JPH0513373B2 - - Google Patents

Info

Publication number
JPH0513373B2
JPH0513373B2 JP25345284A JP25345284A JPH0513373B2 JP H0513373 B2 JPH0513373 B2 JP H0513373B2 JP 25345284 A JP25345284 A JP 25345284A JP 25345284 A JP25345284 A JP 25345284A JP H0513373 B2 JPH0513373 B2 JP H0513373B2
Authority
JP
Japan
Prior art keywords
substrate
reaction
glass tube
light
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25345284A
Other languages
Japanese (ja)
Other versions
JPS61131425A (en
Inventor
Toshuki Kobayashi
Yoshimi Ootomo
Yoshimi Kinoshita
Masao Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25345284A priority Critical patent/JPS61131425A/en
Publication of JPS61131425A publication Critical patent/JPS61131425A/en
Publication of JPH0513373B2 publication Critical patent/JPH0513373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光化学的に反応ガスを分解して薄
膜を基板上に形成させる方法(photo chemical
vapour deposition:以下光励起CVD法と称す)
を用いて薄膜を形成する半導体製造装置に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method of forming a thin film on a substrate by photochemically decomposing a reactive gas.
vapor deposition (hereinafter referred to as photoexcitation CVD method)
The present invention relates to semiconductor manufacturing equipment that forms thin films using.

〔従来の技術〕[Conventional technology]

CVD法は集積回路装置における薄膜形成等に
おいて重要な技術であるが、従来のCVD法は、
主として反応ガスを加熱して化学反応を起こさせ
るようにしており、このため反応温度が高温とな
り、これにより形成される薄膜はダメージを受け
易いものである。
The CVD method is an important technology for forming thin films in integrated circuit devices, but the conventional CVD method
The reaction gas is mainly heated to cause a chemical reaction, and therefore the reaction temperature becomes high, and the thin film formed thereby is easily damaged.

そこで最近、低温CVD技術として光励起CVD
法が注目されている。この光励起CVD法は、
CVDのエネルギー源として光を用いるものであ
り、これによれば、従来の熱励起CVD法、プラ
ズマCVD法等に比較して反応温度を低温にでき、
薄膜へのダメージも少なくすることができる。
Therefore, recently, photo-excited CVD has been developed as a low-temperature CVD technology.
The law is attracting attention. This photoexcitation CVD method is
Light is used as the energy source for CVD, which allows the reaction temperature to be lower than that of conventional thermally excited CVD methods, plasma CVD methods, etc.
Damage to the thin film can also be reduced.

また、一般的に光励起CVD法では、光の強度
が薄膜の形成速度に大きな影響を与えることが知
られており、基板温度、反応ガスの組成比、圧力
を一定に保つた条件下では、薄膜の形成速度は光
の照射強度に比例して遠くなることが知られてい
る。
In general, in photo-excited CVD methods, it is known that the intensity of light has a large effect on the rate of thin film formation. It is known that the rate of formation of is proportional to the intensity of light irradiation.

第2図はこのような光励起CVD法による従来
の薄膜形成装置の基本的な構成を示し、図におい
て、1は膜形成時にその中が高真空状態に減圧さ
れる反応室、2は線状ランプからなる光源、3は
基板加熱用ヒータ、4はシラン等の反応ガス、5
は薄膜が形成される基板、6は光透過材からなる
光入射窓、7は反応ガス供給口、8は反応後のガ
ス4aを排出するためのガス排出口、9は基板5
を載せる固定台である。
Figure 2 shows the basic configuration of a conventional thin film forming apparatus using such a photo-excited CVD method. In the figure, 1 is a reaction chamber whose inside is reduced to a high vacuum state during film formation, and 2 is a linear lamp. 3 is a heater for heating the substrate; 4 is a reactive gas such as silane;
6 is a substrate on which a thin film is formed, 6 is a light entrance window made of a light-transmitting material, 7 is a reaction gas supply port, 8 is a gas discharge port for discharging the gas 4a after the reaction, and 9 is a substrate 5
It is a fixed stand on which to place.

なお、反応室1内は一般的に高真空状態に減圧
され、反応室1の壁、光透過材からなる光入射窓
6も当然この圧力に耐えうる構造、板厚により構
成されている。
Incidentally, the pressure inside the reaction chamber 1 is generally reduced to a high vacuum state, and the walls of the reaction chamber 1 and the light entrance window 6 made of a light-transmitting material are of course constructed with a structure and plate thickness capable of withstanding this pressure.

この装置では、反応ガス4が供給口7から反応
室1に導入されると、該反応ガス4は入射窓6か
ら投射された光線により励起分解される。そして
これにより生じた反応生成物がヒータ3によつて
低温加熱された基板5上に堆積し、該基板5上に
薄膜が形成される。反応後のガス4aは排出口8
から排出される。
In this apparatus, when a reaction gas 4 is introduced into the reaction chamber 1 through a supply port 7, the reaction gas 4 is excited and decomposed by a light beam projected from an entrance window 6. The resulting reaction product is deposited on the substrate 5 heated at a low temperature by the heater 3, and a thin film is formed on the substrate 5. Gas 4a after reaction is discharged from outlet 8
is discharged from.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来の半導体製造装置では以上のように反
応室1に光の入射窓6を設け、反応室1外に設け
られた光源2から光を投射しているが、基板5上
への薄膜の形成速度を速めるためには基板5上の
光の照度を強くする必要があり、このためにはよ
り出力の大きな光源を用いるか、基板5と光源2
の距離を縮め、基板5上の照度を強くする必要が
ある。ところが、長寿命で出力の大きい実用的な
光源を求めることは現在では困難であり、また従
来の構造のまま基板5と光源2の間の距離を縮め
ることもこれらの間に光透過材からなる光入射窓
6を、高真空の圧力に耐えられる構造で反応室1
に取り付けねばならないことからはなはだ困難で
あつた。
In this conventional semiconductor manufacturing apparatus, the light entrance window 6 is provided in the reaction chamber 1 as described above, and light is projected from the light source 2 provided outside the reaction chamber 1. In order to increase the speed, it is necessary to increase the illuminance of the light on the substrate 5, and for this purpose, it is necessary to use a light source with a higher output, or to connect the substrate 5 and the light source 2.
It is necessary to shorten the distance and increase the illuminance on the substrate 5. However, it is currently difficult to find a practical light source with a long life and high output, and it is also possible to shorten the distance between the substrate 5 and the light source 2 with the conventional structure by using a light-transmitting material between them. The light entrance window 6 is arranged in the reaction chamber 1 with a structure that can withstand high vacuum pressure.
This was extremely difficult as it had to be attached to the

また、光入射窓6に光化学反応による反応生成
物が堆積し、いわゆる曇りが生じて紫外線がこれ
を透過しにくくなり、装置の連続運転ができなく
なるという問題点があつた。
In addition, reaction products from photochemical reactions accumulate on the light entrance window 6, resulting in so-called clouding, which makes it difficult for ultraviolet rays to pass therethrough, making continuous operation of the apparatus impossible.

この発明は、このような問題点を解消するため
になされたもので、基板上の光の照度を高めるこ
とができ、さらには連続運転できる半導体製造装
置を得ることを目的とするものである。
The present invention was made to solve these problems, and aims to provide a semiconductor manufacturing apparatus that can increase the illuminance of light on a substrate and can be operated continuously.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体製造装置は、反応室内の
回転可能な石英ガラス管内に線状ランプを複数個
配設してなるものを光源として用い、上記石英ガ
ラス管の基板と反対側の外表面近傍でプラズマを
発生させ上記石英ガラス管表面に付着した反応生
成物をエツチング除去するプラズマ放電装置を設
けたものである。
A semiconductor manufacturing apparatus according to the present invention uses as a light source a plurality of linear lamps arranged in a rotatable quartz glass tube in a reaction chamber, and near the outer surface of the quartz glass tube on the opposite side from the substrate. A plasma discharge device is provided for generating plasma and etching away reaction products adhering to the surface of the quartz glass tube.

〔作用〕[Effect]

この発明においては、光源を反応室内に設けた
から、該光源が基板に近づいて該基板上の光の照
度が高まり、薄膜は速く形成される。また、石英
ガラス管の外周面に付着する反応生成物は上記石
英ガラス管の回転に伴い上方に移動し、ここでプ
ラズマエツチングされて除去される。
In this invention, since the light source is provided in the reaction chamber, the light source approaches the substrate, increasing the illuminance of the light on the substrate, and forming a thin film quickly. Further, reaction products adhering to the outer peripheral surface of the quartz glass tube move upward as the quartz glass tube rotates, and are removed by plasma etching there.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による半導体製造装
置の断面図である。図において、1は反応室、1
3は該反応室1内に設けられた図示右回りに回転
可能な円筒形石英ガラス管であり、これは図示し
ないモータにより駆動される。12は該石英ガラ
ス管13の内壁に沿つて複数の線状ランプが配設
されてなる光源、5は基板、14は上記円筒形石
英ガラス管13の該基板5と反対側の外表面近
傍、即ち上方でプラズマを発生させるプラズマ放
電装置、11a,11bはその両電極、10は円
筒形石英ガラス管13両側面を覆うよう設けられ
反応室1を基板側と非基板側とに仕切るシール板
である。3は基板加熱用ヒータ、4は反応ガス、
7は反応ガス供給口、8は反応後のガス4aを排
出するためのガス排出口、9は基板5を載せる台
である。
FIG. 1 is a sectional view of a semiconductor manufacturing apparatus according to an embodiment of the present invention. In the figure, 1 is a reaction chamber, 1
3 is a cylindrical quartz glass tube provided in the reaction chamber 1 and rotatable clockwise in the figure, and is driven by a motor (not shown). 12 is a light source formed by a plurality of linear lamps arranged along the inner wall of the quartz glass tube 13; 5 is a substrate; 14 is a vicinity of the outer surface of the cylindrical quartz glass tube 13 on the side opposite to the substrate 5; That is, a plasma discharge device that generates plasma above, 11a and 11b are both electrodes thereof, and 10 is a seal plate provided to cover both sides of the cylindrical quartz glass tube 13 and partition the reaction chamber 1 into a substrate side and a non-substrate side. be. 3 is a heater for heating the substrate, 4 is a reactive gas,
7 is a reaction gas supply port, 8 is a gas discharge port for discharging the gas 4a after the reaction, and 9 is a table on which the substrate 5 is placed.

次に作用効果について説明する。 Next, the effects will be explained.

本装置においては、反応ガス4は供給口7から
反応室1内に供給され、一方光源12である円筒
形石英ガラス管13から光が投射されて該反応ガ
ス4が光化学反応を生じ、ヒータ3によつて加熱
されている基板5上に薄膜が形成される。
In this apparatus, a reaction gas 4 is supplied into the reaction chamber 1 through a supply port 7, and light is projected from a cylindrical quartz glass tube 13 serving as a light source 12 to cause a photochemical reaction in the reaction gas 4. A thin film is formed on the substrate 5 which is being heated by.

そして本装置では、円筒形石英ガラス管13内
に複数の線状ランプを配設したものを光源として
用い、該光源12を反応室1内に設けたので、該
光源12を任意の距離まで基板5に近づけること
ができ、該基板5上の光の照度を高めることがで
きる。このため光源12の出力を必要以上に高め
ることなく基板5上への薄膜の形成速度を速める
ことができる。
In this apparatus, a plurality of linear lamps arranged in a cylindrical quartz glass tube 13 is used as a light source, and since the light source 12 is installed in the reaction chamber 1, the light source 12 can be extended to any desired distance from the substrate. 5, and the illuminance of the light on the substrate 5 can be increased. Therefore, the speed of forming a thin film on the substrate 5 can be increased without increasing the output of the light source 12 more than necessary.

また上記薄膜形成に際し、反応生成物は上記石
英ガラス管13の表面に付着するが、これは該石
英ガラス管13の回転に伴い上方に移動し、ここ
でプラズマ放電装置14により発生されるプラズ
マにてエツチング除去されることによつて線状ラ
ンプを点灯させたまま装置を連続運転できる。
Further, during the formation of the thin film, reaction products adhere to the surface of the quartz glass tube 13, but as the quartz glass tube 13 rotates, the reaction products move upward and are exposed to the plasma generated by the plasma discharge device 14. By etching it away, the device can be operated continuously while the linear lamp remains lit.

また、本実施例では反応ガス供給口7とガス排
出口8を円筒形石英ガラス管13を挟んで該ガラ
ス管13下方に相互に近づけて設けたので、反応
ガス4は、円筒形石英ガラス管13と基板5との
間隔がもつとも狭く、基板5上の光の照度がもつ
とも強いところを流れ、該反応ガス4に光化学反
応を速やかに起こさせることができる。またこの
ような反応ガス供給口7、ガス排出口8を設ける
ことにより、反応ガス4を短い距離だけ流せばよ
いため、反応室1内の不必要な部分に反応ガス4
が流れるのを防止できる。又、反応ガスを短い距
離を効率よく流すことができるため、反応ガスの
濃度を均一に、しかも反応ガスの光化学反応の速
度に合わせ十分な量の反応ガスを基板5上に流し
込むことができ、薄膜の形成速度を速めることが
できる。
In addition, in this embodiment, the reactive gas supply port 7 and the gas discharge port 8 are provided close to each other below the glass tube 13 with the cylindrical quartz glass tube 13 in between, so that the reactive gas 4 is supplied to the cylindrical quartz glass tube. The light flows where the distance between the light source 13 and the substrate 5 is narrow and the illuminance of the light on the substrate 5 is strong, allowing the reaction gas 4 to quickly undergo a photochemical reaction. In addition, by providing such a reaction gas supply port 7 and a gas discharge port 8, the reaction gas 4 only needs to flow over a short distance, so that the reaction gas 4 can be placed in an unnecessary part of the reaction chamber 1.
can be prevented from flowing. In addition, since the reactive gas can be efficiently flowed over a short distance, the concentration of the reactive gas can be made uniform, and a sufficient amount of the reactive gas can be flowed onto the substrate 5 in accordance with the speed of the photochemical reaction of the reactive gas. Thin film formation speed can be increased.

又、円筒形石英ガラス管13内に該ガラス管1
3の内壁に沿つて線状ランプを適当な間隔をおい
て配置しているので、上記ガラス管13の軸と直
角な方向において基板5上の光の照度分布はある
程度均一できる。
Moreover, the glass tube 1 is placed inside the cylindrical quartz glass tube 13.
Since the linear lamps are arranged at appropriate intervals along the inner wall of the glass tube 13, the illuminance distribution of the light on the substrate 5 can be made uniform to some extent in the direction perpendicular to the axis of the glass tube 13.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体製造装置
によれば、複数の線状ランプを石英ガラス管内に
組み込んだものを光源として用い、該光源を反応
室内に設けたので、基板上の光の照度を高めて薄
膜の形成速度を速めることができ、また回転可能
な上記石英ガラス管上部の外周面近傍でプラズマ
を発生させるプラズマ放電装置を設けたので、上
記外周面に付着する反応生成物をプラズマエツチ
ングして除去でき、これにより装置を連続運転で
きる効果がある。
As described above, according to the semiconductor manufacturing apparatus according to the present invention, a plurality of linear lamps incorporated in a quartz glass tube is used as a light source, and the light source is provided in the reaction chamber, so that the illuminance of the light on the substrate is In addition, since a plasma discharge device is provided that generates plasma near the outer circumferential surface of the upper part of the rotatable quartz glass tube, reaction products adhering to the outer circumferential surface are removed by plasma. It can be removed by etching, which has the effect of allowing continuous operation of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体製造装
置の断面側面図、第2図は従来の半導体製造装置
の断面側面図である。 1……反応室、12……光源、4……反応ガ
ス、5……基板、13……石英ガラス管、14…
…プラズマ放電装置。なお図中同一符号は同一又
は相当部分を示す。
FIG. 1 is a cross-sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional side view of a conventional semiconductor manufacturing apparatus. DESCRIPTION OF SYMBOLS 1... Reaction chamber, 12... Light source, 4... Reaction gas, 5... Substrate, 13... Quartz glass tube, 14...
...Plasma discharge device. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 反応室内の反応ガスに光源からの光を投射し
て光化学反応を生じさせ該反応ガス中に置かれた
基板上に薄膜を形成させる半導体製造装置におい
て、上記光源が反応室内に回転可能に設けられた
石英ガラス管内に複数の線状ランプが配設されて
なるものであり、上記石英ガラス管の上記基板と
反対側の外表面近傍でプラズマを発生させるプラ
ズマ放電装置が設けられていることを特徴とする
半導体製造装置。
1 In a semiconductor manufacturing apparatus that projects light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction and form a thin film on a substrate placed in the reaction gas, the light source is rotatably installed in the reaction chamber. A plurality of linear lamps are arranged in a quartz glass tube, and a plasma discharge device for generating plasma is provided near the outer surface of the quartz glass tube on the side opposite to the substrate. Features of semiconductor manufacturing equipment.
JP25345284A 1984-11-29 1984-11-29 Semiconductor manufacturing equipment Granted JPS61131425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25345284A JPS61131425A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25345284A JPS61131425A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS61131425A JPS61131425A (en) 1986-06-19
JPH0513373B2 true JPH0513373B2 (en) 1993-02-22

Family

ID=17251590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25345284A Granted JPS61131425A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS61131425A (en)

Also Published As

Publication number Publication date
JPS61131425A (en) 1986-06-19

Similar Documents

Publication Publication Date Title
US5229081A (en) Apparatus for semiconductor process including photo-excitation process
US4500565A (en) Deposition process
JPH0513373B2 (en)
JPH0621234Y2 (en) Semiconductor manufacturing equipment
JPS60128265A (en) Device for forming thin film in vapor phase
JPS61131432A (en) Semiconductor manufacturing equipment
JPH0638404B2 (en) Semiconductor manufacturing equipment
JPS61131422A (en) Semiconductor manufacturing equipment
JPS62101021A (en) Semiconductor manufacturing equipment
JP3064407B2 (en) Light source for photo-excitation process equipment
JPS61131426A (en) Semiconductor manufacturing equipment
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPS61131428A (en) Semiconductor manufacturing equipment
JPH0334538A (en) Optical pumping reaction apparatus
JP3010066B2 (en) Optical excitation process equipment
JPS61131420A (en) Semiconductor manufacturing equipment
JP3010065B2 (en) Optical excitation process equipment
JPH0598447A (en) Photo assisted cvd device
JPH01241818A (en) Device for forming light excitation film
JPS6248016A (en) Photo-cvd device
JPS61131417A (en) Semiconductor manufacturing equipment
JPS61131415A (en) Semiconductor manufacturing equipment
JPS6152232B2 (en)
JPH01312078A (en) Light-excited treating device
JPS59209643A (en) Photochemical vapor phase deposition device