quartz glass tube 13 and the substrate 5. And the reaction gas 4 flows through a place where the illuminance of light on the substrate 5 is strongest.
It is possible to cause a photochemical reaction to occur rapidly. Further, by providing these nozzles 11 and 21, it is only necessary to flow the reaction gas 4 for a short distance, and therefore it is possible to prevent the reaction gas 4 from flowing to unnecessary portions in the reaction chamber 1. Further, since the reaction gas can be efficiently flowed over a short distance, the concentration of the reaction gas can be made uniform, and a sufficient amount of the reaction gas can be flown onto the substrate 5 in accordance with the photochemical reaction rate of the reaction gas. The formation rate of the thin film can be increased.

又、円筒形石英ガラス管13内に該ガラス管13の内壁
に沿って線状ランプを適当な間隔をおいて配置している
ので、上記ガラス管13の軸と直角な方向において基板
5上の光の照度分布はある程度均一にでき、さらに該方
向に移動テーブル19を移動させるようにしたので、該
方向の光の照度分布をより均一にでき、従って基板5上
に連続して均一な薄膜を形成することができる。
Further, since the linear lamps are arranged in the cylindrical quartz glass tube 13 along the inner wall of the glass tube 13 at appropriate intervals, the linear lamps are placed on the substrate 5 in the direction perpendicular to the axis of the glass tube 13. The illuminance distribution of light can be made uniform to some extent, and the moving table 19 is moved in that direction, so that the illuminance distribution of light in that direction can be made more uniform, so that a uniform thin film is continuously formed on the substrate 5. Can be formed.

また反応ガス供給ノズル11とガス排出ノズル21を円
筒形石英ガラス管13を挟んで設けたことにより、移動
テーブル19の移動方向に沿って反応ガスは流れること
になり、反応ガスの流れ方向に沿った微妙な反応ガスの
濃度変化により形成される薄膜への膜厚変化に対する影
響を回避できる。
Further, since the reaction gas supply nozzle 11 and the gas discharge nozzle 21 are provided with the cylindrical quartz glass tube 13 interposed therebetween, the reaction gas flows along the moving direction of the moving table 19, and the reaction gas flows along the flowing direction. It is possible to avoid the influence of a slight change in the concentration of the reaction gas on the change in film thickness on the thin film formed.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明に係る半導体製造装置によれ
ば、複数の線状ランプを石英ガラス管内に組み込んだも
のを光源として用い、該光源を反応室内に設けたので、
基板上の光の照度を高めて薄膜の形成速度を速めること
ができ、また上記石英ガラス管表面フィルムを設け、こ
れを移動させ巻き取るようにしたので、該表面に曇りが
生ずるのを防止できる効果がある。
As described above, according to the semiconductor manufacturing apparatus of the present invention, a plurality of linear lamps incorporated in a quartz glass tube is used as a light source, and the light source is provided in the reaction chamber.
The illuminance of light on the substrate can be increased to accelerate the thin film formation speed, and since the quartz glass tube surface film is provided and is moved and wound up, it is possible to prevent the surface from being fogged. effective.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による半導体製造装置の断面
側面図、第2図は第1図のII-II線断面図、第3図は従
来の半導体製造装置の断面側面図である。 1は反応室、12は光源、4は反応ガス、5は基板、1
3は石英ガラス管、14は紫外線透過フィルム、15は
フィルム巻取装置である。 なお図中同一符号は同一又は相当部分を示す。
1 is a sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line II-II of FIG. 1, and FIG. 3 is a sectional side view of a conventional semiconductor manufacturing apparatus. 1 is a reaction chamber, 12 is a light source, 4 is a reaction gas, 5 is a substrate, 1
3 is a quartz glass tube, 14 is an ultraviolet transparent film, and 15 is a film winding device. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】反応室内の反応ガスに光源からの光を投射
して光化学反応を生じさせ該反応ガス中に置かれた基板
上に薄膜を形成させる半導体製造装置において、上記光
源が上記反応室内に設けられた石英ガラス管内に複数の
線状ランプが配設されてなるものであり、上記石英ガラ
ス管の外周面の基板側部分を覆うような状態にて紫外線
透過フィルムを移動させるフィルム駆動装置が設けられ
ていることを特徴とする半導体製造装置
1. A semiconductor manufacturing apparatus for projecting light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction to form a thin film on a substrate placed in the reaction gas, wherein the light source is the reaction chamber. A plurality of linear lamps are arranged in a quartz glass tube provided in the film driving device for moving the ultraviolet transparent film in a state of covering the substrate side portion of the outer peripheral surface of the quartz glass tube. A semiconductor manufacturing apparatus characterized in that
【請求項2】上記石英ガラス管は回転可能になってお
り、上記紫外線透過フィルムの移動速度は上記石英ガラ
ス管の周速度と同速であることを特徴とする特許請求の
範囲第1項記載の半導体製造装置。
2. The quartz glass tube is rotatable, and the moving speed of the ultraviolet transparent film is the same as the peripheral speed of the quartz glass tube. Semiconductor manufacturing equipment.
JP25344584A 1984-11-29 1984-11-29 Semiconductor manufacturing equipment Expired - Lifetime JPH0638404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25344584A JPH0638404B2 (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25344584A JPH0638404B2 (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS61131418A JPS61131418A (en) 1986-06-19
JPH0638404B2 true JPH0638404B2 (en) 1994-05-18

Family

ID=17251494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25344584A Expired - Lifetime JPH0638404B2 (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0638404B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432513B1 (en) * 2001-09-11 2004-05-22 한국과학기술원 Apparatus and method for photo-induced process

Also Published As

Publication number Publication date
JPS61131418A (en) 1986-06-19

Similar Documents

Publication Publication Date Title
US4615294A (en) Barrel reactor and method for photochemical vapor deposition
US5527417A (en) Photo-assisted CVD apparatus
US4597986A (en) Method for photochemical vapor deposition
JPS606540B2 (en) Photochemical vapor deposition apparatus and method
JPH0638404B2 (en) Semiconductor manufacturing equipment
CA1181719A (en) Photochemical vapor deposition apparatus and method
JPS61131426A (en) Semiconductor manufacturing equipment
JPS60128265A (en) Device for forming thin film in vapor phase
JPS61131428A (en) Semiconductor manufacturing equipment
JPH0513373B2 (en)
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPS61131421A (en) Semiconductor manufacturing equipment
JPS62101021A (en) Semiconductor manufacturing equipment
JPS61131422A (en) Semiconductor manufacturing equipment
JP3079436B2 (en) Photochemical reactor
JPS6152231B2 (en)
JPS61131432A (en) Semiconductor manufacturing equipment
US4842828A (en) Apparatus for treating surface of object with ultraviolet rays and reaction gas
JPS61196526A (en) Photochemical vapor deposition process and apparatus thereof
JPS61131430A (en) Semiconductor manufacturing equipment
JPS63132423A (en) Photochemical vapor deposition device
JPS6152232B2 (en)
JPS61131417A (en) Semiconductor manufacturing equipment
JPS61131420A (en) Semiconductor manufacturing equipment
JPS61108125A (en) Semiconductor manufacturing equipment